1
|
Berger A, Chandre F, Cornelie S, Paupy C. Controlling Aedes mosquitoes using densovirus-based biolarvicides: Current status and prospects. J Invertebr Pathol 2025; 211:108314. [PMID: 40086790 DOI: 10.1016/j.jip.2025.108314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
Aedes albopictus and Aedes aegypti are the main vectors of emerging arboviruses, such as dengue, chikungunya and Zika viruses. Entomopathogenic viruses, such as densoviruses, might represent more environmentally friendly control methods. Densoviruses are single-stranded DNA viruses belonging to the Parvoviridae family and three species are known to infect mosquitoes: Protoambidensovirus dipteran, Brevihamaparvovirus dipteran 1, and Brevihamaparvovirus dipteran 2. Densoviruses belonging to the Brevihamaparvovirus dipteran 1 and Brevihamaparvovirus dipteran 2 species could be candidates for innovative vector control strategies to limit mosquito-borne diseases. The objective of this review was to analyse the current state of knowledge on mosquito-infecting densoviruses (updated classification/taxonomy, host range, distribution, ecology, co-infection effects, unanswered questions) in view of their use as a biocontrol tool against Aedes mosquitoes.
Collapse
Affiliation(s)
- Audric Berger
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Montpellier University, IRD, CNRS, Montpellier, France.
| | - Fabrice Chandre
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Montpellier University, IRD, CNRS, Montpellier, France
| | - Sylvie Cornelie
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Montpellier University, IRD, CNRS, Montpellier, France
| | - Christophe Paupy
- Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Montpellier University, IRD, CNRS, Montpellier, France.
| |
Collapse
|
2
|
Gupta S, Sharma R, Williams AE, Sanchez-Vargas I, Rose NH, Zhang C, Crosbie-Villaseca A, Zhu Z, Dayama G, Gloria-Soria A, Brackney DE, Manning J, Wheeler SS, Caranci A, Reyes T, Sylla M, Badolo A, Akorli J, Aribodor OB, Ayala D, Liu WL, Chen CH, Vasquez C, Acosta CG, Ponlawat A, Magalhaes T, Carter B, Wesson D, Surin D, Younger MA, Costa-da-Silva AL, DeGennaro M, Bergman A, Lambrechts L, McBride CS, Olson KE, Calvo E, Lau NC. Global genomics of Aedes aegypti unveils widespread and novel infectious viruses capable of triggering a small RNA response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597482. [PMID: 38895463 PMCID: PMC11185646 DOI: 10.1101/2024.06.06.597482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The mosquito Aedes aegypti is a prominent vector for arboviruses, but the breadth of mosquito viruses that infects this specie is not fully understood. In the broadest global survey to date of over 200 Ae. aegypti small RNA samples, we detected viral small interfering RNAs (siRNAs) and Piwi interacting RNAs (piRNAs) arising from mosquito viruses. We confirmed that most academic laboratory colonies of Ae. aegypti lack persisting viruses, yet two commercial strains were infected by a novel tombus-like virus. Ae. aegypti from North to South American locations were also teeming with multiple insect viruses, with Anphevirus and a bunyavirus displaying geographical boundaries from the viral small RNA patterns. Asian Ae. aegypti small RNA patterns indicate infections by similar mosquito viruses from the Americas and reveal the first wild example of dengue virus infection generating viral small RNAs. African Ae. aegypti also contained various viral small RNAs including novel viruses only found in these African substrains. Intriguingly, viral long RNA patterns can differ from small RNA patterns, indicative of viral transcripts evading the mosquitoes' RNA interference (RNAi) machinery. To determine whether the viruses we discovered via small RNA sequencing were replicating and transmissible, we infected C6/36 and Aag2 cells with Ae. aegypti homogenates. Through blind passaging, we generated cell lines stably infected by these mosquito viruses which then generated abundant viral siRNAs and piRNAs that resemble the native mosquito viral small RNA patterns. This mosquito small RNA genomics approach augments surveillance approaches for emerging infectious diseases.
