1
|
Hossein Garakani M, Kakavand K, Sabbaghian M, Ghaheri A, Masoudi NS, Shahhoseini M, Hassanzadeh V, Zamanian M, Meybodi AM, Moradi SZ. Comprehensive analysis of chromosomal breakpoints and candidate genes associated with male infertility: insights from cytogenetic studies and expression analyses. Mamm Genome 2024; 35:764-783. [PMID: 39358566 DOI: 10.1007/s00335-024-10074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
The study aimed to investigate prevalent chromosomal breakpoints identified in balanced structural chromosomal anomalies and to pinpoint potential candidate genes linked with male infertility. This was acchieved through a comprehensive approach combining RNA-seq and microarray data analysis, enabling precise identification of candidate genes. The Cytogenetics data from 2,500 infertile males referred to Royan Research Institute between 2009 and 2022 were analyzed, with 391 cases meeting the inclusion criteria of balanced chromosomal rearrangement. Of these, 193 cases exhibited normal variations and were excluded from the analysis. By examining the breakpoints, potential candidate genes were suggested. Among the remaining 198 cases, reciprocal translocations were the most frequent anomaly (129 cases), followed by Robertsonian translocations (43 cases), inversions (34 cases), and insertions (3 cases).Some patients had more than one chromosomal abnormality. Chromosomal anomalies were most frequently observed in chromosomes 13 (21.1%), 14 (20.1%), and 1 (16.3%) with 13q12, 14q12, and 1p36.3 being the most prevalent breakpoints, respectively. Chromosome 1 contributed the most to reciprocal translocations (20.2%) and inversions (17.6%), while chromosome 14 was the most involved in the Robertsonian translocations (82.2%). The findings suggested that breakpoints at 1p36.3 and 14q12 might be associated with pregestational infertility, whereas breakpoints at 13q12 could be linked to both gestational and pregestational infertility. Several candidate genes located on common breakpoints were proposed as potentially involved in male infertility. Bioinformatics analyses utilizing three databases were conducted to examine the expression patterns of 78 candidate genes implicated in various causes of infertility. In azoospermic individuals, significant differential expression was observed in 19 genes: 15 were downregulated (TSSK2, SPINK2, TSSK4, CDY1, CFAP70, BPY2, BTG4, FKBP6, PPP2R1B, SPECC1L, CENPJ, SKA3, FGF9, NODAL, CLOCK), while four genes were upregulated (HSPB1, MIF, PRF1, ENTPD6). In the case of Asthenozoospermia, seven genes showed significant upregulation (PRF1, DDX21, KIT, SRD5A3, MTCH1, DDX50, NODAL). Though RNA-seq data for Teratozoospermia were unavailable, microarray data revealed differential expression insix genes: three downregulated (BUB1, KLK4, PIWIL2) and three upregulated (AURKC, NPM2, RANBP2). These findings enhance our understanding of the molecular basis of male infertility and could provide valuable insights for future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Melika Hossein Garakani
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Kianoush Kakavand
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Azadeh Ghaheri
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Najmeh Sadat Masoudi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Shahhoseini
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Biochemistry, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Vahideh Hassanzadeh
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammadreza Zamanian
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Shabnam Zarei Moradi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
Liu C, Shi K, Lyu K, Liu D, Wang X. The toxicity of neodymium and genome-scale genetic screen of neodymium-sensitive gene deletion mutations in the yeast Saccharomyces cerevisiae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:41439-41454. [PMID: 35088271 DOI: 10.1007/s11356-021-18100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
The wide usage of neodymium (Nd) in industry, agriculture, and medicine has made it become an emerging pollutant in the environment. Increasing Nd pollution has potential hazards to plants, animals, and microorganisms. Thus, it is necessary to study the toxicity of Nd and the mechanism of Nd transportation and detoxification in microorganisms. Through genome-scale screening, we identified 70 yeast monogene deletion mutations sensitive to Nd ions. These genes are mainly involved in metabolism, transcription, protein synthesis, cell cycle, DNA processing, protein folding, modification, and cell transport processes. Furthermore, the regulatory networks of Nd toxicity were identified by using the protein interaction group analysis. These networks are associated with various signal pathways, including calcium ion transport, phosphate pathways, vesicular transport, and cell autophagy. In addition, the content of Nd ions in yeast was detected by an inductively coupled plasma mass spectrometry, and most of these Nd-sensitive mutants showed an increased intracellular Nd content. In all, our results provide the basis for understanding the molecular mechanisms of detoxifying Nd ions in yeast cells, which will be useful for future studies on Nd-related issues in the environment, agriculture, and human health.
