1
|
Li T, Lu W, Tian H, Cao Y, He Q, Chen X, Wang H. Identification and Characterization of DNA-Oxaliplatin Adducts through α-hemolysin Nanopores. Anal Chem 2023; 95:11201-11210. [PMID: 37417945 DOI: 10.1021/acs.analchem.3c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The antitumor effect of Pt-based drugs is determined by their binding activity with deoxyribonucleic acid (DNA), and understanding the reaction process in a systematic manner is crucial. However, existing assays used for DNA-Pt research suffer from several issues, such as complicated sample preparation, preamplification, and expensive instruments, which dramatically limit their practical application. In this study, a novel method was presented to investigate the adducts of DNA and oxaliplatin using an α-hemolysin nanopore sensor. This approach allows for real-time monitoring of the DNA-oxaliplatin condensation process through the detection of nanopore events associated with DNA-oxaliplatin adducts. Specifically, type I and II signals exhibiting specific current characteristics were observed during the process. Typical signals with high frequency were obtained by recording the designed DNA sequence. Furthermore, the production of these signals was confirmed to be independent of homologous adducts. This finding suggests that the DNA-oxaliplatin adduct can serve as a potential sensor for detecting oxaliplatin lesions and multiple types of molecules.
Collapse
Affiliation(s)
- Ting Li
- College of Life Science & Biotechnology, Mianyang Normal University, Mianyang 621000, China
| | - Wei Lu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hui Tian
- College of Life Science & Biotechnology, Mianyang Normal University, Mianyang 621000, China
| | - Yu Cao
- College of Life Science & Biotechnology, Mianyang Normal University, Mianyang 621000, China
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qianqian He
- College of Life Science & Biotechnology, Mianyang Normal University, Mianyang 621000, China
| | - Xia Chen
- College of Life Science & Biotechnology, Mianyang Normal University, Mianyang 621000, China
- China Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang 621000, China
| | - Hailong Wang
- China Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang 621000, China
| |
Collapse
|
2
|
Chen X, Zhao X, Ma R, Hu Y, Cui C, Mi Z, Dou R, Pan D, Shan X, Wang L, Fan C, Lu X. Ionic Current Fluctuation and Orientation of Tetrahedral DNA Nanostructures in a Solid-State Nanopore. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107237. [PMID: 35092143 DOI: 10.1002/smll.202107237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Understanding the dynamic behavior of a nanostructure translocating through a nanopore is important for various applications. In this paper, the characteristics in ion current traces of tetrahedral DNA nanostructures (TDN) translocating through a solid-state nanopore are examined, by combined experimental and theoretical simulations. The results of finite element analysis reveal the correlation between orientation of TDN and the conductance blockade. The experimentally measured fluctuations in the conductance blockade, expressed as voltage-dependent histogram profiles, are consistent with the simulation, revealing the nature of a random distribution in orientation and weak influence of electrostatic and viscous torques. The step changes in orientation of a TDN during translocation are further explained by the collision with the nanopore, while the gradual changes in orientation illustrate the impact of a weak torque field in the nano-fluidic channel. The results demonstrate a general method and basic understanding in the dynamic behavior of nanostructures translocating through solid-state nanopores.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Xinjia Zhao
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ruiping Ma
- Beijing Normal University, Beijing, 100088, China
| | - Ying Hu
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chengjun Cui
- Shanghai Frontier Innovation Research Institute, Shanghai, 201108, China
| | - Zhuang Mi
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ruifen Dou
- Beijing Normal University, Beijing, 100088, China
| | - Dun Pan
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University Shanghai, Shanghai, 200030, China
| | - Xinyan Shan
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Lihua Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinghua Lu
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Center for Excellence in Topological Quantum Computation, Beijing, 100190, China
| |
Collapse
|
3
|
Ma F, Yan S, Zhang J, Wang Y, Wang L, Wang Y, Zhang S, Du X, Zhang P, Chen HY, Huang S. Nanopore Sequencing Accurately Identifies the Cisplatin Adduct on DNA. ACS Sens 2021; 6:3082-3092. [PMID: 34319692 DOI: 10.1021/acssensors.1c01212] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cisplatin, which selectively binds to N7 atoms of purines to inhibit normal replication and transcription, is a widely applied chemotherapeutic drug in the treatment of cancer. Though direct identification of cisplatin lesions on DNA is of great significance, existing sequencing methods have issues such as complications of preamplification or enrichment-induced false-positive reports. Direct identification of cisplatin lesions by nanopore sequencing (NPS) is in principle feasible. However, relevant investigations have never been reported. By constructing model sequences (83 nucleotides in length) containing a sole cisplatin lesion, identification of corresponding lesions by NPS is achieved with <10 ng of input sequencing library. Moreover, characteristic high-frequency noises caused by cisplatin lesions are consistently observed during NPS, clearly identifiable in corresponding high-pass filtered traces. This feature is, however, never observed in any other combinations of natural DNA bases and could be taken as a reference to identify cisplatin lesions on DNA. Further investigations demonstrate that cisplatin stalls the replication of phi29 DNA polymerase, which appears as a ∼5 pA level fluctuation in the single-molecule resolution. These results have confirmed the feasibility of NPS to identify cisplatin lesions at the genomic level and may provide new insights into understanding the molecular mechanism of platinum-based drugs.