Collapse
|
3
|
Lau NC, Macias VM. Transposon and Transgene Tribulations in Mosquitoes: A Perspective of piRNA Proportions. DNA 2024; 4:104-128. [PMID: 39076684 PMCID: PMC11286205 DOI: 10.3390/dna4020006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Mosquitoes, like Drosophila, are dipterans, the order of "true flies" characterized by a single set of two wings. Drosophila are prime model organisms for biomedical research, while mosquito researchers struggle to establish robust molecular biology in these that are arguably the most dangerous vectors of human pathogens. Both insects utilize the RNA interference (RNAi) pathway to generate small RNAs to silence transposons and viruses, yet details are emerging that several RNAi features are unique to each insect family, such as how culicine mosquitoes have evolved extreme genomic feature differences connected to their unique RNAi features. A major technical difference in the molecular genetic studies of these insects is that generating stable transgenic animals are routine in Drosophila but still variable in stability in mosquitoes, despite genomic DNA-editing advances. By comparing and contrasting the differences in the RNAi pathways of Drosophila and mosquitoes, in this review we propose a hypothesis that transgene DNAs are possibly more intensely targeted by mosquito RNAi pathways and chromatin regulatory pathways than in Drosophila. We review the latest findings on mosquito RNAi pathways, which are still much less well understood than in Drosophila, and we speculate that deeper study into how mosquitoes modulate transposons and viruses with Piwi-interacting RNAs (piRNAs) will yield clues to improving transgene DNA expression stability in transgenic mosquitoes.
Collapse
Affiliation(s)
- Nelson C. Lau
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
- Genome Science Institute and National Emerging Infectious Disease Laboratory, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| | - Vanessa M. Macias
- Department of Biology, University of North Texas, Denton, TX 76205, USA
- Advanced Environmental Research Institute, University of North Texas, Denton, TX 76205, USA
| |
Collapse
|
4
|
Barik TK, Swain SN, Sahu SK, Acharya UR, Metz HC, Rasgon JL. In Silico Characterization of Intracellular Localization Signals and Structural Features of Mosquito Densovirus (MDV) Viral Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571551. [PMID: 38168177 PMCID: PMC10760122 DOI: 10.1101/2023.12.13.571551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
As entomopathogenic viruses, mosquito densoviruses (MDVs) are widely studied for their potential as biocontrol agents and molecular laboratory tools for mosquito manipulation. The nucleus of the mosquito cell is the site for MDV genome replication and capsid assembly, however the nuclear localization signals (NLSs) and nuclear export signals (NES) for MDV proteins have not yet been identified. We carried out an in silico analysis to identify putative NLSs and NESs in the viral proteins of densoviruses that infect diverse mosquito genera (Aedes, Anopheles, and Culex) and identified putative phosphorylation and glycosylation sites on these proteins. These analyses lead to a more comprehensive understanding of how MDVs are transported into and out of the nucleus and lay the foundation for the potential use of densoviruses in mosquito control and basic research.
Collapse
Affiliation(s)
- Tapan K Barik
- Post Graduate Department of Zoology, Berhampur University, Odisha, India
- Post Graduate Department of Biotechnology, Berhampur University, Odisha, India
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Surya N Swain
- Post Graduate Department of Zoology, Berhampur University, Odisha, India
- Post Graduate Department of Biotechnology, Berhampur University, Odisha, India
| | - Sushil Kumar Sahu
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | - Usha R Acharya
- Post Graduate Department of Zoology, Berhampur University, Odisha, India
| | - Hillery C. Metz
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Jason L Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
- Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, United States
- The Huck Institutes of the Life sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
5
|
Mishra R, Hua G, Bagal UR, Champagne DE, Adang MJ. Anopheles gambiae strain (Ag55) cultured cells originated from Anopheles coluzzii and are phagocytic with hemocyte-like gene expression. INSECT SCIENCE 2022; 29:1346-1360. [PMID: 35358364 DOI: 10.1111/1744-7917.13036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Anopheles gambiae and Anopheles coluzzii are closely related species that are predominant vectors of malaria in Africa. Recently, A. gambiae form M was renamed A. coluzzii and we now conclude on the basis of a diagnostic PCR-restriction fragment length polymorphism assay that Ag55 cells were derived from A. coluzzii. We established an Ag55 cell transcriptome, and KEGG pathway analysis showed that Ag55 cells are enriched in phagosome pathway transcripts. The Ag55 transcriptome has an abundance of specific transcripts characteristic of mosquito hemocytes. Functional E. coli bioparticle uptake experiments visualized by fluorescence microscopy and confocal microscopy and quantified by flow cytometry establish the phagocytic competence of Ag55 cells. Results from this investigation of Ag55 cell properties will guide researchers in the use and engineering of the Ag55 cell line to better enable investigations of Plasmodium, other microbes, and insecticidal toxins.
