1
|
Yamanaka K, Koma YI, Urakami S, Takahashi R, Nagamata S, Omori M, Torigoe R, Yokoo H, Nakanishi T, Ishihara N, Tsukamoto S, Kodama T, Nishio M, Shigeoka M, Yokozaki H, Terai Y. YKL40/Integrin β4 Axis Induced by the Interaction between Cancer Cells and Tumor-Associated Macrophages Is Involved in the Progression of High-Grade Serous Ovarian Carcinoma. Int J Mol Sci 2024; 25:10598. [PMID: 39408927 PMCID: PMC11477481 DOI: 10.3390/ijms251910598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Macrophages in the tumor microenvironment, termed tumor-associated macrophages (TAMs), promote the progression of various cancer types. However, many mechanisms related to tumor-stromal interactions in epithelial ovarian cancer (EOC) progression remain unclear. High-grade serous ovarian carcinoma (HGSOC) is the most malignant EOC subtype. Herein, immunohistochemistry was performed on 65 HGSOC tissue samples, revealing that patients with a higher infiltration of CD68+, CD163+, and CD204+ macrophages had a poorer prognosis. We subsequently established an indirect co-culture system between macrophages and EOC cells, including HGSOC cells. The co-cultured macrophages showed increased expression of the TAM markers CD163 and CD204, and the co-cultured EOC cells exhibited enhanced proliferation, migration, and invasion. Cytokine array analysis revealed higher YKL40 secretion in the indirect co-culture system. The addition of YKL40 increased proliferation, migration, and invasion via extracellular signal-regulated kinase (Erk) signaling in EOC cells. The knockdown of integrin β4, one of the YKL40 receptors, suppressed YKL40-induced proliferation, migration, and invasion, as well as Erk phosphorylation in some EOC cells. Database analysis showed that high-level expression of YKL40 and integrin β4 correlated with a poor prognosis in patients with serous ovarian carcinoma. Therefore, the YKL40/integrin β4 axis may play a role in ovarian cancer progression.
Collapse
Affiliation(s)
- Keitaro Yamanaka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Obstetrics and Gynecology, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.T.); (S.N.); (Y.T.)
| | - Yu-ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Satoshi Urakami
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Ryosuke Takahashi
- Division of Obstetrics and Gynecology, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.T.); (S.N.); (Y.T.)
| | - Satoshi Nagamata
- Division of Obstetrics and Gynecology, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.T.); (S.N.); (Y.T.)
| | - Masaki Omori
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Rikuya Torigoe
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Hiroki Yokoo
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Takashi Nakanishi
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Gastrointestinal Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Nobuaki Ishihara
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
- Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Shuichi Tsukamoto
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Takayuki Kodama
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (K.Y.); (S.U.); (M.O.); (R.T.); (H.Y.); (T.N.); (N.I.); (S.T.); (T.K.); (M.N.); (M.S.); (H.Y.)
| | - Yoshito Terai
- Division of Obstetrics and Gynecology, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.T.); (S.N.); (Y.T.)
| |
Collapse
|
2
|
Sue SH, Tseng WC, Wu ZS, Huang SM, Chen JL, Wu ZF, Lai HC. The synergistic mechanisms of propofol with cisplatin or doxorubicin in human ovarian cancer cells. J Ovarian Res 2024; 17:187. [PMID: 39272193 PMCID: PMC11401282 DOI: 10.1186/s13048-024-01509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Most ovarian cancer cases are diagnosed at an advanced stage, leading to poor outcomes and a relatively low 5-year survival rate. While tumor resection in the early stages can be highly effective, recurrence following primary treatment remains a significant cause of mortality. Propofol is a commonly used intravenous anesthetic agent in cancer resection surgery. Previous research has shown that propofol anesthesia was associated with improved survival in patients undergoing elective surgery for epithelial ovarian cancer. However, the underlying antitumor mechanisms are not yet fully understood. METHODS This study aimed to uncover the antitumor properties of propofol alone and combined with cisplatin or doxorubicin, in human SKOV3 and OVCAR3 ovarian cancer cells. We applied flowcytometry analysis for mitochondrial membrane potential, apoptosis, and autophagy, colony formation, migration, and western blotting analysis. RESULTS Given that chemotherapy is a primary clinical approach for managing advanced and recurrent ovarian cancer, it is essential to address the limitations of current chemotherapy, particularly in the use of cisplatin and doxorubicin, which are often constrained by their side effects and the development of resistance. First of all, propofol acted synergistically with cisplatin and doxorubicin in SKOV3 cells. Moreover, our data further showed that propofol suppressed colony formation, disrupted mitochondrial membrane potential, and induced apoptosis and autophagy in SKOV3 and OVCAR3 cells. Finally, the effects of combined propofol with cisplatin or doxorubicin on mitochondrial membrane potential, apoptosis, autophagy, and epithelial-mesenchymal transition were different in SKOV3 and OVCAR3 cells, depending on the p53 status. CONCLUSION In summary, repurposing propofol could provide novel insights into the existing chemotherapy strategies for ovarian cancer. It holds promise for overcoming resistance to cisplatin or doxorubicin and may potentially reduce the required chemotherapy dosages and associated side effects, thus improving treatment outcomes.
Collapse
Affiliation(s)
- Sung-How Sue
- Department of Surgery, Taipei City Hospital Renai Branch, Taipei City, 106, Taiwan, Republic of China
| | - Wei-Cheng Tseng
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114, Taiwan, Republic of China
| | - Zih-Syuan Wu
- Institute of Life Sciences, National Defense Medical Center, Taipei City, 114, Taiwan, Republic of China
| | - Shih-Ming Huang
- Institute of Life Sciences, National Defense Medical Center, Taipei City, 114, Taiwan, Republic of China
- Department of Biochemistry, National Defense Medical Center, Taipei City, 114, Taiwan, Republic of China
| | - Jia-Lin Chen
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114, Taiwan, Republic of China.
| | - Zhi-Fu Wu
- Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, Republic of China.
- Department of Anesthesiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan, Republic of China.
- Center for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City 116, Taiwan, Taiwan, Republic of China.
| | - Hou-Chuan Lai
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114, Taiwan, Republic of China.
| |
Collapse
|
3
|
Huang G, Zhou M, Lu D, Li J, Tang Q, Xiong C, Liang F, Chen R. The mechanism of ITGB4 in tumor migration and invasion. Front Oncol 2024; 14:1421902. [PMID: 39169946 PMCID: PMC11335651 DOI: 10.3389/fonc.2024.1421902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Integrin β4 (ITGB4) is a transmembrane protein that functions as a mechanosensor, mediating the bidirectional exchange of information between the intracellular and extracellular matrices. ITGB4 plays a critical role in cell adhesion, migration, and signaling. Numerous studies have implicated ITGB4 as a key facilitator of tumor migration and invasion. This review provides a foundational description of the mechanisms by which ITGB4 regulates tumor migration and invasion through pathways involving focal adhesion kinase (FAK), protein kinase B (AKT), and matrix metalloproteinases (MMPs). These mechanisms encompass epithelial-mesenchymal transition (EMT), phosphorylation, and methylation of associated molecules. Additionally, this review explores the role of ITGB4 in the migration and invasion of prevalent clinical tumors, including those of the digestive system, breast, and prostate.
Collapse
Affiliation(s)
- Guichen Huang
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minfeng Zhou
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Damin Lu
- School of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, China
| | - Jinxiao Li
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Tang
- School of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, China
| | - Chutong Xiong
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengxia Liang
- School of Acupuncture and Bone Injury, Hubei University of Chinese Medicine, Wuhan, China
| | - Rui Chen
- Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Holý P, Hlaváč V, Šeborová K, Šůsová S, Tesařová T, Rob L, Hruda M, Bouda J, Bartáková A, Mrhalová M, Kopečková K, Al Obeed Allah M, Špaček J, Sedláková I, Souček P, Václavíková R. Targeted DNA sequencing of high-grade serous ovarian carcinoma reveals association of TP53 mutations with platinum resistance when combined with gene expression. Int J Cancer 2024; 155:104-116. [PMID: 38447012 DOI: 10.1002/ijc.34908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
High-grade serous ovarian carcinoma (HGSC) is the most common subtype of ovarian cancer and is among the most fatal gynecological malignancies worldwide, due to late diagnosis at advanced stages and frequent therapy resistance. In 47 HGSC patients, we assessed somatic and germline genetic variability of a custom panel of 144 known or suspected HGSC-related genes by high-coverage targeted DNA sequencing to identify the genetic determinants associated with resistance to platinum-based therapy. In the germline, the most mutated genes were DNAH14 (17%), RAD51B (17%), CFTR (13%), BRCA1 (11%), and RAD51 (11%). Somatically, the most mutated gene was TP53 (98%), followed by CSMD1/2/3 (19/19/36%), and CFTR (23%). Results were compared with those from whole exome sequencing of a similar set of 35 HGSC patients. Somatic variants in TP53 were also validated using GENIE data of 1287 HGSC samples. Our approach showed increased prevalence of high impact somatic and germline mutations, especially those affecting splice sites of TP53, compared to validation datasets. Furthermore, nonsense TP53 somatic mutations were negatively associated with patient survival. Elevated TP53 transcript levels were associated with platinum resistance and presence of TP53 missense mutations, while decreased TP53 levels were found in tumors carrying mutations with predicted high impact, which was confirmed in The Cancer Genome Atlas data (n = 260). Targeted DNA sequencing of TP53 combined with transcript quantification may contribute to the concept of precision oncology of HGSC. Future studies should explore targeting the p53 pathway based on specific mutation types and co-analyze the expression and mutational profiles of other key cancer genes.
Collapse
Affiliation(s)
- Petr Holý
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Viktor Hlaváč
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Karolína Šeborová
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Simona Šůsová
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Tereza Tesařová
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Lukáš Rob
- Department of Gynecology and Obstetrics, Third Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Martin Hruda
- Department of Gynecology and Obstetrics, Third Faculty of Medicine and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Jiří Bouda
- Department of Gynecology and Obstetrics, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Alena Bartáková
- Department of Gynecology and Obstetrics, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Marcela Mrhalová
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kateřina Kopečková
- Department of Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Mohammad Al Obeed Allah
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jiří Špaček
- University Hospital Hradec Králové, Hradec Kralove, Czech Republic
| | - Iva Sedláková
- University Hospital Hradec Králové, Hradec Kralove, Czech Republic
| | - Pavel Souček
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Radka Václavíková
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
5
|
Jaliffa C, Rogel U, Sen I, Singer G. Comprehensive Genomic Characterization in Ovarian Low-Grade and Chemosensitive and Chemoresistant High-Grade Serous Carcinomas. Oncology 2024; 102:979-987. [PMID: 38697030 DOI: 10.1159/000538948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/09/2024] [Indexed: 05/04/2024]
Abstract
INTRODUCTION Genomic characterization of serous ovarian carcinoma (SOC), which includes low-grade serous carcinoma (LGSC) and high-grade serous carcinoma (HGSC), remains necessary to improve efficacy of platinum-based chemotherapy. The aim of this study was to investigate the genomic variations in these SOC groups, also in relation to chemoresponse. METHODS Forty-five samples of SOC were retrospectively analyzed by next-generation sequencing on DNA/RNA extracts from formalin-fixed, paraffin-embedded (FFPE) tumor samples obtained at diagnosis. HGSCs were classified as platinum-resistant and platinum-sensitive. RESULTS In the LGSC group, 44% of the carcinomas had mutually exclusive variants in the RAS/RAF pathway, while additional likely oncogenic variants in the CDKN2A, SMARCA4, and YAP1 genes were observed in the remaining LGSCs. Tumor mutation burden (TMB) was significantly lower in the intrinsically chemoresistant LGSC group than in the HGSC group. In the HGSC cohort, TP53 variants were found in 90% and homologous recombination repair (HRR) pathway variants in 41% of the neoplasms. HGSCs of the chemoresistant group without classic mutations in the HRR pathway were characterized by additional variants in FGFR2 and with an FGFR3::TACC3 fusion. In addition, HGSCs showed MYC, CCNE1, and AKT2 gains that were almost exclusively observed in the chemosensitive HGSC group. CONCLUSION These results suggest that very low TMB and MYC, CCNE1, and AKT2 gains in SOC patients may be biomarkers related to platinum treatment efficacy. Thorough genomic characterization of SOCs prior to treatment might lead to more specific platinum-based chemotherapy strategies.