Collapse
Affiliation(s)
- Chengkun Liu
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Kailun Shi
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Keliang Lyu
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, Shandong, China
| | - Dongwu Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, China
| | - Xue Wang
- School of Life Sciences, Shandong University of Technology, Zibo, 255049, Shandong, China
| |
Collapse
|
3
|
Han B, Yan Z, Yu S, Ge W, Li Y, Wang Y, Yang B, Shen W, Jiang H, Sun Z. Infertility network and hub genes for nonobstructive azoospermia utilizing integrative analysis. Aging (Albany NY) 2021; 13:7052-7066. [PMID: 33621950 PMCID: PMC7993690 DOI: 10.18632/aging.202559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/29/2020] [Indexed: 11/25/2022]
Abstract
Non-obstructive azoospermia (NOA) is the most severe form of male infertility owing to the absence of sperm during ejaculation as a result of failed spermatogenesis. The molecular mechanisms of NOA have not been well studied. Here, we revealed the dysregulated differentially expressed genes in NOA and related signaling pathways or biological processes. Cluster features of biological processes include spermatogenesis, fertilization, cilium movement, penetration of zona pellucida, sperm chromatin condensation, and being significantly enriched metabolic pathways in proximal tubule bicarbonate reclamation, aldosterone synthesis and secretion, glycolysis and glycogenesis pathways in NOA using Gene Ontology analysis and pathway enrichment analysis. The NOA gene co-expression network was constructed by weighted gene co-expression network analysis to identify the hub genes (CHD5 and SPTBN2). In addition, we used another Gene Expression Omnibus dataset (GSE45887) to validate these hub genes. Furthermore, we used the Seurat package to classify testicular tissue cells from NOA patients and to characterize the differential expression of hub genes in different cell types from different adult males based on the scRNA-seq dataset (GSE106487). These results provide new insights into the pathogenesis of NOA. Of particular note, CHD5 and SPTBN2 may be potential biomarkers for the diagnosis and treatment of NOA.
Collapse
Affiliation(s)
- Baoquan Han
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Zihui Yan
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuai Yu
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yaqi Li
- Department of Urology, Zaozhuang Hospital of Zaozhuang Mining Group, Zaozhuang 277100, China
| | - Yan Wang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Bo Yang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen PKU-HKUST Medical Center, Shenzhen 518036, China
| | - Wei Shen
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China.,College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Hui Jiang
- Department of Urology, Department of Andrology, Department of Human Sperm Bank, Peking University Third Hospital, Beijing 100191, China
| | - Zhongyi Sun
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University, The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| |
Collapse
|
4
|
Ding X, Schimenti JC. Strategies to Identify Genetic Variants Causing Infertility. Trends Mol Med 2021; 27:792-806. [PMID: 33431240 DOI: 10.1016/j.molmed.2020.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022]
Abstract
Genetic causes are thought to underlie about half of infertility cases, but understanding the genetic bases has been a major challenge. Modern genomics tools allow more sophisticated exploration of genetic causes of infertility through population, family-based, and individual studies. Nevertheless, potential therapies based on genetic diagnostics will be limited until there is certainty regarding the causality of genetic variants identified in an individual. Genome modulation and editing technologies have revolutionized our ability to functionally test such variants, and also provide a potential means for clinical correction of infertility variants. This review addresses strategies being used to identify causative variants of infertility.
Collapse
Affiliation(s)
- Xinbao Ding
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| | - John C Schimenti
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA.
| |
Collapse
|
5
|
Xavier MJ, Salas-Huetos A, Oud MS, Aston KI, Veltman JA. Disease gene discovery in male infertility: past, present and future. Hum Genet 2021; 140:7-19. [PMID: 32638125 PMCID: PMC7864819 DOI: 10.1007/s00439-020-02202-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022]
Abstract
Identifying the genes causing male infertility is important to increase our biological understanding as well as the diagnostic yield and clinical relevance of genetic testing in this disorder. While significant progress has been made in some areas, mainly in our knowledge of the genes underlying rare qualitative sperm defects, the same cannot be said for the genetics of quantitative sperm defects. Technological advances and approaches in genomics are critical for the process of disease gene identification. In this review we highlight the impact of various technological developments on male infertility gene discovery as well as functional validation, going from the past to the present and the future. In particular, we draw attention to the use of unbiased genomics approaches, the development of increasingly relevant functional assays and the importance of large-scale international collaboration to advance disease gene identification in male infertility.
Collapse
Affiliation(s)
- M J Xavier
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK
| | - A Salas-Huetos
- Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah, Salt Lake City, USA
| | - M S Oud
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, Netherlands
| | - K I Aston
- Andrology and IVF Laboratory, Department of Surgery (Urology), University of Utah, Salt Lake City, USA.
| | - J A Veltman
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, UK.
| |
Collapse
|