Collapse
Affiliation(s)
- Ruchir Mishra
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
- Department of Entomology and Nematology, University of Florida, Gainesville, Florida, USA
| | - Gang Hua
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| | - Ujwal R Bagal
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Donald E Champagne
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| | - Michael J Adang
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
6
|
Werling KL, Johnson RM, Metz HC, Rasgon JL. Sexual transmission of Anopheles gambiae densovirus (AgDNV) leads to disseminated infection in mated females. Parasit Vectors 2022; 15:218. [PMID: 35725627 PMCID: PMC9210586 DOI: 10.1186/s13071-022-05341-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
Background Anopheles gambiae densovirus (AgDNV) is an insect-specific, single-stranded DNA virus that infects An. gambiae sensu stricto (s.s.), the major mosquito species responsible for transmitting malaria parasites throughout sub-Saharan Africa. AgDNV is a benign virus that is very specific to its mosquito host and therefore has the potential to serve as a vector control tool via paratransgenesis (genetic modification of mosquito symbionts) to limit transmission of human pathogens. Prior to being engineered into a control tool, the natural transmission dynamics of AgDNV between An. gambiae mosquitoes needs to be fully understood. Additionally, improved knowledge of AgDNV infection in male mosquitoes is needed. In the study presented here, we examined the tissue tropism of AgDNV in the male reproductive tract and investigated both venereal and vertical transmission dynamics of the virus. Methods Anopheles gambiae s.s. adult males were infected with AgDNV via microinjection, and reproductive tissues were collected and assayed for AgDNV using qPCR. Next, uninfected females were introduced to AgDNV-infected or control males and, after several nights of mating, both the spermatheca and female carcass were assessed for venereally transmitted AgDNV. Finally, F1 offspring of this cross were collected and assayed to quantify vertical transmission of the virus. Results AgDNV infected the reproductive tract of male mosquitoes, including the testes and male accessory glands, without affecting mating rates. AgDNV-infected males venereally transmitted the virus to females, and these venereally infected females developed disseminated infection throughout the body. However, AgDNV was not vertically transmitted to the F1 offspring of this cross. Conclusions Infected male releases could be an effective strategy to introduce AgDNV-based paratransgenic tools into naïve populations of An. gambiae s.s. females. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Kristine L Werling
- Department of Entomology, Pennsylvania State University, University Park, PA, USA.,Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Rebecca M Johnson
- Department of Entomology, Pennsylvania State University, University Park, PA, USA.,Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA.,Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, CT, 06504, USA
| | - Hillery C Metz
- Department of Entomology, Pennsylvania State University, University Park, PA, USA.,Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Jason L Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA, USA. .,Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA. .,The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
7
|
Altinli M, Schnettler E, Sicard M. Symbiotic Interactions Between Mosquitoes and Mosquito Viruses. Front Cell Infect Microbiol 2021; 11:694020. [PMID: 34527601 PMCID: PMC8435781 DOI: 10.3389/fcimb.2021.694020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022] Open
Abstract
Mosquitoes not only transmit human and veterinary pathogens called arboviruses (arthropod-borne viruses) but also harbor mosquito-associated insect-specific viruses (mosquito viruses) that cannot infect vertebrates. In the past, studies investigating mosquito viruses mainly focused on highly pathogenic interactions that were easier to detect than those without visible symptoms. However, the recent advances in viral metagenomics have highlighted the abundance and diversity of viruses which do not generate mass mortality in host populations. Over the last decade, this has facilitated the rapid growth of virus discovery in mosquitoes. The circumstances around the discovery of mosquito viruses greatly affected how they have been studied so far. While earlier research mainly focused on the pathogenesis caused by DNA and some double-stranded RNA viruses during larval stages, more recently discovered single-stranded RNA mosquito viruses were heavily studied for their putative interference with arboviruses in female adults. Thus, many aspects of mosquito virus interactions with their hosts and host-microbiota are still unknown. In this context, considering mosquito viruses as endosymbionts can help to identify novel research areas, in particular in relation to their long-term interactions with their hosts (e.g. relationships during all life stages, the stability of the associations at evolutionary scales, transmission routes and virulence evolution) and the possible context-dependent range of interactions (i.e. beneficial to antagonistic). Here, we review the symbiotic interactions of mosquito viruses considering different aspects of their ecology, such as transmission, host specificity, host immune system and interactions with other symbionts within the host cellular arena. Finally, we highlight related research gaps in mosquito virus research.