Collapse
Affiliation(s)
- Carolina Jaliffa
- Institute of Pathology, Kantonsspital Baden AG, Baden, Switzerland,
| | - Uwe Rogel
- Institute of Pathology, Kantonsspital Baden AG, Baden, Switzerland
| | - Indrani Sen
- Institute of Pathology, Kantonsspital Baden AG, Baden, Switzerland
| | - Gad Singer
- Institute of Pathology, Kantonsspital Baden AG, Baden, Switzerland
| |
Collapse
|
6
|
Wang J, Ford JC, Mitra AK. Defining the Role of Metastasis-Initiating Cells in Promoting Carcinogenesis in Ovarian Cancer. BIOLOGY 2023; 12:1492. [PMID: 38132318 PMCID: PMC10740540 DOI: 10.3390/biology12121492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Ovarian cancer is the deadliest gynecological malignancy with a high prevalence of transcoelomic metastasis. Metastasis is a multi-step process and only a small percentage of cancer cells, metastasis-initiating cells (MICs), have the capacity to finally establish metastatic lesions. These MICs maintain a certain level of stemness that allows them to differentiate into other cell types with distinct transcriptomic profiles and swiftly adapt to external stresses. Furthermore, they can coordinate with the microenvironment, through reciprocal interactions, to invade and establish metastases. Therefore, identifying, characterizing, and targeting MICs is a promising strategy to counter the spread of ovarian cancer. In this review, we provided an overview of OC MICs in the context of characterization, identification through cell surface markers, and their interactions with the metastatic niche to promote metastatic colonization.
Collapse
Affiliation(s)
- Ji Wang
- Indiana University School of Medicine-Bloomington, Indiana University, Bloomington, IN 47405, USA; (J.W.); (J.C.F.)
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
| | - James C. Ford
- Indiana University School of Medicine-Bloomington, Indiana University, Bloomington, IN 47405, USA; (J.W.); (J.C.F.)
| | - Anirban K. Mitra
- Indiana University School of Medicine-Bloomington, Indiana University, Bloomington, IN 47405, USA; (J.W.); (J.C.F.)
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202, USA
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
7
|
Yeh TC, Lin NY, Chiu CY, Hsu TW, Wu HY, Lin HY, Chen CH, Huang MC. TMTC1 promotes invasiveness of ovarian cancer cells through integrins β1 and β4. Cancer Gene Ther 2023; 30:1134-1143. [PMID: 37221403 PMCID: PMC10425284 DOI: 10.1038/s41417-023-00625-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/20/2023] [Accepted: 05/04/2023] [Indexed: 05/25/2023]
Abstract
Ovarian cancer is the most lethal gynecological malignancy and is characterized by peritoneal disseminated metastasis. Although O-mannosyltransferase TMTC1 is highly expressed by ovarian cancer, its pathophysiological role in ovarian cancer remains unclear. Here, immunohistochemistry showed that TMTC1 was overexpressed in ovarian cancer tissues compared with adjacent normal ovarian tissues, and high TMTC1 expression was associated with poor prognosis in patients with ovarian cancer. Silencing TMTC1 reduced ovarian cancer cell viability, migration, and invasion in vitro, as well as suppressed peritoneal tumor growth and metastasis in vivo. Moreover, TMTC1 knockdown reduced cell-laminin adhesion, which was associated with the decreased phosphorylation of FAK at pY397. Conversely, TMTC1 overexpression promoted these malignant properties in ovarian cancer cells. Glycoproteomic analysis and Concanavalin A (ConA) pull-down assays showed that integrins β1 and β4 were novel O-mannosylated protein substrates of TMTC1. Furthermore, TMTC1-mediated cell migration and invasion were significantly reversed by siRNA-mediated knockdown of integrin β1 or β4. Collectively, these results suggest that TMTC1-mediated invasive behaviors are primarily through integrins β1 and β4 and that TMTC1 is a potential therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Ting-Chih Yeh
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Neng-Yu Lin
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chin-Yu Chiu
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Wen Hsu
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Yu Lin
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Hau Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan.
| | - Min-Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
8
|
Ma SR, Liu JF, Jia R, Deng WW, Jia J. Identification of a Favorable Prognostic Subgroup in Oral Squamous Cell Carcinoma: Characterization of ITGB4/PD-L1 high with CD8/PD-1 high. Biomolecules 2023; 13:1014. [PMID: 37371594 DOI: 10.3390/biom13061014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Integrin β4 (ITGB4) is a member of the integrin family, which plays a crucial role in mediating cell adhesion to the extracellular matrix. Recent studies have demonstrated that ITGB4 is involved in tumorigenesis and metastasis during the development of cancer. However, the role of ITGB4 in oral squamous cell carcinoma (OSCC) remains unclear. A Multiplex immunohistochemistry (OPAL™, mIHC) assay was employed to stain ITGB4, ALDH1, PD-L1, cytokeratin (CK), CD8 and PD-1 in a human OSCC tissue microarray, containing 26 normal oral epithelium samples, 21 oral epithelium dysplasia samples and 76 OSCC samples. The expression pattern and clinicopathological characteristics of ITGB4 were analyzed and compared with those of PD-1, PD-L1, ALDH1 and CD8. The correlation between subgroups of tumor cells, including ITGB4+PD-L1+ and ITGB4+ALDH1+, and subgroups of T cells, including CD8+ and CD8+PD-1+, was evaluated using two-tailed Pearson's statistics. A Kaplan-Meier curve was built, and a log-rank test was performed to analyze the survival rate of different subgroups. The mIHC staining results show that ITGB4 was mostly expressed in the tumor cells, with a significant increase in the OSCC specimens compared with normal oral epithelium and oral epithelium dysplasia. The paired analysis, conducted between the OSCC tumor tissue and normal paracancer mucosa, confirmed the results. The study further revealed that ITGB4+PD-L1+ cancer cells, but not ITGB4+ALDH1+ cancer cells, were significantly associated with the infiltration of CD8+ T cells (positivity p = 0.005, positive number p = 0.03). Additionally, ITGB4+PD-L1+ tumor cells were positively correlated with CD8+PD-1+ T cells (positivity p = 0.02, positive number p = 0.03). Most intriguingly, the subgroup of ITGB4/PD-L1high with CD8/PD-1high displayed the best prognosis compared with the other considered subgroups. The results show that the expression of ITGB4 was increased in OSCC compared with normal oral mucosa. Furthermore, a specific subgroup with high levels of expression of ITGB4/PD-L1 and CD8/PD-1 was found to have a relatively better prognosis compared with the other subgroups. Ultimately, this study sheds light on the potential role of ITGB4 in OSCC and provides a basis for further investigation.
Collapse
Affiliation(s)
- Si-Rui Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jian-Feng Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jun Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
9
|
Zhou K, Yuan L, Liu H, Du X, Yao Y, Qin L, Yang M, Xu K, Wu X, Wang L, Xiang Y, Qu X, Qin X, Liu C. ITGB4 deficiency in airway epithelia enhances HDM-induced airway inflammation through hyperactivation of TLR4 signaling pathway. J Leukoc Biol 2023; 113:216-227. [PMID: 36822178 DOI: 10.1093/jleuko/qiac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 01/18/2023] Open
Abstract
Airway epithelial cells (AECs) are the first cell barrier of the respiratory system against external stimuli that play a critical role in the development of asthma. It is known that AECs play a key role in asthma susceptibility and severity. ITGB4 is a downregulated adhesion molecule in the airway epithelia of asthma patients, which was involved in the exaggerated lung inflammation after allergy stimulation. Toll-like receptor 4 (TLR4) in AECs has also been shown to play a crucial role in the development of lung inflammation in asthma patients. However, the specific intrinsic regulatory mechanism of TLR4 in AECs are still obscure. In this article, we demonstrated that ITGB4 deficiency in AECs enhances HDM-induced airway inflammation through hyperactivation of the TLR4 signaling pathway, which is mediated by inhibition of FYN phosphorylation. Moreover, TLR4-antagonist treatment or blockade of FYN can inhibit or exaggerate lung inflammation in HDM-stressed ITGB4-deficient mice, separately. Together, these results demonstrated that ITGB4 deficiency in AECs enhances HDM-induced lung inflammatory response through the ITGB4-FYN-TLR4 axis, which may provide new therapeutic approaches for the management of lung inflammation in asthma.
Collapse
Affiliation(s)
- Kai Zhou
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
- Department of Physiology, School of Basic Medicine Science, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
| | - Lin Yuan
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
- Department of Physiology, School of Basic Medicine Science, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
| | - Xizi Du
- Department of Physiology, School of Basic Medicine Science, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
| | - Ye Yao
- Department of Physiology, School of Basic Medicine Science, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
- Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Elizabeth Street, Callaghan, New South Wales 2892921, Australia
| | - Kun Xu
- School of Public Health, Jilin University, Xinmin Dajie Street, Changchun 130000, China
| | - Xinyu Wu
- Department of Physiology, School of Basic Medicine Science, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
| | - Leyuan Wang
- Department of Physiology, School of Basic Medicine Science, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine Science, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine Science, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medicine Science, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
- Department of Physiology, School of Basic Medicine Science, Central South University, Xiangya Road Street, Changsha, Hunan 410078, China
| |
Collapse
|
10
|
Li J, Peng L, Chen Q, Ye Z, Zhao T, Hou S, Gu J, Hang Q. Integrin β1 in Pancreatic Cancer: Expressions, Functions, and Clinical Implications. Cancers (Basel) 2022; 14:cancers14143377. [PMID: 35884437 PMCID: PMC9318555 DOI: 10.3390/cancers14143377] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pancreatic cancer (PC) is a highly aggressive malignant tumor with an extremely poor prognosis. Early diagnosis and treatment are key to improving the survival rate of PC patients. Emerging studies show that integrins might contribute to the pathogenesis of PC. This review presents the various signaling pathways that are mediated by integrins in PC and emphasizes the multiple functions of integrin β1 in malignant behaviors of PC. It also discusses the clinical significance of integrin β1 as well as integrin β1-based therapy in PC patients. Abstract Pancreatic cancer (PC) is characterized by rapid progression and a high mortality rate. The current treatment is still based on surgical treatment, supplemented by radiotherapy and chemotherapy, and new methods of combining immune and molecular biological treatments are being explored. Despite this, the survival rate of PC patients is still very disappointing. Therefore, clarifying the molecular mechanism of PC pathogenesis and developing precisely targeted drugs are key to improving PC prognosis. As the most common β subunit of the integrin family, integrin β1 has been proved to be closely related to the vascular invasion, distant metastasis, and survival of PC patients, and treatment targeting integrin β1 in PC has gained initial success in animal models. In this review, we summarize the various signaling pathways by which integrins are involved in PC, focusing on the roles of integrin β1 in the malignant behaviors of PC. Additionally, recent studies regarding the feasibility of integrin β1 as a diagnostic and prognostic biomarker in PC are also discussed. Finally, we present the progress of several integrin β1-based clinical trials to highlight the potential of integrin β1 as a target for personalized therapy in PC.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China; (J.L.); (S.H.)
| | - Liyao Peng
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210000, China;
| | - Qun Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China;
| | - Ziping Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China;
| | - Tiantian Zhao
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou 225001, China;
| | - Sicong Hou
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou 225009, China; (J.L.); (S.H.)