Collapse
Affiliation(s)
- Fubo Ma
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Shuanghong Yan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Jinyue Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Yu Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| |
Collapse
|
4
|
Zhao X, Liu Y, Chen X, Mi Z, Li W, Wang P, Shan X, Lu X. Detection and Characterization of Single Cisplatin Adducts on DNA by Nanopore Sequencing. ACS OMEGA 2021; 6:17027-17034. [PMID: 34250360 PMCID: PMC8264939 DOI: 10.1021/acsomega.1c02106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/07/2021] [Indexed: 05/13/2023]
Abstract
Detection and characterization of an individual cisplatin adduct on a single DNA molecule is a demanding task. We explore the characteristic features of cisplatin adducts in the nanopore sequencing signal in aspects of dwell time, genome anchored current trace, and basecalling accuracy. The offset between the motor protein and the nanopore constriction region is revealed by dwell time analysis to be about 14 bases in the nanopore device as we examined. Characteristic distortions due to cisplatin adducts are illustrated in genome anchored current trace analysis, constituting the fingerprint for identification of cisplatin adduct. The sharp increase in odds ratio at the location of adducting sites provides additional feature in the detection of the adduct. By these combined methods, single cisplatin adducts can be detected with high fidelity on a single read of the DNA sequence. The study demonstrates an effective method in the detection and characterization of single cisplatin adducts on DNA at the single-molecule level and with single nucleotide spatial resolution.
Collapse
Affiliation(s)
- Xinjia Zhao
- Beijing
National Laboratory for Condensed-Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100190, China
| | - Yuru Liu
- Beijing
National Laboratory for Condensed-Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoyu Chen
- Beijing
National Laboratory for Condensed-Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100190, China
| | - Zhuang Mi
- Beijing
National Laboratory for Condensed-Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100190, China
| | - Wei Li
- Beijing
National Laboratory for Condensed-Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Pengye Wang
- Beijing
National Laboratory for Condensed-Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100190, China
- Songshan
Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Xinyan Shan
- Beijing
National Laboratory for Condensed-Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xinghua Lu
- Beijing
National Laboratory for Condensed-Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100190, China
- Center
for Excellence in Topological Quantum Computation, Chinese Academy of Sciences, Beijing 100190, China
- Songshan
Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
5
|
Abbas M, Baig MMFA, Zhang Y, Yang YS, Wu S, Hu Y, Wang ZC, Zhu HL. A DNA-based nanocarrier for efficient cancer therapy. J Pharm Anal 2021; 11:330-339. [PMID: 34277121 PMCID: PMC8264464 DOI: 10.1016/j.jpha.2020.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 02/08/2023] Open
Abstract
The study aimed to achieve enhanced targeted cytotoxicity and cell-internalization of cisplatin-loaded deoxyribonucleic acid-nanothread (CPT-DNA-NT), mediated by scavenger receptors into HeLa cells. DNA-NT was developed with stiff-topology utilizing circular-scaffold to encapsulate CPT. Atomic force microscopy (AFM) characterization of the DNA-NT showed uniformity in the structure with a diameter of 50-150 nm and length of 300-600 nm. The successful fabrication of the DNA-NT was confirmed through native-polyacrylamide gel electrophoresis analysis, as large the molecular-weight (polymeric) DNA-NT did not split into constituting strands under applied current and voltage. The results of cell viability confirmed that blank DNA-NT had the least cytotoxicity at the highest concentration (512 nM) with a viability of 92% as evidence of its biocompatibility for drug delivery. MTT assay showed superior cytotoxicity of CPT-DNA-NT than that of the free CPT due to the depot release of CPT after DNA-NT internalization. The DNA-NT exhibited targeted cell internalizations with the controlled intracellular release of CPT (from DNA-NT), as illustrated in confocal images. Therefore, in vitro cytotoxicity assessment through flow cytometry showed enhanced apoptosis (72.7%) with CPT-DNA-NT (compared to free CPT; 64.4%). CPT-DNA-NT, being poly-anionic, showed enhanced endocytosis via scavenger receptors.