Collapse
Affiliation(s)
- Mine Altinli
- Molecular Entomology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Esther Schnettler
- Molecular Entomology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Riems, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University Hamburg, Hamburg, Germany
| | - Mathieu Sicard
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
8
|
Urakova N, Brustolin M, Joseph RE, Johnson RM, Pujhari S, Rasgon JL. Anopheles gambiae densovirus (AgDNV) negatively affects Mayaro virus infection in Anopheles gambiae cells and mosquitoes. Parasit Vectors 2020; 13:210. [PMID: 32321560 PMCID: PMC7178629 DOI: 10.1186/s13071-020-04072-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/09/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Recent studies demonstrate that insect-specific viruses can influence the ability of their mosquito hosts to become infected with and transmit arboviruses of medical and veterinary importance. The aim of this study was to evaluate the interactions between Anopheles gambiae densovirus (AgDNV) (Parvoviridae) (a benign insect-specific virus that infects An. gambiae mosquitoes) and Mayaro virus (MAYV) (Togaviridae) (an emerging human pathogen that can be transmitted by An. gambiae) in both insect cell culture and mosquitoes. METHODS For in vitro studies, An. gambiae Mos55 cells infected or uninfected with AgDNV were infected with MAYV. For in vivo studies, An. gambiae mosquitoes were injected intrathoracically with AgDNV and 4 days later orally infected with MAYV. Mosquitoes were dissected 10 days after MAYV infection, and MAYV titers in the body, legs and saliva samples quantified using focus-forming assay. RESULTS MAYV virus replication was reduced 10-100-fold in An. gambiae Mos55 cells infected with AgDNV. In mosquitoes, there was a significant negative correlation between AgDNV and MAYV body titers 10 days post-blood meal. CONCLUSIONS AgDNV infection was associated with reduced production of MAYV in cell culture, and reduced body titers of MAYV in An. gambiae mosquitoes. As densovirus infections are common in natural mosquito populations, these data suggest that they may affect the epidemiology of viruses of medical importance.
Collapse
Affiliation(s)
- Nadya Urakova
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Marco Brustolin
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Renuka E Joseph
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA.,The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Rebecca M Johnson
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA.,The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Sujit Pujhari
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Jason L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA. .,The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA. .,The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
9
|
Li J, Dong Y, Sun Y, Lai Z, Zhao Y, Liu P, Gao Y, Chen X, Gu J. A Novel Densovirus Isolated From the Asian Tiger Mosquito Displays Varied Pathogenicity Depending on Its Host Species. Front Microbiol 2019; 10:1549. [PMID: 31333635 PMCID: PMC6624781 DOI: 10.3389/fmicb.2019.01549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/20/2019] [Indexed: 11/18/2022] Open
Abstract
Mosquito-borne viral diseases (MBVDs) continue to pose a significant global public health burden. Mosquito control remains a core intervention strategy in integrated mosquito management (IMM) programs to reduce the transmission of MBVDs. Mosquito densoviruses (MDVs) are mosquito-specific entomopathogenic viruses, and their attractive biological and pathogenic characteristics make MDVs potential biological control agents as alternatives to traditional chemical pesticides. However, different viral strains vary greatly in their pathogenicity against different mosquito species, which poses an obstacle for the wide application of MDVs in vector control. In this study, a novel MDV, Aedes albopictus densovirus-7 (AalDV-7), was isolated from field-collected Aedes albopictus in the dengue-endemic area of Guangzhou, China. The complete 4,048 nt genome of AalDV-7 