- Department of Clinical Medicine, Medical College, Yangzhou University, Yangzhou 225001, China;
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 81-8558, Japan
- Correspondence: (J.G.); (Q.H.); Tel.: +86-13-8145-8885 (Q.H.)
| | - Qinglei Hang
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai 81-8558, Japan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (J.G.); (Q.H.); Tel.: +86-13-8145-8885 (Q.H.)
| |
Collapse
|
11
|
Malhotra L, Singh A, Kaur P, Ethayathulla AS. Comprehensive omics studies of p53 mutants in human cancer. Brief Funct Genomics 2022; 22:97-108. [PMID: 35809339 DOI: 10.1093/bfgp/elac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
The p53 is the master regulator of the cell known for regulating a large array of cellular processes. Inactivation of p53 by missense mutations is one of the leading causes of cancer. Some of these mutations endow p53 with selective oncogenic functions to promote tumor progression. Due to the vast array of mutations found in p53, the experimental studies showing the role of different mutant p53 as an oncogene are also expanding. In this review, we discuss the oncogenic roles of different p53 mutants at the cellular level identified by multi-omics tools. We discuss some of the therapeutic studies to tackle p53 mutants and their downstream targets identified by omics. We also highlight the future prospective and scope of further studies of downstream p53 targets by omics.
Collapse
Affiliation(s)
- Lakshay Malhotra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Alankrita Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Abdul S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
12
|
p53 Signaling on Microenvironment and Its Contribution to Tissue Chemoresistance. MEMBRANES 2022; 12:membranes12020202. [PMID: 35207121 PMCID: PMC8877489 DOI: 10.3390/membranes12020202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/06/2023]
Abstract
Chemoresistance persists as a significant, unresolved clinical challenge in many cancer types. The tumor microenvironment, in which cancer cells reside and interact with non-cancer cells and tissue structures, has a known role in promoting every aspect of tumor progression, including chemoresistance. However, the molecular determinants of microenvironment-driven chemoresistance are mainly unknown. In this review, we propose that the TP53 tumor suppressor, found mutant in over half of human cancers, is a crucial regulator of cancer cell-microenvironment crosstalk and a prime candidate for the investigation of microenvironment-specific modulators of chemoresistance. Wild-type p53 controls the secretion of factors that inhibit the tumor microenvironment, whereas altered secretion or mutant p53 interfere with p53 function to promote chemoresistance. We highlight resistance mechanisms promoted by mutant p53 and enforced by the microenvironment, such as extracellular matrix remodeling and adaptation to hypoxia. Alterations of wild-type p53 extracellular function may create a cascade of spatial amplification loops in the tumor tissue that can influence cellular behavior far from the initial oncogenic mutation. We discuss the concept of chemoresistance as a multicellular/tissue-level process rather than intrinsically cellular. Targeting p53-dependent crosstalk mechanisms between cancer cells and components of the tumor environment might disrupt the waves of chemoresistance that spread across the tumor tissue, increasing the efficacy of chemotherapeutic agents.
Collapse
|
13
|
van der Ploeg P, Uittenboogaard A, Bosch SL, van Diest PJ, Wesseling-Rozendaal YJ, van de Stolpe A, Lambrechts S, Bekkers RL, Piek JM. Signal transduction pathway activity in high-grade serous carcinoma, its precursors and Fallopian tube epithelium. Gynecol Oncol 2022; 165:114-120. [DOI: 10.1016/j.ygyno.2022.01.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 01/23/2023]
|
14
|
Huang W, Fan L, Tang Y, Chi Y, Li J. A Pan-Cancer Analysis of the Oncogenic Role of Integrin Beta4 (ITGB4) in Human Tumors. Int J Gen Med 2021; 14:9629-9645. [PMID: 34924769 PMCID: PMC8674675 DOI: 10.2147/ijgm.s341076] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 12/17/2022] Open
Abstract
Background Integrin beta4 (ITGB4) is a transmembrane receptor that plays a key role in tumorigenesis and tumor development. However, there are no pan-cancer analyses of ITGB4. Methods This study demonstrates the first potential oncogenic roles of ITGB4 across 33 tumors based on the dataset of the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Results ITGB4 is highly expressed in many cancers, and distinct correlations exist between ITGB4 expression and the prognosis of tumor patients. We also found that the methylation and genetic alteration level of ITGB4 was associated with some cancer prognosis. Furthermore, we found a reduced phosphorylation of ITGB4 at S1457 in several tumors, such as breast and ovarian cancers. Finally, ITGB4 expression was correlated with cancer-associated fibroblasts in liver hepatocellular carcinoma and prostate adenocarcinoma, and the infiltration level of NK cells and neutrophils was observed in other cancers, such as breast invasive carcinoma and lung adenocarcinoma. Moreover, RNA metabolism and protein processing-associated functions are involved in the functional mechanism of ITGB4. Conclusion Our first pan-cancer study may offer a relatively comprehensive understanding of the oncogenic roles of ITGB4 across different tumors.
Collapse
Affiliation(s)
- Wenjie Huang
- Department of Reproductive Medicine, Liuzhou Maternity and Child Healthcare Hospital, Affiliated Women and Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, 545001, People's Republic of China
| | - Li Fan
- Department of Reproductive Medicine, Liuzhou Maternity and Child Healthcare Hospital, Affiliated Women and Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, 545001, People's Republic of China
| | - Yongmei Tang
- Department of Reproductive Medicine, Liuzhou Maternity and Child Healthcare Hospital, Affiliated Women and Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, 545001, People's Republic of China
| | - Yinxiu Chi
- School of Basic Medicine, Central South University, Changsha, Hunan, 410078, People's Republic of China
| | - Jingjing Li
- Department of Reproductive Medicine, Liuzhou Maternity and Child Healthcare Hospital, Affiliated Women and Children's Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, 545001, People's Republic of China
| |
Collapse
|
15
|
Tian M, Tang Y, Huang T, Liu Y, Pan Y. Amelioration of human peritoneal mesothelial cell co-culture-evoked malignant potential of ovarian cancer cells by acacetin involves LPA release-activated RAGE-PI3K/AKT signaling. Cell Mol Biol Lett 2021; 26:51. [PMID: 34886812 PMCID: PMC8903696 DOI: 10.1186/s11658-021-00296-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/20/2021] [Indexed: 12/02/2022] Open
Abstract
Background Ovarian cancer is a devastating gynecological malignancy and frequently presents as an advanced carcinoma with disseminated peritoneum metastasis. Acacetin exerts anti-cancerous effects in several carcinomas. Here, we sought to investigate acacetin function in ovarian cancer malignancy triggered by peritoneal mesothelial cells. Methods Peritoneal mesothelial cells were treated with acacetin, and then the conditioned medium was collected to treat ovarian cancer cells. Then, cell proliferation was analyzed by MTT assay. Transwell analysis was conducted to evaluate cell invasion. Protein expression was determined by western blotting. ELISA and qRT-PCR were applied to analyze inflammatory cytokine levels. The underlying mechanism was also explored. Results Acacetin suppressed cell proliferation and invasion, but enhanced cell apoptosis. Furthermore, mesothelial cell-evoked malignant characteristics were inhibited when mesothelial cells were pre-treated with acacetin via restraining cell proliferation and invasion, concomitant with decreases in proliferation-related PCNA, MMP-2 and MMP-9 levels. Simultaneously, acacetin reduced mesothelial cell-induced transcripts and production of pro-inflammatory cytokine IL-6 and IL-8 in ovarian cancer cells. Mechanically, acacetin decreased lysophosphatidic acid (LPA) release from mesothelial cells, and subsequent activation of receptor for advanced glycation end-products (RAGE)-PI3K/AKT signaling in ovarian cancer cells. Notably, exogenous LPA restored the above pathway, and offset the efficacy of acacetin against mesothelial cell-evoked malignancy in ovarian cancer cells, including cell proliferation, invasion and inflammatory cytokine production. Conclusions Acacetin may not only engender direct inhibition of ovarian cancer cell malignancy, but also antagonize mesothelial cell-evoked malignancy by blocking LPA release-activated RAGE-PI3K/AKT signaling. Thus, these findings provide supporting evidence for a promising therapeutic agent against ovarian cancer. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Meng Tian
- Critical Care Medicine, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, 201700, People's Republic of China
| | - Yingjie Tang
- Department of Obstetrics, Chongqing Health Center for Women and Children, Chongqing, 401147, People's Republic of China
| | - Ting Huang
- Department of Obstetrics, Chongqing Health Center for Women and Children, Chongqing, 401147, People's Republic of China
| | - Yang Liu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yingzheng Pan
- Department of Gynecological Endocrinology, Chongqing Health Center for Women and Children, No 120 Longshan Road, Yubei District, Chongqing, 401147, People's Republic of China.
| |
Collapse
|
16
|
Ye M, Lin Y, Pan S, Wang ZW, Zhu X. Applications of Multi-omics Approaches for Exploring the Molecular Mechanism of Ovarian Carcinogenesis. Front Oncol 2021; 11:745808. [PMID: 34631583 PMCID: PMC8497990 DOI: 10.3389/fonc.2021.745808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/08/2021] [Indexed: 12/29/2022] Open
Abstract
Ovarian cancer ranks as the fifth most common cause of cancer-related death in females. The molecular mechanisms of ovarian carcinogenesis need to be explored in order to identify effective clinical therapies for ovarian cancer. Recently, multi-omics approaches have been applied to determine the mechanisms of ovarian oncogenesis at genomics (DNA), transcriptomics (RNA), proteomics (proteins), and metabolomics (metabolites) levels. Multi-omics approaches can identify some diagnostic and prognostic biomarkers and therapeutic targets for ovarian cancer, and these molecular signatures are beneficial for clarifying the development and progression of ovarian cancer. Moreover, the discovery of molecular signatures and targeted therapy strategies could noticeably improve the prognosis of ovarian cancer patients.
Collapse
Affiliation(s)
| | | | | | - Zhi-wei Wang
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xueqiong Zhu
- Center of Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
17
|
Lai ZY, Tsai KY, Chang SJ, Chuang YJ. Gain-of-Function Mutant TP53 R248Q Overexpressed in Epithelial Ovarian Carcinoma Alters AKT-Dependent Regulation of Intercellular Trafficking in Responses to EGFR/MDM2 Inhibitor. Int J Mol Sci 2021; 22:ijms22168784. [PMID: 34445495 PMCID: PMC8395913 DOI: 10.3390/ijms22168784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/07/2021] [Accepted: 08/12/2021] [Indexed: 01/27/2023] Open
Abstract
As the most common gene mutation found in cancers, p53 mutations are detected in up to 96% of high-grade serous ovarian carcinoma (HGSOC). Meanwhile, mutant p53 overexpression is known to drive oncogenic phenotypes in cancer patients and to sustain the activation of EGFR signaling. Previously, we have demonstrated that the combined inhibition of EGFR and MDM2-p53 pathways, by gefitinib and JNJ-26854165, exerts a strong synergistic lethal effect on HGSOC cells. In this study, we investigated whether the gain-of-function p53 mutation (p53R248Q) overexpression could affect EGFR-related signaling and the corresponding drug inhibition outcome in HGSOC. The targeted inhibition responses of gefitinib and JNJ-26854165, in p53R248Q-overexpressing cells, were extensively evaluated. We found that the phosphorylation of AKT increased when p53R248Q was transiently overexpressed. Immunocytochemistry analysis further showed that upon p53R248Q overexpression, several AKT-related regulatory proteins translocated in unique intracellular patterns. Subsequent analysis revealed that, under the combined inhibition of gefitinib and JNJ-26854165, the cytonuclear trafficking of EGFR and MDM2 was disrupted. Next, we analyzed the gefitinib and JNJ-26854165 responses and found differential sensitivity to the single- or combined-drug inhibitions in p53R248Q-overexpressing cells. Our findings suggested that the R248Q mutation of p53 in HGSOC caused significant changes in signaling protein function and trafficking, under EGFR/MDM2-targeted inhibition. Such knowledge could help to advance our understanding of the role of mutant p53 in ovarian carcinoma and to improve the prognosis of patients receiving EGFR/MDM2-targeted therapies.
Collapse
Affiliation(s)
- Zih-Yin Lai
- Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan; (Z.-Y.L.); (K.-Y.T.)
| | - Kai-Yun Tsai
- Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan; (Z.-Y.L.); (K.-Y.T.)
| | - Shing-Jyh Chang
- Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu 30071, Taiwan
- Correspondence: (S.-J.C.); (Y.-J.C.); Tel.: +886-3-6119595 (S.-J.C.); +886-3-5742764 (Y.-J.C.); Fax: +886-3-6110900 (S.-J.C.); +886-3-5715934 (Y.-J.C.)
| | - Yung-Jen Chuang
- Department of Medical Science & Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan; (Z.-Y.L.); (K.-Y.T.)