Collapse
Affiliation(s)
- Muhammad Abbas
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Yaliang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Songyu Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China
- Institute of Drug Research and Development, Medical School of Nanjing University, Nanjing, 210093, PR China
| | - Zhong-Chang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210023, PR China
| |
Collapse
|
6
|
Li S, Liu XY, Pan Q, Wu J, Liu ZH, Wang Y, Liu M, Zhang XL. Hepatitis C Virus-Induced FUT8 Causes 5-FU Drug Resistance in Human Hepatoma Huh7.5.1 Cells. Viruses 2019; 11:v11040378. [PMID: 31022917 PMCID: PMC6521249 DOI: 10.3390/v11040378] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/11/2019] [Accepted: 04/21/2019] [Indexed: 01/29/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of human chronic liver disease and hepatocellular carcinoma. Our recent studies showed that α1,6-fucosyltransferase (FUT8), a key glycosyltransferase, was the most up-regulated glycosyltransferase after the HCV infection of human hepatocellular carcinoma Huh7.5.1 cells. Here, we further studied the effects and possible mechanism of FUT8 on the proliferation of HCV and chemotherapy-resistance of HCV-infected Huh7.5.1 cells. The effects of FUT8 on the proliferation and drug resistance of HCV-infected Huh7.5.1 cells were analyzed by flow cytometry analysis (FCM), quantitative real-time polymerase chain reaction (qRT-PCR), Western blot analysis and lactate dehydrogenase (LDH) release assay. Results: We found that FUT8 not only promoted Huh7.5.1 proliferation by activating PI3K-AKT-NF-κB signaling, but also stimulated the expression of the drug-resistant proteins P-glycoprotein (P-gp) and multidrug resistance related protein 1 (MRP1) and enhanced the 5-fluorouracil (5-FU) chemo-resistance of Huh7.5.1 cells. Silencing of FUT8 reduced the cell proliferation and increased the 5-FU sensitivity of HCV-infected Huh7.5.1 cells. Inhibition of P-gp and MRP1 increased the 5-FU drug sensitivity in HCV infected Huh7.5.1 cells. HCV-induced FUT8 promotes proliferation and 5-FU resistance of Huh7.5.1 cells. FUT8 may serve as a therapeutic target to reverse chemotherapy resistance in HCV-infected Huh7.5.1 cells.
Collapse
Affiliation(s)
- Shu Li
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology and Medical Research Institute, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| | - Xiao-Yu Liu
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology and Medical Research Institute, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| | - Qiu Pan
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology and Medical Research Institute, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| | - Jian Wu
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology and Medical Research Institute, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| | - Zhi-Hao Liu
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology and Medical Research Institute, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| | - Yong Wang
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology and Medical Research Institute, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| | - Min Liu
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology and Medical Research Institute, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| | - Xiao-Lian Zhang
- State Key Laboratory of Virology, Department of Immunology, Hubei Province Key Laboratory of Allergy and Immunology and Medical Research Institute, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China.
| |
Collapse
|
7
|
Zhao X, Ma R, Hu Y, Chen X, Dou R, Liu K, Cui C, Liu H, Li Q, Pan D, Shan X, Wang L, Fan C, Lu X. Translocation of tetrahedral DNA nanostructures through a solid-state nanopore. NANOSCALE 2019; 11:6263-6269. [PMID: 30882811 DOI: 10.1039/c8nr10474c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tetrahedral DNA nanostructures (TDNs) are programmable DNA nanostructures that have great potential in bio-sensing, cell imaging and therapeutic applications. In this study, we investigate the translocation behavior of individual TDNs through solid-state nanopores. Pronounced translocation signals for TDNs are observed that are sensitive to the size of the nanostructures. TDNs bound to linear DNA molecules produce an extra signal in the ionic current traces. Statistical analysis of its relative temporal position reveals distinct features between TDNs bound to the end and those bound to the middle of the linear DNA molecules. A featured current trace for two TDNs bound to the same linear DNA molecule has also been observed. Our study demonstrates the potential of using TDNs as sensitive bio-sensors to detect specific segments of a single DNA molecule in real time, based on solid-state nanopore devices.