was cloned and sequenced, and the transcription and translation of three open reading frames (ORFs) were characterized. Phylogenetic analysis indicated that AalDV-7 clustered with MDVs mostly isolated from indigenous mosquitoes. The pathogenicity of AalDV-7 to A. albopictus, Aedes aegypti, and Culex quinquefasciatus larvae was completely different, and the median lethal dose (LD50) of AalDV-7 in A. albopictus which was 109.48 genome equivalents per ml (geq/ml) was 12 and 46 times lower than those in A. aegypti (1010.56 geq/ml) and C. quinquefasciatus (1011.15 geq/ml). Furthermore, the median lethal time (LT50) value in A. albopictus (7.72 days) was 25% and 26% shorter than those in A. aegypti (10.24 days) and C. quinquefasciatus (10.42 days) at a titer of 1011 geq/ml. Furthermore, the mortality of AalDV-7-infected mosquitoes increased in a dose-dependent manner, and the highest mortality was found in A. albopictus larvae exposed to 1011 geq/ml AalDV-7 (82.00%). Sublethal effects analysis also showed that AalDV-7 infection significantly decreased pupation and emergence rates. The 1st–2nd instar larvae of all three mosquito species showed a near 100% infection rate, and the highest relative vial titer (305.97 ± 67.57 geq/ng) was observed in the 1st–2nd instar larvae of C. quinquefasciatus. These pathogenic characteristics make AalDV-7 a potential MBVDs control agent in China, whereas its negligible pathogenicity and high infection rate and viral dose in vivo make it a good candidate for gene delivery vectors in C. quinquefasciatus gene function analysis. In conclusion, the continuous discovery and isolation of new MDVs enrich the pool of mosquito entomopathogenic viruses and provide a variety of choices for optimal MDVs or combinations of MDVs to target certain mosquitoes.
Collapse
Affiliation(s)
- Jing Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yunqiao Dong
- Reproductive Medical Centre of Guangdong Women and Children's Hospital, Guangzhou, China
| | - Yan Sun
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zetian Lai
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yijie Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Peiwen Liu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yonghui Gao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoguang Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jinbao Gu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Altinli M, Soms J, Ravallec M, Justy F, Bonneau M, Weill M, Gosselin-Grenet AS, Sicard M. Sharing cells with Wolbachia: the transovarian vertical transmission of Culex pipiens densovirus. Environ Microbiol 2018; 21:3284-3298. [PMID: 30585387 DOI: 10.1111/1462-2920.14511] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/19/2022]
Abstract
Culex pipiens densovirus (CpDV), a single stranded DNA virus, has been isolated from Culex pipiens mosquitoes but differs from other mosquito densoviruses in terms of genome structure and sequence identity. Its transmission from host to host, the nature of its interactions with both its host and host's endosymbiotic bacteria Wolbachia are not known. Here, we report the presence of CpDV in the ovaries and eggs of Cx. pipiens mosquitoes in close encounters with Wolbachia. In the ovaries, CpDV amount significantly differed between mosquito lines harbouring different strains of Wolbachia and these differences were not linked to variations in Wolbachia densities. CpDV was vertically transmitted in all laboratory lines to 17%-20% of the offspring. For some females, however, the vertical transmission reached 90%. Antibiotic treatment that cured the host from Wolbachia significantly decreased both CpDV quantity and vertical transmission suggesting an impact of host microbiota, including Wolbachia, on CpDV transmission. Overall our results show that CpDV is transmitted vertically via transovarian path along with Wolbachia with which it shares the same cells. Our results are primordial to understand the dynamics of densovirus infection, their persistence and spread in populations considering their potential use in the regulation of mosquito vector populations.