- Correspondence: (S.-J.C.); (Y.-J.C.); Tel.: +886-3-6119595 (S.-J.C.); +886-3-5742764 (Y.-J.C.); Fax: +886-3-6110900 (S.-J.C.); +886-3-5715934 (Y.-J.C.)
| |
Collapse
|
18
|
Malignant Ascites Promote Adhesion of Ovarian Cancer Cells to Peritoneal Mesothelium and Fibroblasts. Int J Mol Sci 2021; 22:ijms22084222. [PMID: 33921783 PMCID: PMC8073321 DOI: 10.3390/ijms22084222] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/19/2022] Open
Abstract
Although malignant ascites (MAs) are known to contribute to various aspects of ovarian cancer progression, knowledge regarding their role in the adhesion of cancer cells to normal peritoneal cells is incomplete. Here, we compared the effect of MAs and benign ascites (BAs) on the adhesion of A2780 and OVCAR-3 cancer cells to omentum-derived peritoneal mesothelial cells (PMCs) and peritoneal fibroblasts (PFBs). The results showed that MAs stimulated the adhesion of A2780 and OVCAR-3 cells to PMCs and PFBs more efficiently than did BAs, and the strongest binding occurred when both cancer and normal cells were exposed to the fluid. Intervention studies showed that MAs-driven adhesion of A2780 cells to PMCs/PFBs depends on the presence of TGF-β1 and HGF, whereas binding of OVCAR-3 cells was mediated by TGF-β1, GRO-1, and IGF-1. Moreover, MAs upregulated α5β1 integrin expression on PFBs but not on PMCs or cancer cells, vimentin expression in all cells tested, and ICAM-1 only in cancer cells. When integrin-linked kinase was neutralized in PMCs or PFBs, cancer cell adhesion to PMCs and PFBs decreased. Collectively, our report shows that MAs may contribute to the early stages of ovarian cancer metastasis by modulating the proadhesive interplay between normal and cancer cells.
Collapse
|
19
|
Guo T, Dong X, Xie S, Zhang L, Zeng P, Zhang L. Cellular Mechanism of Gene Mutations and Potential Therapeutic Targets in Ovarian Cancer. Cancer Manag Res 2021; 13:3081-3100. [PMID: 33854378 PMCID: PMC8041604 DOI: 10.2147/cmar.s292992] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/19/2021] [Indexed: 02/05/2023] Open
Abstract
Ovarian cancer is a common and complex malignancy with poor prognostic outcome. Most women with ovarian cancer are diagnosed with advanced stage disease due to a lack of effective detection strategies in the early stage. Traditional treatment with cytoreductive surgery and platinum-based combination chemotherapy has not significantly improved prognosis and 5-year survival rates are still extremely poor. Therefore, novel treatment strategies are needed to improve the treatment of ovarian cancer patients. Recent advances of next generation sequencing technologies have both confirmed previous known mutated genes and discovered novel candidate genes in ovarian cancer. In this review, we illustrate recent advances in identifying ovarian cancer gene mutations, including those of TP53, BRCA1/2, PIK3CA, and KRAS genes. In addition, we discuss advances in targeting therapies for ovarian cancer based on these mutated genes in ovarian cancer. Further, we associate between detection of mutation genes by liquid biopsy and the potential early diagnostic value in ovarian cancer.
Collapse
Affiliation(s)
- Tao Guo
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xue Dong
- Department of Gynecology, Cheng Du Shang Jin Nan Fu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shanli Xie
- First People's Hospital of Guangyuan, Guangyuan, Sichuan, 628000, People's Republic of China
| | - Ling Zhang
- Department of Gynecology and Obstetrics, Guangyuan Central Hospital, Guangyuan, Sichuan, 628000, People's Republic of China
| | - Peibin Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Lin Zhang
- Department of Forensic Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
20
|
Gu X, Li X, Xu J, Yang J, Li H, Wu Q, Qian J. Accumulated genetic mutations leading to accelerated initiation and progression of colorectal cancer in a patient with Gardner syndrome: A case report. Medicine (Baltimore) 2021; 100:e25247. [PMID: 33787608 PMCID: PMC8021328 DOI: 10.1097/md.0000000000025247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/04/2021] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Gardner syndrome is a rare autosomal dominant disorder with a high degree of penetrance, which is characterized by intestinal polyposis, osteomas, and dental abnormalities. Majority of patients with Gardner syndrome will develop colorectal cancer by the age of 40 to 50 years. Mutations in the adenomatous polyposis coli gene are supposed to be responsible for the initiation of Gardner syndrome. PATIENT CONCERNS A 22-year-old Chinese female was admitted to our hospital due to abdominal pain and bloody stool. DIAGNOSIS The patient presented with multiple intestinal polyposis, desmoid tumors, and dental abnormalities was diagnosed as Gardner syndrome and further examination revealed a colon tumor. INTERVENTIONS AND OUTCOMES Patients were implanted with stents to alleviate bowel obstruction, and were treated with oxaliplatin combined with 5-Fu for 4 cycles, but the efficacy was not good. We performed next generation sequencing of 390 genes for the tumor specimens. We detected adenomatous polyposis coli E1538Ifs∗5, KRAS G12D, NF1 R652C, loss of SMAD4, TP53 R175H, IRF2 p.R82S, TCF7L2 p.A418Tfs∗14, and SMAD4 p.L43F in this patient. LESSONS We reported serial mutations in key genes responsible for initiation and progression of colorectal cancer from a patient with Gardner syndrome.
Collapse
|
21
|
A Study of Expression and Significance of p53 in Malignant Ovarian Surface Epithelial Tumours. INDIAN JOURNAL OF GYNECOLOGIC ONCOLOGY 2021. [DOI: 10.1007/s40944-021-00506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Shi Q, Meng Z, Tian XX, Wang YF, Wang WH. Identification and validation of a hub gene prognostic index for hepatocellular carcinoma. Future Oncol 2021; 17:2193-2208. [PMID: 33620260 DOI: 10.2217/fon-2020-1112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aims: We aim to provide new insights into the mechanisms of hepatocellular carcinoma (HCC) and identify key genes as biomarkers for the prognosis of HCC. Materials & methods: Differentially expressed genes between HCC tissues and normal tissues were identified via the Gene Expression Omnibus tool. The top ten hub genes screened by the degree of the protein nodes in the protein-protein interaction network also showed significant associations with overall survival in HCC patients. Results: A prognostic model containing a five-gene signature was constructed to predict the prognosis of HCC via multivariate Cox regression analysis. Conclusion: This study identified a novel five-gene signature (CDK1, CCNB1, CCNB2, BUB1 and KIF11) as a significant independent prognostic factor.
Collapse
Affiliation(s)
- Q Shi
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Z Meng
- The People's Hospital of Henan Province, Zhengzhou, Henan, 450003, China
| | - X X Tian
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Y F Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - W H Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
23
|
Modeling the Early Steps of Ovarian Cancer Dissemination in an Organotypic Culture of the Human Peritoneal Cavity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1330:75-94. [PMID: 34339031 DOI: 10.1007/978-3-030-73359-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The majority of ovarian cancer patients present clinically with wide-spread metastases throughout the peritoneal cavity, metastasizing to the mesothelium-lined peritoneum and visceral adipose depots within the abdomen. This unique metastatic tumor microenvironment is comprised of multiple cell types, including mesothelial cells, fibroblasts, adipocytes, macrophages, neutrophils, and T lymphocytes. Modeling advancements, including complex 3D systems and organoids, coupled with 2D cocultures, in vivo mouse models, and ex vivo human tissue cultures have greatly enhanced our understanding of the tumor-stroma interactions that are required for successful metastasis of ovarian cancer cells. However, advanced multifaceted model systems that incorporate frequency and spatial distribution of all cell types present in the tumor microenvironment of ovarian cancer are needed to enhance our knowledge of ovarian cancer biology in order to identify methods for preventing and treating metastatic disease. This review highlights the utility of recently developed modeling approaches, summarizes some of the resulting progress using these techniques, and suggests how these strategies may be implemented to elucidate signaling processes among cell types of the tumor microenvironment that promote ovarian cancer metastasis.
Collapse
|
24
|
Wu A, Zhang S, Liu J, Huang Y, Deng W, Shu G, Yin G. Integrated Analysis of Prognostic and Immune Associated Integrin Family in Ovarian Cancer. Front Genet 2020; 11:705. [PMID: 32765584 PMCID: PMC7379341 DOI: 10.3389/fgene.2020.00705] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
Human integrin receptors are important for cell-cell and cell-matrix adhesion in normal epithelial cells. Emerging evidences have indicated integrin members are involved in cancer development and progression as well. However, the expression patterns and clinical significance of the whole integrin family in ovarian cancer (OC) have not yet been well understood. In the present study, we utilized the public datasets including GEPIA, GEO, ONCOMINE, cBioPortal, Kaplan-Meier Plotter, TIMER databases, to analyze the expression and prognostic value of integrin members in OC. We found ITGA3/B4/B6/B7/B8 were abnormally overexpressed in OC; ITGA6 was good prognosis predictor in OC; ITGA3/ B4/B8 were poor prognosis predictor specially in advanced OC patients; elevated ITGA3/B4 might promote metastasis and elevated ITGA3/B8 might promote platinum resistance of OC; ITGA3 and ITGB4 might synergistically or independently regulate cell adhesion and proliferation; ITGA4/AL/AM/AX/B2/B7 showed strong correlations with various tumor immune infiltrates (TILs), especially with pro-tumor immunes cell types like monocyte, M2 macrophage and exhaustion T cells infiltration; ITGAL/AM/B2/B7 and residing memory CD8+ T cells marker ITGAE were specially associated with early OC patients outcome. Our results implied that ITGA3/B4 were important prognostic markers of advanced OC, ITGAL/AM/ B2/B7 were immune associated prognosis markers of early OC, together they might render important therapeutic targets for OC.
Collapse
Affiliation(s)
- Anqi Wu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Sai Zhang
- Deparment of Pathology, School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Jiaqi Liu
- Deparment of Pathology, School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Yifeng Huang
- Department of Anesthesia, School of Medicine, Central South University, Changsha, China
| | - Wenyu Deng
- Departmemt of Nursing, School of Nursing, Central South University, Changsha, China
| | - Guang Shu
- Deparment of Pathology, School of Basic Medicine Sciences, Central South University, Changsha, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Deparment of Pathology, School of Basic Medicine Sciences, Central South University, Changsha, China
| |
Collapse
|
25
|
Levy A, Alhazzani K, Dondapati P, Alaseem A, Cheema K, Thallapureddy K, Kaur P, Alobid S, Rathinavelu A. Focal Adhesion Kinase in Ovarian Cancer: A Potential Therapeutic Target for Platinum and Taxane-Resistant Tumors. Curr Cancer Drug Targets 2020; 19:179-188. [PMID: 29984656 DOI: 10.2174/1568009618666180706165222] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/30/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase, which is an essential player in regulating cell migration, invasion, adhesion, proliferation, and survival. Its overexpression and activation have been identified in sixty-eight percent of epithelial ovarian cancer patients and this is significantly associated with higher tumor stage, metastasis, and shorter overall survival of these patients. Most recently, a new role has emerged for FAK in promoting resistance to taxane and platinum-based therapy in ovarian and other cancers. The development of resistance is a complex network of molecular processes that make the identification of a targetable biomarker in platinum and taxane-resistant ovarian cancer a major challenge. FAK overexpression upregulates ALDH and XIAP activity in platinum-resistant and increases CD44, YB1, and MDR-1 activity in taxaneresistant tumors. FAK is therefore now emerging as a prognostically significant candidate in this regard, with mounting evidence from recent successes in preclinical and clinical trials using small molecule FAK inhibitors. This review will summarize the significance and function of FAK in ovarian cancer, and its emerging role in chemotherapeutic resistance. We will discuss the current status of FAK inhibitors in ovarian cancers, their therapeutic competencies and limitations, and further propose that the combination of FAK inhibitors with platinum and taxane-based therapies could be an efficacious approach in chemotherapeutic resistant disease.