Collapse
Affiliation(s)
- Xinjia Zhao
- Beijing National Laboratory for Condensed-Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Alavi SE, Muflih Al Harthi S, Ebrahimi Shahmabadi H, Akbarzadeh A. Cisplatin-Loaded Polybutylcyanoacrylate Nanoparticles with Improved Properties as an Anticancer Agent. Int J Mol Sci 2019; 20:ijms20071531. [PMID: 30934689 PMCID: PMC6480951 DOI: 10.3390/ijms20071531] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 12/14/2022] Open
Abstract
This study aims to improve the cytotoxicity and potency of cisplatin-loaded polybutylcyanoacrylate (PBCA) nanoparticles (NPs) for the treatment of lung cancer through the modulation of temperature and polyethylene glycol (PEG) concentration as effective factors affecting the NPs’ properties. The NPs were synthesized using an anionic polymerization method and were characterized in terms of size, drug loading efficiency, drug release profile, cytotoxicity effects, drug efficacy, and drug side effects. In this regard, dynamic light scattering (DLS), scanning electron microscopy (SEM), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) methods, and hematoxylin and eosin (H&E) staining were used. The results showed that the size and the drug loading efficiency of the synthesized spherical NPs were 355–386 nm and 14–19%, respectively. Also, the drug release profile showed a controlled and slow drug release pattern with approximately 10% drug release over 48 h. In addition, the NPs significantly increased the cytotoxicity of the cisplatin in vitro environment by approximately 2 times and enhanced the therapeutic effects of the drug in vivo environment by increasing the survival time of lung-cancer-bearing mice by 20% compared to the standard drug receiver group. Also, the nanoformulation decreased the drug toxicity in an in vivo environment. According to the results, increasing the temperature and PEG concentration improved the properties of the drug loading efficiency, drug release profile, and cytotoxicity effect of drug-loaded NPs. Consequently, the synthesized formulation increased the survival of tumor-bearing mice and simultaneously decreased the cisplatin toxicity effects. In conclusion, the prepared nanoformulation can be considered a promising candidate for further evaluation for possible therapeutic use in the treatment of lung cancer.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran 009821, Iran.
| | - Sitah Muflih Al Harthi
- Department of Pharmaceutical Science, College of Pharmacy, Shaqra University, Aldwadmi 11911, Saudi A0096611, Saudi Arabia.
| | - Hasan Ebrahimi Shahmabadi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan 009834, Iran.
| | - Azim Akbarzadeh
- Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran 009821, Iran.
| |
Collapse
|
9
|
Wang S, Zhou Z, Zhao Z, Zhang H, Haque F, Guo P. Channel of viral DNA packaging motor for real time kinetic analysis of peptide oxidation states. Biomaterials 2017; 126:10-17. [PMID: 28237908 PMCID: PMC5421631 DOI: 10.1016/j.biomaterials.2017.01.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/22/2016] [Accepted: 01/27/2017] [Indexed: 10/20/2022]
Abstract
Nanopore technology has become a powerful tool in single molecule sensing, and protein nanopores appear to be more advantageous than synthetic counterparts with regards to channel amenability, structure homogeneity, and production reproducibility. However, the diameter of most of the well-studied protein nanopores is too small to allow the passage of protein or peptides that are typically in multiple nanometers scale. The portal channel from bacteriophage SPP1 has a large channel size that allows the translocation of peptides with higher ordered structures. Utilizing single channel conductance assay and optical single molecule imaging, we observed translocation of peptides and quantitatively analyzed the dynamics of peptide oligomeric states in real-time at single molecule level. The oxidative and the reduced states of peptides were clearly differentiated based on their characteristic electronic signatures. A similar Gibbs free energy (ΔG0) was obtained when different concentrations of substrates were applied, suggesting that the use of SPP1 nanopore for real-time quantification of peptide oligomeric states is feasible. With the intrinsic nature of size and conjugation amenability, the SPP1 nanopore has the potential for development into a tool for the quantification of peptide and protein structures in real time.