Collapse
Affiliation(s)
- Mine Altinli
- ISEM, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Julien Soms
- ISEM, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Marc Ravallec
- DGIMI, University of Montpellier, INRA, Montpellier, France
| | - Fabienne Justy
- ISEM, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Manon Bonneau
- ISEM, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Mylene Weill
- ISEM, University of Montpellier, CNRS, IRD, Montpellier, France
| | | | - Mathieu Sicard
- ISEM, University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
11
|
Baculovirus as an efficient vector for gene delivery into mosquitoes. Sci Rep 2018; 8:17778. [PMID: 30542209 PMCID: PMC6290771 DOI: 10.1038/s41598-018-35463-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 11/05/2018] [Indexed: 02/06/2023] Open
Abstract
Efficient gene delivery technologies play an essential role in the gene functional analyses that are necessary for basic and applied researches. Mosquitoes are ubiquitous insects, responsible for transmitting many deadly arboviruses causing millions of human deaths every year. The lack of efficient and flexible gene delivery strategies in mosquitoes are among the major hurdles for the study of mosquito biology and mosquito-pathogen interactions. We found that Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the type baculovirus species, can efficiently transduce mosquito cells without viral propagation, allowing high level gene expression upon inducement by suitable promoters without obvious negative effects on cell propagation and viability. AcMNPV transduces into several mosquito cell types, efficiently than in commonly used mammalian cell lines and classical plasmid DNA transfection approaches. We demonstrated the application of this system by expressing influenza virus neuraminidase (NA) into mosquito hosts. Moreover, AcMNPV can transduce both larvae and adults of essentially all blood-sucking mosquito genera, resulting in bright fluorescence in insect bodies with little or no tissue barriers. Our experiments establish baculovirus as a convenient and powerful gene delivery vector in vitro and in vivo that will greatly benefit research into mosquito gene regulation, development and the study of mosquito-borne viruses.
Collapse
|
12
|
Johnson RM, Rasgon JL. Densonucleosis viruses ('densoviruses') for mosquito and pathogen control. CURRENT OPINION IN INSECT SCIENCE 2018; 28:90-97. [PMID: 30551773 PMCID: PMC7968729 DOI: 10.1016/j.cois.2018.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/19/2018] [Indexed: 05/25/2023]
Abstract
Mosquito specific viruses such as densonucleosis viruses ('densoviruses') have long been suggested as alternative mosquito control agents in the face of increasing insecticide resistance. Densoviruses are very species-specific and have been found to infect many important mosquito species. While some strains are highly pathogenic, other strains are more benign. Densoviruses have been proposed as a way to reduce mosquito populations through pathogenic interactions, but genetic strategies such as viral paratrangenesis offer new approaches. As small single-stranded DNA viruses, densoviruses can be easily genetically modified for the expression of genes or non-coding RNAs. A growing literature and variety of techniques have shown the potential for the use of densoviruses in the control of mosquitoes or mosquito-borne pathogens as well as the usefulness of densoviruses as molecular tools for understanding mosquito biology.
Collapse
Affiliation(s)
- Rebecca M. Johnson
- Molecular, Cellular, and Integrative Biosciences, The Pennsylvania State University, University Park, PA 16802 United States of America
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802 United States of America
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802 United States of America
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 United States of America
| | - Jason L. Rasgon
- Molecular, Cellular, and Integrative Biosciences, The Pennsylvania State University, University Park, PA 16802 United States of America
- Department of Entomology, The Pennsylvania State University, University Park, PA 16802 United States of America
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA 16802 United States of America
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802 United States of America
| |
Collapse
|
13
|
Kolliopoulou A, Taning CNT, Smagghe G, Swevers L. Viral Delivery of dsRNA for Control of Insect Agricultural Pests and Vectors of Human Disease: Prospects and Challenges. Front Physiol 2017; 8:399. [PMID: 28659820 PMCID: PMC5469917 DOI: 10.3389/fphys.2017.00399] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/26/2017] [Indexed: 12/12/2022] Open
Abstract
RNAi is applied as a new and safe method for pest control in agriculture but efficiency and specificity of delivery of dsRNA trigger remains a critical issue. Various agents have been proposed to augment dsRNA delivery, such as engineered micro-organisms and synthetic nanoparticles, but the use of viruses has received relatively little attention. Here we present a critical view of the potential of the use of recombinant viruses for efficient and specific delivery of dsRNA. First of all, it requires the availability of plasmid-based reverse genetics systems for virus production, of which an overview is presented. For RNA viruses, their application seems to be straightforward since dsRNA is produced as an intermediate molecule during viral replication, but DNA viruses also have potential through the production of RNA hairpins after transcription. However, application of recombinant virus for dsRNA delivery may not be straightforward in many cases, since viruses can encode RNAi suppressors, and virus-induced silencing effects can be determined by the properties of the encoded RNAi suppressor. An alternative is virus-like particles that retain the efficiency and specificity determinants of natural virions but have encapsidated non-replicating RNA. Finally, the use of viruses raises important safety issues which need to be addressed before application can proceed.