Collapse
Affiliation(s)
- Arkene Levy
- College of Medical Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Khalid Alhazzani
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Priya Dondapati
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Ali Alaseem
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Khadijah Cheema
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Keerthi Thallapureddy
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Paramjot Kaur
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Saad Alobid
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Appu Rathinavelu
- Rumbaugh Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, United States
| |
Collapse
|
26
|
Ruan S, Lin M, Zhu Y, Lum L, Thakur A, Jin R, Shao W, Zhang Y, Hu Y, Huang S, Hurt EM, Chang AE, Wicha MS, Li Q. Integrin β4-Targeted Cancer Immunotherapies Inhibit Tumor Growth and Decrease Metastasis. Cancer Res 2020; 80:771-783. [PMID: 31843981 PMCID: PMC7024642 DOI: 10.1158/0008-5472.can-19-1145] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/30/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Integrin β4 (ITGB4) has been shown to play an important role in the regulation of cancer stem cells (CSC). Immune targeting of ITGB4 represents a novel approach to target this cell population, with potential clinical benefit. We developed two immunologic strategies to target ITGB4: ITGB4 protein-pulsed dendritic cells (ITGB4-DC) for vaccination and adoptive transfer of anti-CD3/anti-ITGB4 bispecific antibody (ITGB4 BiAb)-armed tumor-draining lymph node T cells. Two immunocompetent mouse models were utilized to assess the efficacy of these immunotherapies in targeting both CSCs and bulk tumor populations: 4T1 mammary tumors and SCC7 head and neck squamous carcinoma cell line. Immunologic targeting of ITGB4 utilizing either ITGB4-DC or ITGB4 BiAb-T cells significantly inhibited local tumor growth and metastases in both the 4T1 and SCC7 tumor models. Furthermore, the efficacy of both of these ITGB4-targeted immunotherapies was significantly enhanced by the addition of anti-PD-L1. Both ITGB4-targeted immunotherapies induced endogenous T-cell cytotoxicity directed at CSCs as well as non-CSCs, which expressed ITGB4, and immune plasma-mediated killing of CSCs. As a result, ITGB4-targeted immunotherapy reduced not only the number of ITGB4high CSCs in residual 4T1 and SCC7 tumors but also their tumor-initiating capacity in secondary mouse implants. In addition, treated mice demonstrated no apparent toxicity. The specificity of these treatments was demonstrated by the lack of effects observed using ITGB4 knockout 4T1 or ITGB4-negative CT26 colon carcinoma cells. Because ITGB4 is expressed by CSCs across a variety of tumor types, these results support immunologic targeting of ITGB4 as a promising therapeutic strategy.Significance: This study identifies a novel mechanism of resistance to anti-PD-1/PD-L1 immunotherapy mediated by HPV E5, which can be exploited using the HPV E5 inhibitor rimantadine to improve outcomes for head and neck cancer patients.
Collapse
Affiliation(s)
- Shasha Ruan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ming Lin
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yong Zhu
- Guangzhou Improve Medical Instruments Co., Ltd. Guangzhou, Guangdong, China
| | - Lawrence Lum
- Division of Hematology/Oncology, Department of Medicine, University of Virginia Cancer Center, Charlottesville, Virginia
| | - Archana Thakur
- Division of Hematology/Oncology, Department of Medicine, University of Virginia Cancer Center, Charlottesville, Virginia
| | - Runming Jin
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenlong Shao
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Yalei Zhang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Yangyang Hu
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiang Huang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | - Alfred E Chang
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Max S Wicha
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| | - Qiao Li
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
27
|
Zhong F, Lu HP, Chen G, Dang YW, Li GS, Chen XY, Qin YY, Yao YX, Zhang XG, Liang Y, Li MX, Mo M, Zhang KL, Ding H, Huang ZG, Wei ZX. The clinical significance and potential molecular mechanism of integrin subunit beta 4 in laryngeal squamous cell carcinoma. Pathol Res Pract 2019; 216:152785. [PMID: 31889588 DOI: 10.1016/j.prp.2019.152785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/21/2019] [Accepted: 12/10/2019] [Indexed: 01/10/2023]
Abstract
The relationship between integrin beta 4 (ITGB4) expression and laryngeal squamous cell carcinoma (LSCC) remains unclarified. The object of the present study was to explore the clinical significance and potential molecular mechanism of ITGB4 in LSCC. The protein level of ITGB4 was significantly higher in 46 LSCC patients than in 26 non-LSCC tissues detected by in-house immunohistochemistry. Consistently, ITGB4 mRNA level was also greatly upregulated based on microarray and RNA-seq data (standard mean difference, SMD = 1.62, 95 % CI: 1.23-2.00). And the area under curves (AUC) of summary receiver operator characteristic (SROC) was 0.87 (95 % CI: 0.84-0.90) based on 172 cases of LSCC and 59 cases of non-cancerous controls. Ninety genes were intersected by the ITGB4 related genes and LSCC differential expressed genes (DEGs) from all available microarray and RNA-seq datasets. Based on Gene Ontology (GO) analysis, the top terms of biological process (BP), cellular component (CC) and molecular function (MF) for the 90 ITGB4 related DEGs were extracellular matrix organization, basement membrane and extracellular matrix structural constituent, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that ITGB4 related DEGs mainly participated in the pathways of ECM-receptor interaction, Focal adhesion and Small cell lung cancer. Moreover, the Protein-Protein Interaction (PPI) network indicated that ITGA3, ITGA5, ITGB4, MET, LAMA3, and COL4A1 might be the core genes of LSCC development related to ITGB4. In conclusion, high ITGB4 expression may lead to the occurrence and development of LSCC via various signaling pathways.
Collapse
Affiliation(s)
- Feng Zhong
- Department of Pathology, Hengxian People's Hospital, 141 Jiaoyu Road, Hengxian County of Nanning 530300, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hui-Ping Lu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guo-Sheng Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Yi Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yong-Ying Qin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yu-Xuan Yao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Guohui Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yao Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ming-Xuan Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Miao Mo
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Kai-Lang Zhang
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hua Ding
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Zhu-Xin Wei
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
28
|
Fibrin Deposit on the Peritoneal Surface Serves as a Niche for Cancer Expansion in Carcinomatosis Patients. Neoplasia 2019; 21:1091-1101. [PMID: 31734630 PMCID: PMC6889015 DOI: 10.1016/j.neo.2019.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/17/2019] [Accepted: 08/20/2019] [Indexed: 11/22/2022]
Abstract
Peritoneal metastasis (PM) is a very serious complication of gastrointestinal and gynecological malignancies which is poorly documented. Modified mesothelial cell layer and their microenvironments can favor fibrin deposition for cancer cell adhesion. Scanning and transmission electron microscopy of peritoneal surface and cancer cell clusters from cancer patients was done. Ascites and its impact on mesothelial cells were assessed by cytokine array. Neprilysin, matrix metalloprotease, epithelial mesenchymal transition (EMT) related molecules (E-cadherin, Snail, Slug, Twist, Vimentin and Fibronectin), tissues factor (TF), endothelial protein C receptors (EPCR) were quantified by q-PCR. Fibrin in the simples were stained using anti fibrin F1E1 antibody. Migration ability was assessed by scratch assay. Cell viability and neprilysin activity were analyzed by bioluminescence. Cancer cells-fibrin interaction was investigated by scanning electron microscopy (SEM) and microcinematography (MCG). Mesothelial cells change their morphology after incubation with carcinomatosis peritoneal fluids in vitro. EMT associated with upregulation of neprilysin, matrix metalloproteinase-2, tissue factor and cytokines secretions such as interleukin-6, and 8, hepatocyte growth factor and granulocyte chemotactic protein-2 mRNA and protein were observed. EPCR expression as a natural anticoagulant was decreased. In parallel, carcinomatosis cell clusters extracted from peritoneal fluids were found to be associated with fibrin. Kinetic analysis of cancer cell-fibrin interaction in vitro studied by MCG showed that fiber filaments generated from clots inhibited cancer cell adhesion on fibrin clots. These results indicated that fibrin deposit on the peritoneal surface serve as niches for cancer expansion in carcinomatosis patients.
Collapse
|
29
|
Sowamber R, Chehade R, Bitar M, Dodds LV, Milea A, Slomovitz B, Shaw PA, George SHL. CCAAT/enhancer binding protein delta (C/EBPδ) demonstrates a dichotomous role in tumour initiation and promotion of epithelial carcinoma. EBioMedicine 2019; 44:261-274. [PMID: 31078521 PMCID: PMC6603855 DOI: 10.1016/j.ebiom.2019.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
Background CCAAT/enhancer binding protein delta (C/EBPδ,CEBPD), a gene part of the highly conserved basic-leucine zipper (b-ZIP) domain of transcriptional factors, is downregulated in 65% of high grade serous carcinomas of the ovary (HGSC). Overexpression of C/EBPδ in different tumours, such as glioblastoma and breast cancer either promotes tumour progression or inhibits growth and has low expression in normal tissue until activated by cytotoxic stressors. Methods Higher overall expression of C/EBPδ in the luteal phase of the menstrual cycle prompted us to investigate the role of C/EBPδ in carcinogenesis. In vitro experiments were conducted in fallopian tube cell samples and cancer cell lines to investigate the role of C/EBPδ in proliferation, migration, and the epithelial to mesenchymal transition. Findings Expression of C/EBPδ induced premature cellular arrest and decreased soft agar colony formation. Loss of C/EBPδ in epithelial cancer cell lines did not have significant effects on proliferation, yet overexpression demonstrated downregulation of growth, similar to normal fallopian tube cells. C/EBPδ promoted a partial mesenchymal to epithelial (MET) phenotype by upregulating E-cadherin and downregulating Vimentin and N-cadherin in FTE cells and increased migratory activity, which suggests a regulatory role in the epithelial-mesenchymal plasticity of these cells. Interpretation Our findings suggest that C/EBPδ regulates the phenotype of normal fallopian tube cells by acting on downstream regulatory factors that are implicated in the development of ovarian serous carcinogenesis. Fund This study was funded by the CDMRP Ovarian Cancer program (W81WH-0701-0371, W81XWH-18-1-0072), the Princess Margaret Cancer Centre Foundation, Foundation for Women's Cancer – The Belinda-Sue/Mary-Jane Walker Fund, Colleen's Dream Foundation and Sylvester Comprehensive Cancer Center.
Collapse
Affiliation(s)
- Ramlogan Sowamber
- Campbell Family Institute for Breast Cancer Research, Toronto, Ontario, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Rania Chehade
- Campbell Family Institute for Breast Cancer Research, Toronto, Ontario, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Mahmoud Bitar
- Campbell Family Institute for Breast Cancer Research, Toronto, Ontario, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Leah V Dodds
- Sylvester Comprehensive Cancer Center, Miami, Florida, United States; University of Miami, Leonard Miller School of Medicine, Miami, Florida, United States
| | - Anca Milea
- Campbell Family Institute for Breast Cancer Research, Toronto, Ontario, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Brian Slomovitz
- Sylvester Comprehensive Cancer Center, Miami, Florida, United States; Department of Obstetrics and Gynecology and Reproductive Sciences, Division of Gynecology Oncology, Miami, Florida, United States; University of Miami, Leonard Miller School of Medicine, Miami, Florida, United States
| | - Patricia A Shaw
- Campbell Family Institute for Breast Cancer Research, Toronto, Ontario, Canada; Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| | - Sophia H L George
- Sylvester Comprehensive Cancer Center, Miami, Florida, United States; Department of Obstetrics and Gynecology and Reproductive Sciences, Division of Gynecology Oncology, Miami, Florida, United States; University of Miami, Leonard Miller School of Medicine, Miami, Florida, United States.
| |
Collapse
|
30
|
Kokabu T, Mori T, Matsushima H, Yoriki K, Kataoka H, Tarumi Y, Kitawaki J. Antitumor effect of XCT790, an ERRα inverse agonist, on ERα-negative endometrial cancer cells. Cell Oncol (Dordr) 2019; 42:223-235. [PMID: 30706380 DOI: 10.1007/s13402-019-00423-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2019] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The estrogen-related receptor (ERR) α is structurally similar to classical estrogen receptors (ERs), but is considered to be an orphan nuclear receptor. We previously found that ERRα regulates uterine endometrial cancer progression. Here, we investigated the efficacy of XCT790, a selective inverse agonist of ERRα, on endometrial cancer cells in vitro and in vivo. METHODS HEC-1A and KLE, ERα-negative endometrial cancer cells exhibiting high ERRα expression levels, and HEC-1A cell-derived xenograft model mice were treated with XCT790. Transcriptional activity and cell proliferation were examined using luciferase, WST-8 and colony formation assays, respectively. Cell cycle progression was evaluated using flow cytometry, immunofluorescence cytochemistry and Western blotting. Apoptosis was evaluated using a caspase-3/7 activity assay. RESULTS We found that XCT790 significantly inhibited ERRα-induced in vitro transcriptional activity, including that of the vascular endothelial growth factor (VEGF) gene, in a concentration-dependent manner (p < 0.05). We also found that XCT790 suppressed colony formation and cell proliferation in a concentration and time-dependent manner (p < 0.01) without cytotoxicity, and induced apoptosis (p < 0.01). XCT790 was found to cause cell cycle arrest at the mitotic phase. Akt and mTOR phosphorylation was found to be inhibited by XCT790, but PI3K levels were not found to be significantly affected. Combination therapy of XCT790 with paclitaxel elicited a synergistic inhibitory effect. Additionally, we found that XCT790 significantly inhibited in vivo tumor growth and angiogenesis, and induced apoptosis without a reduction in body weight, in xenograft models (p < 0.01). CONCLUSIONS From our data we conclude that XCT790 has an anti-tumor effect on endometrial cancer cells in vitro and in vivo. As such, it may serve as a novel therapeutic agent for endometrial cancer.