Collapse
Affiliation(s)
- Shaoying Wang
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine, Department of Physiology & Cell Biology; and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA; College of Pharmacy, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Zhi Zhou
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine, Department of Physiology & Cell Biology; and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | - Zhengyi Zhao
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine, Department of Physiology & Cell Biology; and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA; College of Pharmacy, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Hui Zhang
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine, Department of Physiology & Cell Biology; and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | - Farzin Haque
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine, Department of Physiology & Cell Biology; and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | - Peixuan Guo
- College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry; College of Medicine, Department of Physiology & Cell Biology; and Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
10
|
Ji Z, Wang S, Zhao Z, Zhou Z, Haque F, Guo P. Fingerprinting of Peptides with a Large Channel of Bacteriophage Phi29 DNA Packaging Motor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4572-8. [PMID: 27435806 PMCID: PMC5166430 DOI: 10.1002/smll.201601157] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/16/2016] [Indexed: 05/27/2023]
Abstract
Nanopore technology has become a highly sensitive and powerful tool for single molecule sensing of chemicals and biopolymers. Protein pores have the advantages of size amenability, channel homogeneity, and fabrication reproducibility. But most well-studied protein pores for sensing are too small for passage of peptide analytes that are typically a few nanometers in dimension. The funnel-shaped channel of bacteriophage phi29 DNA packaging motor has previously been inserted into a lipid membrane to serve as a larger pore with a narrowest N-terminal constriction of 3.6 nm and a wider C-terminal end of 6 nm. Here, the utility of phi29 motor channel for fingerprinting of various peptides using single molecule electrophysiological assays is reported. The translocation of peptides is proved unequivocally by single molecule fluorescence imaging. Current blockage percentage and distinctive current signatures are used to distinguish peptides with high confidence. Each peptide generated one or two distinct current blockage peaks, serving as typical fingerprint for each peptide. The oligomeric states of peptides can also be studied in real time at single molecule level. The results demonstrate the potential for further development of phi29 motor channel for detection of disease-associated peptide biomarkers.
Collapse
|
11
|
Zhou Z, Ji Z, Wang S, Haque F, Guo P. Oriented single directional insertion of nanochannel of bacteriophage SPP1 DNA packaging motor into lipid bilayer via polar hydrophobicity. Biomaterials 2016; 105:222-227. [PMID: 27529454 DOI: 10.1016/j.biomaterials.2016.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/21/2016] [Accepted: 08/01/2016] [Indexed: 12/23/2022]
Abstract
Insertion of biological nanopore into artificial membrane is of fundamental importance in nanotechnology. Many applications require control and knowledge of channel orientation. In this work, the insertion orientation of the bacteriophage SPP1 and phi29 DNA packaging motors into lipid membranes was investigated. Single molecule electrophysiological assays and Ni-NTA-nanogold binding assays revealed that both SPP1 and phi29 motor channels exhibited a one-way traffic property for TAT peptide translocation from N- to C-termini of the protein channels. SPP1 motor channels preferentially inserts into liposomes with their C-terminal wider region facing inward. Changing the hydrophobicity of the N- or C-termini of phi29 connector alters the insertion orientation, suggesting that the hydrophobicity and hydrophilicity of the termini of the protein channel governs the orientation of the insertion into lipid membrane. It is proposed that the specificity in motor channel orientation is a result of the hydrophilic/hydrophobic interaction at the air/water interface when the protein channels are incorporating into liposome membranes.
Collapse
Affiliation(s)
- Zhi Zhou
- College of Pharmacy, College of Medicine/Dept. Physiology and Cell Biology/Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Zhouxiang Ji
- College of Pharmacy, College of Medicine/Dept. Physiology and Cell Biology/Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Shaoying Wang
- College of Pharmacy, College of Medicine/Dept. Physiology and Cell Biology/Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Farzin Haque
- College of Pharmacy, College of Medicine/Dept. Physiology and Cell Biology/Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- College of Pharmacy, College of Medicine/Dept. Physiology and Cell Biology/Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|