Collapse
Affiliation(s)
- Tetsuya Kokabu
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Taisuke Mori
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Hiroshi Matsushima
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kaori Yoriki
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hisashi Kataoka
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yosuke Tarumi
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Jo Kitawaki
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
31
|
Mutant p53 regulates LPA signaling through lysophosphatidic acid phosphatase type 6. Sci Rep 2019; 9:5195. [PMID: 30914657 PMCID: PMC6435808 DOI: 10.1038/s41598-019-41352-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 03/04/2019] [Indexed: 12/31/2022] Open
Abstract
Emerging evidence has indicated that high-grade serous ovarian cancer (HGSOC) originates in the fallopian tube, where the earliest known genetic lesion is the mutation of TP53. In addition to such genetic changes, HGSOC is characterized by altered metabolism, including the production of oncogenic lipids such as lysophosphatidic acid (LPA). To understand the crosstalk between TP53 mutations and LPA signaling, we utilized primary fallopian tube epithelial cells (FTEC) engineered to overexpress mutant p53. We found that gain-of-function (GOF) p53 mutations downregulated the LPA-degrading enzyme lysophosphatidic acid phosphatase type 6 (ACP6), leading to upregulation of focal adhesion signaling in an LPA-dependent manner. Although highly expressed in normal fallopian tube epithelium, ACP6 expression was significantly reduced in ovarian cancer tumors and early in situ lesions. Downregulation of ACP6 in ovarian cancer cells was necessary and sufficient to support HGSOC proliferation, adhesion, migration, and invasion. Using mouse models of metastasis, we established that attenuation of ACP6 expression was associated with increased tumor burden. Conversely, overexpression of ACP6 suppressed invasive behavior. These data identify an involvement of oncogenic p53 mutations in LPA signaling and HGSOC progression through regulation of ACP6 expression.
Collapse
|
32
|
Xu Y, Zhang Q, Miao C, Dongol S, Li Y, Jin C, Dong R, Li Y, Yang X, Kong B. CCNG1 (Cyclin G1) regulation by mutant-P53 via induction of Notch3 expression promotes high-grade serous ovarian cancer (HGSOC) tumorigenesis and progression. Cancer Med 2018; 8:351-362. [PMID: 30565428 PMCID: PMC6346265 DOI: 10.1002/cam4.1812] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022] Open
Abstract
TP53 mutation is considerably common in advanced high-grade serous ovarian cancer (HGSOC) and significantly associated with a poor prognosis. In this study, we investigated the role of Cyclin G1 (CCNG1), a target gene of wild-type TP53 (P53wt), in HGSOC and the possible regulatory mechanism between TP53 mutant (P53mt) and CCNG1 in the progression of HGSOC. High expression level of CCNG1 was found in 61.3% of HGSOC tissues and only 18.2% in fimbriae of fallopian tubes. Additionally, overexpression of CCNG1 was significantly associated with a shorter overall survival (P < 0.0001) and progression-free survival (P < 0.0004) in HGSOC patients. In vitro, CCNG1 promoted both tumor cell motility by inducing epithelial-mesenchymal transition (EMT) and resistance to cisplatin (CDDP). In vivo, knockdown expression of CCNG1 inhibited cancer metastasis. Furthermore, P53mt increased the expression of CCNG1 by regulating Notch3 expression, and a positive correlation between CCNG1 and Notch3 protein expression was observed by Immunohistochemistry (IHC) (r = 0.39, P: 0.01528). In conclusion, the activation of P53mt-Notch3-CCNG1 pathway was responsible for tumor progression to advanced disease with correlation with worse prognosis in patients with HGSOC. These data suggest a possible molecular mechanism of disease and highlights CCNG1's potential role as a therapeutic target in HGSOC.
Collapse
Affiliation(s)
- Ying Xu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Chunying Miao
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Samina Dongol
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Yinuo Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Chenjuan Jin
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Ruifeng Dong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Yingwei Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Xingsheng Yang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Ji'nan, China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, China
| |
Collapse
|
33
|
Kang YT, Kim YJ, Lee TH, Cho YH, Chang HJ, Lee HM. Cytopathological Study of the Circulating Tumor Cells filtered from the Cancer Patients' Blood using Hydrogel-based Cell Block Formation. Sci Rep 2018; 8:15218. [PMID: 30315187 PMCID: PMC6185971 DOI: 10.1038/s41598-018-33464-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022] Open
Abstract
Circulating tumor cells have emerged as biomarkers for estimating the tumor burden and metastatic potential of cancer patients. However, to date, most of studies and applications of circulating tumor cells have been conducted and applied to epithelial cancers such as breast, colorectal, and prostate tumor. The only FDA-cleared method, CellSearch, makes use of antibody against epithelial surface protein expressed on CTCs, thus obstructing wide application for various cancers with non-epithelial and semi-epithelial characteristics including renal cell carcinoma. Due to rarity and ambiguity of CTCs, designed experiment including non-biased CTC isolation and subsequent cytopathological study for finding applicable immunomarkers are urgently needed for clinical use of CTCs for less-studied cancers. Here, in order to construct the fundamental step for CTC diagnosis without limitation of its epithelial characteristics, we present the simple and novel method which incorporate both label-free CTC isolation and pathological study using hydrogel-based cell block formation. Six cell lines from lung, ovarian, kidney cancers were used to make cell block and analyzed by conventional immunocytochemical staining method to find the candidate markers for CTC. Especially for renal cancer, the physically isolated CTCs were further immunocytochemically examined with the screened candidate markers by cell block construction, and verified their clinical utility using blood samples from patients with renal cell carcinoma. This comprehensive study demonstrates that the present approach can be used to find the potential markers for any type of cancers regardless of their epithelial characteristics and isolate the specific type of CTCs in label-free manners.
Collapse
Affiliation(s)
- Yoon-Tae Kang
- Cell Bench Research Center, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
- College of Engineering, University of Michigan, 2800 Plymouth Road, Ann Arbor, 48109-2800, United States.
| | - Young Jun Kim
- Cell Bench Research Center, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanoengineering, University of California, San Diego, La Jolla, California, 92093, United States
| | - Tae Hee Lee
- Cell Bench Research Center, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Young-Ho Cho
- Cell Bench Research Center, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Hee Jin Chang
- Research Institute and Hospital, National Cancer Center, 323323 Ilsan-ro, Ilsandong-gu, Goyang-si Gyeonggi-do, 10408, Republic of Korea.
| | - Hyun-Moo Lee
- Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| |
Collapse
|
34
|
Jahan R, Macha MA, Rachagani S, Das S, Smith LM, Kaur S, Batra SK. Axed MUC4 (MUC4/X) aggravates pancreatic malignant phenotype by activating integrin-β1/FAK/ERK pathway. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2538-2549. [PMID: 29777904 DOI: 10.1016/j.bbadis.2018.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
Alternative splicing is evolving as an eminent player of oncogenic signaling for tumor development and progression. Mucin 4 (MUC4), a type I membrane-bound mucin, is differentially expressed in pancreatic cancer (PC) and plays a critical role in its progression and metastasis. However, the molecular implications of MUC4 splice variants during disease pathogenesis remain obscure. The present study delineates the pathological and molecular significance of a unique splice variant of MUC4, MUC4/X, which lacks the largest exon 2, along with exon 3. Exon 2 encodes for the highly glycosylated tandem repeat (TR) domain of MUC4 and its absence creates MUC4/X, which is devoid of TR. Expression analysis from PC clinical samples revealed significant upregulation of MUC4/X in PC tissues with most differential expression in poorly differentiated tumors. In vitro studies suggest that overexpression of MUC4/X in wild-type-MUC4 (WT-MUC4) null PC cell lines markedly enhanced PC cell proliferation, invasion, and adhesion to extracellular matrix (ECM) proteins. Furthermore, MUC4/X overexpression leads to an increase in the tumorigenic potential of PC cells in orthotopic transplantation studies. In line with these findings, doxycycline-induced expression of MUC4/X in an endogenous WT-MUC4 expressing PC cell line (Capan-1) also displayed enhanced cell proliferation, invasion, and adhesion to ECM, compared to WT-MUC4 alone, emphasizing its direct involvement in the aggressive behavior of PC cells. Investigation into the molecular mechanism suggested that MUC4/X facilitated PC tumorigenesis via integrin-β1/FAK/ERK signaling pathway. Overall, these findings revealed the novel role of MUC4/X in promoting and sustaining the oncogenic features of PC.
Collapse
Affiliation(s)
- Rahat Jahan
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA; Department of Otolaryngology-Head and Neck Surgery, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA
| | - Srustidhar Das
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA
| | - Lynette M Smith
- Department of Biostatistics, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, NE-68198, USA.
| |
Collapse
|
35
|
Wang L, Minchin RF, Butcher NJ. Arylamine N-acetyltransferase 1 protects against reactive oxygen species during glucose starvation: Role in the regulation of p53 stability. PLoS One 2018. [PMID: 29518119 PMCID: PMC5843258 DOI: 10.1371/journal.pone.0193560] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Human arylamine N-acetyltransferase 1 (NAT1) has been associated with cancer cell growth and invasion, but the underlying molecular mechanisms remain unknown. NAT1 is located on the short arm of chromosome 8 (8p21), a region that is commonly deleted in colon cancer. Previously, it was reported that HT-29 colon cancer cells, which have a large deletion at 8p21-22, show marked morphological changes, increased E-cadherin expression and altered cell-cell contact inhibition following down-regulation of NAT1 with shRNA. By contrast, no effects on growth were observed in HeLa cells. In the present study, cellular changes following knockout of NAT1 with CRISPR/Cas9 in HT-29 and HeLa cells were compared in the presence and absence of glucose. Cell growth decreased in both cell-lines during glucose starvation, but it was enhanced in HT-29 cells following NAT1 deletion. This was due to an increase in ROS production that induced cell apoptosis. Both ROS production and cell death were prevented by the glutathione precursor N-acetylcysteine. NAT1 knockout also resulted in a loss of the gain-of-function p53 protein in HT-29 cells. When p53 expression was inhibited with siRNA in parental HT-29 cells, ROS production and apoptosis increased to levels seen in the NAT1 knockout cells. The loss of p53 may explain the decreased colony formation and increased contact inhibition previously reported following NAT1 down-regulation in these cells. In conclusion, NAT1 is important in maintaining intracellular ROS, especially during glucose starvation, by stabilizing gain-of-function p53 in HT-29 cells. These results suggest that NAT1 may be a novel target to decrease intracellular gain-of -function p53.
Collapse
Affiliation(s)
- LiLi Wang
- Laboratory for Molecular and Cellular Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Rodney F. Minchin
- Laboratory for Molecular and Cellular Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, Australia
- * E-mail:
| | - Neville J. Butcher
- Laboratory for Molecular and Cellular Pharmacology, School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
36
|
LncRNA CASC9 promotes esophageal squamous cell carcinoma metastasis through upregulating LAMC2 expression by interacting with the CREB-binding protein. Cell Death Differ 2018; 25:1980-1995. [PMID: 29511340 PMCID: PMC6219493 DOI: 10.1038/s41418-018-0084-9] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/31/2018] [Accepted: 02/08/2018] [Indexed: 02/07/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the main subtype of esophageal cancer. Long noncoding RNAs (lncRNAs) are thought to play a critical role in cancer development. Recently, lncRNA CASC9 was shown to be dysregulated in many cancer types, but the mechanisms whereby this occurs remain largely unknown. In this study, we found that CASC9 was significantly upregulated in ESCC tissues, with further analysis revealing that elevated CASC9 expression was associated with ESCC prognosis and metastasis. Furthermore, we found that CASC9 knockdown significantly repressed ESCC migration and invasion in vitro and metastasis in nude mice in vivo. A microarray analysis and mechanical experiments indicated that CASC9 preferentially affected gene expression linked to ECM–integrin interactions, including LAMC2, an upstream inducer of the integrin pathway. We demonstrated that LAMC2 was consistently upregulated in ESCC and promoted ESCC metastasis. LAMC2 overexpression partially compromised the decrease of cell migration and invasion capacity in CASC9 knockdowns. In addition, we found that both CASC9 and LAMC2 depletion reduced the phosphorylation of FAK, PI3K, and Akt, which are downstream effectors of the integrin pathway. Moreover, the reduction in phosphorylation caused by CASC9 depletion was rescued by LAMC2 overexpression, further confirming that CASC9 exerts a pro-metastatic role through LAMC2. Mechanistically, RNA pull-down and RNA-binding protein immunoprecipitation (RIP) assay indicated that CASC9 could bind with the transcriptional coactivator CREB-binding protein (CBP) in the nucleus. Chromatin immunoprecipitation (ChIP) assay additionally illustrated that CASC9 increased the enrichment of CBP and H3K27 acetylation in the LAMC2 promoter, thereby upregulating LAMC2 expression. In conclusion, we demonstrate that CASC9 upregulates LAMC2 expression by binding with CBP and modifying histone acetylation. Our research reveals the prognostic and pro-metastatic roles for CASC9 in ESCC, suggesting that CASC9 could serve as a biomarker for prognosis and a target for metastasis treatment.
Collapse
|
37
|
Lai H, Zhao X, Qin Y, Ding Y, Chen R, Li G, Labrie M, Ding Z, Zhou J, Hu J, Ma D, Fang Y, Gao Q. FAK-ERK activation in cell/matrix adhesion induced by the loss of apolipoprotein E stimulates the malignant progression of ovarian cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:32. [PMID: 29458390 PMCID: PMC5819228 DOI: 10.1186/s13046-018-0696-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 02/02/2018] [Indexed: 12/30/2022]
Abstract
Background Extracellular matrix (ECM) is a mediator of tumor progression. However, whether the alterations of the intraperitoneal ECM prior to tumor establishment affects the malignant progression of ovarian cancer remains elusive. Methods Apolipoprotein (ApoE) knock-out mice was used to analyze the intraperitoneal ECM alterations by quantification of the major components of ECM. ID8 cells were implanted in vivo to generate allografts and human ovarian cancer cell lines were characterized in vitro to assess the effects of ECM alterations on the malignant progression of ovarian cancer. Adhesion assay, immunochemistry, cytokines profile, proliferation assay, transwell invasion assay and western blot were used to determine the malignant phenotype of ovarian cancer cells. Results ApoE loss induced increased ECM deposition, which stimulated the adhesions of ovarian cancer cells. The adhesion-mediated focal adhesion kinase (FAK) signaling enhanced the invasive behaviors of ovarian cancer cells through activation of a ERK-MMP linkage. This ECM-induced signaling cascade was further confirmed in human ovarian cancer cell lines in vitro. Furthermore, reversal of the ECM accumulation with BAPN or abrogation of adhesion-induced ERK activation in ovarian cancer cells with MEK inhibitors (MEKi) was found to effectively delay ovarian cancer progression. Conclusions These findings identify the FAK-ERK activation in cell/matrix adhesion in the malignant progression of ovarian cancer and the efficiency of BAPN or MEKi for tumor suppression, providing an impetus for further studies to explore the possibility of new anticancer therapeutic combinations. Electronic supplementary material The online version of this article (10.1186/s13046-018-0696-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huiling Lai
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Xuejiao Zhao
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Yu Qin
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Yi Ding
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Ruqi Chen
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Guannan Li
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Marilyne Labrie
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, TX77030, Houston, USA
| | - Zhiyong Ding
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, TX77030, Houston, USA
| | - Jianfeng Zhou
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Junbo Hu
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Ding Ma
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Yong Fang
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China.
| | - Qinglei Gao
- Cancer Biology Research Center (Key laboratory of the ministry of education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
38
|
Xie N, Vikhreva P, Annicchiarico-Petruzzelli M, Amelio I, Barlev N, Knight RA, Melino G. Integrin-β4 is a novel transcriptional target of TAp73. Cell Cycle 2018; 17:589-594. [PMID: 29233040 DOI: 10.1080/15384101.2017.1403684] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As a member of p53 family, p73 has attracted intense investigations due to its structural and functional similarities to p53. Among more than ten p73 variants, the transactivation (TA) domain-containing isoform TAp73 is the one that imitates the p53's behavior most. TAp73 induces apoptosis and cell cycle arrest, which endows it the capacity of tumour suppression. Also, it can exert diverse biological influences on cells through activating a complex and context dependent transcriptional programme. The transcriptional activities further broaden its roles in more intricate biological processes. In this article, we report that p73 is a positive regulator of a cell adhesion related gene named integrin β4 (ITGB4). This finding may have implications for the dissection of the biological mechanisms underlining p73 functions.
Collapse
Affiliation(s)
- Ningxia Xie
- a MRC Toxicology Unit , Hodgkin Building , Lancaster Road, Leicester LE1 9HN , United Kingdom.,b Department of Experimental Medicine and Surgery , University of Rome Tor Vergata , Rome 00133 , Italy
| | - Polina Vikhreva
- a MRC Toxicology Unit , Hodgkin Building , Lancaster Road, Leicester LE1 9HN , United Kingdom
| | | | - Ivano Amelio
- a MRC Toxicology Unit , Hodgkin Building , Lancaster Road, Leicester LE1 9HN , United Kingdom
| | - Nicolai Barlev
- d Institute of Cytology Russian Academy of Sciences , Saint-Petersburg , 194064 , Russia
| | - Richard A Knight
- a MRC Toxicology Unit , Hodgkin Building , Lancaster Road, Leicester LE1 9HN , United Kingdom
| | - Gerry Melino
- a MRC Toxicology Unit , Hodgkin Building , Lancaster Road, Leicester LE1 9HN , United Kingdom.,b Department of Experimental Medicine and Surgery , University of Rome Tor Vergata , Rome 00133 , Italy.,d Institute of Cytology Russian Academy of Sciences , Saint-Petersburg , 194064 , Russia
| |
Collapse
|
39
|
Ivanov DP, Grabowska AM. In Vitro Tissue Microarrays for Quick and Efficient Spheroid Characterization. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2018; 23:211-217. [PMID: 29072965 PMCID: PMC5784453 DOI: 10.1177/2472555217740576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 01/22/2023]
Abstract
Three-dimensional (3D) in vitro microphysiological cultures, such as spheroids and organoids, promise increased patient relevance and therapeutic predictivity compared with reductionist cell monolayers. However, high-throughput characterization techniques for 3D models are currently limited to simplistic live/dead assays. By sectioning and staining in vitro microtissues, researchers can examine their structure; detect DNA, RNA, and protein targets; and visualize them at the level of single cells. The morphological examination and immunochemistry staining for in vitro cultures has historically been done in a laborious manner involving testing one set of cultures at a time. We have developed a technology to rapidly screen spheroid phenotype and protein expression by arranging 66 spheroids in a gel array for paraffin embedding, sectioning, and immunohistochemsitry. The process is quick, mostly automatable, and uses 11 times less reagents than conventional techniques. Here we showcase the capabilities of the technique in an array made up of 11 different cell lines stained in conventional hematoxylin and eosin (H&E) staining, as well as immunohistochemistry staining for estrogen (ER), progesterone (PR), and human epidermal growth factor (Her-2) receptors, and TP53. This new methodology can be used in optimizing stem cell-based models of disease and development, for tissue engineering, safety screening, and efficacy screens in cancer research.
Collapse
Affiliation(s)
- D. P. Ivanov
- Safety Screening Centre, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Alderley Park, Macclesfield, UK
| | - A. M. Grabowska
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen’s Medical Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
40
|
Ignacio RMC, Dong YL, Kabir SM, Choi H, Lee ES, Wilson AJ, Beeghly-Fadiel A, Whalen MM, Son DS. CXCR2 is a negative regulator of p21 in p53-dependent and independent manner via Akt-mediated Mdm2 in ovarian cancer. Oncotarget 2018. [PMID: 29515768 PMCID: PMC5839399 DOI: 10.18632/oncotarget.24231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ovarian cancer (OC) has the highest rate of mortality among gynecological malignancy. Chemokine receptor CXCR2 in OC is associated with poor outcomes. However, the mechanisms by which CXCR2 regulates OC proliferation remain poorly understood. We generated CXCR2-positive cells from parental p53 wild-type (WT), mutant and null OC cells, and assessed the roles of CXCR2 on proliferation of OC cells in p53-dependent and independent manner. CXCR2 promoted cell growth rate: p53WT > mutant = null cells. Nutlin-3, a p53 stabilizer, inhibited cell proliferation in p53WT cells, but had little effect in p53-mutant or null cells, indicating p53-dependence of CXCR2-mediated proliferation. CXCR2 decreased p53 protein, a regulator of p21, and downregulated p21 promoter activity only in p53WT cells. The p53 responsive element (RE) of p21 promoter played a critical role in this CXCR2-mediated p21 downregulation. Moreover, CXCR2-positive cells activated more Akt than CXCR2-negative cells followed by enhanced murine double minute (Mdm2). Silencing Mdm2 or Akt1 upregulated p21 expression, whereas Akt1 overexpression downregulated p21 at the promoter and protein levels in p53WT cells. Cell cycle analysis revealed that CXCR2 decreased p21 gene in p53-null cells. Interestingly, romidepsin (histone deacetylase inhibitor)-induced p21 upregulation did not involve the p53 RE in the p21 promoter in p53-null cells. Romidepsin decreased the protein levels of Akt1 and Mdm2, leading to induction of p21 in p53-null cells. CXCR2 reduced romidepsin-induced p21 upregulation by activating Akt-induced Mdm2. Taken together, CXCR2 enhances cell proliferation by suppressing p21 through Akt-Mdm2 signaling in p53-dependent and independent manner.
Collapse
Affiliation(s)
- Rosa Mistica C Ignacio
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Yuan-Lin Dong
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Syeda M Kabir
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Hyeongjwa Choi
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA
| | - Andrew J Wilson
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Alicia Beeghly-Fadiel
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.,Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Margaret M Whalen
- Department of Chemistry, Tennessee State University, Nashville, TN 37209, USA
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
41
|
Wang Y, Su J, Fu D, Wang Y, Chen Y, Chen R, Qin G, Zuo J, Yue D. The Role of YB1 in Renal Cell Carcinoma Cell Adhesion. Int J Med Sci 2018; 15:1304-1311. [PMID: 30275756 PMCID: PMC6158664 DOI: 10.7150/ijms.25580] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/28/2018] [Indexed: 11/05/2022] Open
Abstract
Background: Y-box binding protein 1 (YB1) is a multifunctional protein involved in many processes related to cancer progression and metastasis. Methods: In this study, we constructed YB1 knockdown stable renal cell carcinoma (RCC) cell line 786-0. The gene expression profile of 786-0 was performed by DNA microarray analysis to identify genes that were regulated by YB1. Real-time PCR and western blotting were used to test the genes and proteins expression. Transforming growth factor-β (TGF-β) activity was detected by dual-luciferase reporter assay. Cell adhesion assay was used to determine RCC cell adhesion ability. Results: Pathway analysis revealed that YB1 knockdown influenced cell adhesion molecules (CAMs). We further verified four genes (CLDN4, NRXN3, ITGB8, and VCAN) related to CAMs by real-time PCR, and confirmed that YB1 regulated the expression of ITGB8 in RCC. Functional assays demonstrated that knockdown of YB1 significantly inhibited the cell adhesion of 786-0 cells in vitro. In addition, YB1 affected TGF-β activation. Conclusion: Our study demonstrated that YB1 modulated the adhesion ability of renal cell carcinoma cells by regulating ITGB8 and TGF-β.
Collapse
Affiliation(s)
- Yong Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300070, China
| | - Jing Su
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300070, China
| | - Donghe Fu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300070, China.,Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Yiting Wang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300070, China
| | - Yajing Chen
- Research Center of Molecular Biology, Inner Mongolia Medical University, Hohhot 010059, China
| | - Ruibing Chen
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Guoxuan Qin
- School of Microelectronics, Tianjin University, Tianjin 300072, China
| | - Jing Zuo
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300070, China
| | - Dan Yue
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology and Department of Microbiology, School of Medical Laboratory, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
42
|
Ahn JH, Kim TJ, Lee JH, Choi JH. Mutant p53 stimulates cell invasion through an interaction with Rad21 in human ovarian cancer cells. Sci Rep 2017; 7:9076. [PMID: 28831167 PMCID: PMC5567302 DOI: 10.1038/s41598-017-08880-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/19/2017] [Indexed: 01/15/2023] Open
Abstract
Missense mutations of TP53 are extremely common, and mutant p53 accumulation and gain-of-function play crucial roles in human ovarian cancer. Here, we investigated the role of mutant p53 in cell migration and invasion as well as its underlying molecular mechanisms in human ovarian cancer cells. Overexpression of mutant p53 significantly increased migration and invasion in p53-null SKOV3 cells. In contrast, knockdown of mutant p53 significantly compromised mutant p53-induced cell migration and invasion. Microarray analysis revealed that several migration/invasion-related genes, including S1PR1 (Sphingosine-1-phosphate receptor 1) and THBS1 (Thrombospodin 1), were significantly upregulated in SKOV3 cells that overexpressed mutant p53-R248 (SKOV3R248). We found that Rad21 is involved in the transcriptional regulation of the migration/invasion-related genes induced by mutant p53-R248. Knockdown of Rad21 significantly attenuated the mutant p53-R248-induced invasion and the expressions of S1PR1 and THBS1. Moreover, co-immunoprecipitation and chromatin immunoprecipitation assays revealed that mutant p53 interacts with Rad21 and binds to the Rad21-binding elements in the S1PR1 and THBS1 genes. Finally, downregulation of S1PR1 significantly attenuated the invasion driven by mutant p53-R248. These novel findings reveal that mutant p53-R248 maintains gain-of-function activity to stimulate cell invasion and induces the related gene expressions through an interaction with Rad21 in human ovarian cancer cells.
Collapse
Affiliation(s)
- Ji-Hye Ahn
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, South Korea.,Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul, 02447, South Korea
| | - Tae Jin Kim
- Department of Obstetrics and Gynecology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, 04619, South Korea
| | - Jae Ho Lee
- Laboratory of Molecular Oncology, Cheil General Hospital and Women's Healthcare Center, Dankook University College of Medicine, Seoul, 04619, South Korea
| | - Jung-Hye Choi
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, South Korea. .,Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul, 02447, South Korea.
| |
Collapse
|
43
|
The opposing roles of laminin-binding integrins in cancer. Matrix Biol 2017; 57-58:213-243. [DOI: 10.1016/j.matbio.2016.08.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/02/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
|
44
|
Functions of the Tumor Suppressors p53 and Rb in Actin Cytoskeleton Remodeling. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9231057. [PMID: 28078303 PMCID: PMC5203884 DOI: 10.1155/2016/9231057] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/21/2016] [Indexed: 01/27/2023]
Abstract
Mechanical microenvironments, such as extracellular matrix stiffness and strain, have crucial roles in cancer progression. Cells sense their microenvironments with mechanosensing biomolecules, which is accompanied by the modulation of actin cytoskeleton structures, and the signals are subsequently transduced downstream as biochemical signals. The tumor suppressors p53 and retinoblastoma protein (Rb) are known to prevent cancer progression. The p53 and Rb signaling pathways are disrupted in many types of cancers. Here, we review recent findings about the roles of these tumor suppressors in the regulation of mechanosensing biomolecules and the actin cytoskeleton. We further discuss how dysfunction in the p53- and/or Rb-mediated mechanosignaling pathways is potentially involved in cancer progression. These pathways might provide good targets for developing anticancer therapies.
Collapse
|
45
|
Patil V, Pal J, Somasundaram K. Elucidating the cancer-specific genetic alteration spectrum of glioblastoma derived cell lines from whole exome and RNA sequencing. Oncotarget 2016; 6:43452-71. [PMID: 26496030 PMCID: PMC4791243 DOI: 10.18632/oncotarget.6171] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 10/05/2015] [Indexed: 01/22/2023] Open
Abstract
Cell lines derived from tumor tissues have been used as a valuable system to study gene regulation and cancer development. Comprehensive characterization of the genetic background of cell lines could provide clues on novel genes responsible for carcinogenesis and help in choosing cell lines for particular studies. Here, we have carried out whole exome and RNA sequencing of commonly used glioblastoma (GBM) cell lines (U87, T98G, LN229, U343, U373 and LN18) to unearth single nucleotide variations (SNVs), indels, differential gene expression, gene fusions and RNA editing events. We obtained an average of 41,071 SNVs out of which 1,594 (3.88%) were potentially cancer-specific. The cell lines showed frequent SNVs and indels in some of the genes that are known to be altered in GBM- EGFR, TP53, PTEN, SPTA1 and NF1. Chromatin modifying genes- ATRX, MLL3, MLL4, SETD2 and SRCAP also showed alterations. While no cell line carried IDH1 mutations, five cell lines showed hTERT promoter activating mutations with a concomitant increase in hTERT transcript levels. Five significant gene fusions were found of which NUP93-CYB5B was validated. An average of 18,949 RNA editing events was also obtained. Thus we have generated a comprehensive catalogue of genetic alterations for six GBM cell lines.
Collapse
Affiliation(s)
- Vikas Patil
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Jagriti Pal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Kumaravel Somasundaram
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
46
|
3'-hydroxy-3,4,5,4'-tetramethoxystilbene, the metabolite of resveratrol analogue DMU-212, inhibits ovarian cancer cell growth in vitro and in a mice xenograft model. Sci Rep 2016; 6:32627. [PMID: 27585955 PMCID: PMC5009320 DOI: 10.1038/srep32627] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 08/11/2016] [Indexed: 12/21/2022] Open
Abstract
In screening studies, the cytotoxic activity of four metabolites of resveratrol analogue 3,4,5,4′-tetramethoxystilbene (DMU-212) against A-2780 and SKOV-3 ovarian cancer cells was investigated. The most active metabolite, 3′-hydroxy-3,4,5,4′-tetramethoxystilbene (DMU-214), was chosen for further studies. The cytotoxicity of DMU-214 was shown to be higher than that of the parent compound, DMU-212, in both cell lines tested. Since DMU-212 was supposed to undergo metabolic activation through its conversion to DMU-214, an attempt was made to elucidate the mechanism of its anti-proliferative activity. We found that in SKOV-3 cells lacking p53, DMU-214 induced receptor-mediated apoptosis. In A-2780 cell line with expression of wild-type p53, DMU-214 modulated the expression pattern of p53-target genes driving intrinsic and extrinsic apoptosis pathways, as well as DNA repair and damage prevention. Regardless of the up-regulation of p48, p53R2, sestrins and Gaad45 genes involved in cancer cell DNA repair, we demonstrated the stronger anti-proliferative and pro-apoptotic effects of DMU-214 in A-2780 cells when compared to those in SKOV-3. Hence we verified DMU-214 activity in the xenograft model using SCID mice injected with A-2780 cells. The strong anti-proliferative activity of DMU-214 in the in vivo model allowed to suggest the tested compound as a potential therapeutic in ovarian cancer treatment.
Collapse
|
47
|
Iwanicki MP, Chen HY, Iavarone C, Zervantonakis IK, Muranen T, Novak M, Ince TA, Drapkin R, Brugge JS. Mutant p53 regulates ovarian cancer transformed phenotypes through autocrine matrix deposition. JCI Insight 2016; 1:86829. [PMID: 27482544 DOI: 10.1172/jci.insight.86829] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
High-grade serous ovarian carcinoma (HGS-OvCa) harbors p53 mutations and can originate from the epithelial cell compartment of the fallopian tube fimbriae. From this site, neoplastic cells detach, survive in the peritoneal cavity, and form cellular clusters that intercalate into the mesothelium to form ovarian and peritoneal masses. To examine the contribution of mutant p53 to phenotypic alterations associated with HGS-OvCA, we developed live-cell microscopy assays that recapitulate these early events in cultured fallopian tube nonciliated epithelial (FNE) cells. Expression of stabilizing mutant variants of p53, but not depletion of endogenous wild-type p53, in FNE cells promoted survival and cell-cell aggregation under conditions of cell detachment, leading to the formation of cell clusters with mesothelium-intercalation capacity. Mutant p53R175H-induced phenotypes were dependent on fibronectin production, α5β1 fibronectin receptor engagement, and TWIST1 expression. These results indicate that FNE cells expressing stabilizing p53 mutants acquire anchorage independence and subsequent mesothelial intercalation capacity through a mechanism involving mesenchymal transition and matrix production. These findings provide important new insights into activities of mutant p53 in the cells of origin of HGS-OvCa.
Collapse
Affiliation(s)
- Marcin P Iwanicki
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hsing-Yu Chen
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Claudia Iavarone
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Taru Muranen
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marián Novak
- Dana-Farber Cancer Institute, Department of Medical Oncology, Center for Molecular Oncologic Pathology, Boston, Massachusetts, USA
| | - Tan A Ince
- Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ronny Drapkin
- Dana-Farber Cancer Institute, Department of Medical Oncology, Center for Molecular Oncologic Pathology, Boston, Massachusetts, USA.,Penn Ovarian Cancer Research Center, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joan S Brugge
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
48
|
Blandin AF, Renner G, Lehmann M, Lelong-Rebel I, Martin S, Dontenwill M. β1 Integrins as Therapeutic Targets to Disrupt Hallmarks of Cancer. Front Pharmacol 2015; 6:279. [PMID: 26635609 PMCID: PMC4656837 DOI: 10.3389/fphar.2015.00279] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/05/2015] [Indexed: 01/11/2023] Open
Abstract
Integrins belong to a large family of αβ heterodimeric transmembrane proteins first recognized as adhesion molecules that bind to dedicated elements of the extracellular matrix and also to other surrounding cells. As important sensors of the cell microenvironment, they regulate numerous signaling pathways in response to structural variations of the extracellular matrix. Biochemical and biomechanical cues provided by this matrix and transmitted to cells via integrins are critically modified in tumoral settings. Integrins repertoire are subjected to expression level modifications, in tumor cells, and in surrounding cancer-associated cells, implicated in tumor initiation and progression as well. As critical players in numerous cancer hallmarks, defined by Hanahan and Weinberg (2011), integrins represent pertinent therapeutic targets. We will briefly summarize here our current knowledge about integrin implications in those different hallmarks focusing primarily on β1 integrins.
Collapse
Affiliation(s)
- Anne-Florence Blandin
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| | - Guillaume Renner
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| | - Maxime Lehmann
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| | - Isabelle Lelong-Rebel
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| | - Sophie Martin
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| | - Monique Dontenwill
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| |
Collapse
|