Collapse
Affiliation(s)
- Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences and Applications, NCSR “Demokritos,”Aghia Paraskevi, Greece
| | - Clauvis N. T. Taning
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences and Applications, NCSR “Demokritos,”Aghia Paraskevi, Greece
| |
Collapse
|
14
|
Baxter RHG, Contet A, Krueger K. Arthropod Innate Immune Systems and Vector-Borne Diseases. Biochemistry 2017; 56:907-918. [PMID: 28072517 DOI: 10.1021/acs.biochem.6b00870] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Arthropods, especially ticks and mosquitoes, are the vectors for a number of parasitic and viral human diseases, including malaria, sleeping sickness, Dengue, and Zika, yet arthropods show tremendous individual variation in their capacity to transmit disease. A key factor in this capacity is the group of genetically encoded immune factors that counteract infection by the pathogen. Arthropod-specific pattern recognition receptors and protease cascades detect and respond to infection. Proteins such as antimicrobial peptides, thioester-containing proteins, and transglutaminases effect responses such as lysis, phagocytosis, melanization, and agglutination. Effector responses are initiated by damage signals such as reactive oxygen species signaling from epithelial cells and recognized by cell surface receptors on hemocytes. Antiviral immunity is primarily mediated by siRNA pathways but coupled with interferon-like signaling, antimicrobial peptides, and thioester-containing proteins. Molecular mechanisms of immunity are closely linked to related traits of longevity and fertility, and arthropods have the capacity for innate immunological memory. Advances in understanding vector immunity can be leveraged to develop novel control strategies for reducing the rate of transmission of both ancient and emerging threats to global health.
Collapse
Affiliation(s)
- Richard H G Baxter
- Department of Chemistry and Molecular Biophysics & Biochemistry, Yale University , New Haven, Connecticut 06511, United States
| | - Alicia Contet
- Department of Chemistry and Molecular Biophysics & Biochemistry, Yale University , New Haven, Connecticut 06511, United States
| | - Kathryn Krueger
- Department of Chemistry and Molecular Biophysics & Biochemistry, Yale University , New Haven, Connecticut 06511, United States
| |
Collapse
|
15
|
Barik TK, Suzuki Y, Rasgon JL. Factors influencing infection and transmission of Anopheles gambiae densovirus (AgDNV) in mosquitoes. PeerJ 2016; 4:e2691. [PMID: 27867767 PMCID: PMC5111888 DOI: 10.7717/peerj.2691] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/15/2016] [Indexed: 11/20/2022] Open
Abstract
Anopheles gambiae densovirus (AgDNV) is a potential microbial agent for paratransgenesis and gene transduction in An. gambiae, the major vector of human malaria in sub-Saharan Africa. Understanding the interaction between AgDNV and An. gambiae is critical for using AgDNV in a basic and applied manner for Anopheles gene manipulation. Here, we tested the effects of mosquito age, sex, blood feeding status, and potential for horizontal transmission using an enhanced green fluorescent protein (EGFP) reporter AgDNV system. Neither mosquito age at infection nor feeding regime affected viral titers. Female mosquitoes were more permissive to viral infection than males. Despite low viral titers, infected males were able to venereally transmit virus to females during mating, where the virus was localized with the transferred sperm in the spermathecae. These findings will be useful for designing AgDNV-based strategies to manipulate Anopheles gambiae.
Collapse
Affiliation(s)
- Tapan K Barik
- Applied Entomology Laboratory, Post Graduate Department of Zoology, Berhampur University, Berhampur, Odisha, India.,Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Yasutsugu Suzuki
- Department of Entomology, Pennsylvania State University, University Park, PA, United States.,Department of Virology, Institute Pasteur, Paris, France
| | - Jason L Rasgon
- Department of Entomology, Pennsylvania State University, University Park, PA, United States.,Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, United States.,The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
16
|
Phan TG, Messacar K, Dominguez SR, da Costa AC, Deng X, Delwart E. A new densovirus in cerebrospinal fluid from a case of anti-NMDA-receptor encephalitis. Arch Virol 2016; 161:3231-5. [PMID: 27522586 DOI: 10.1007/s00705-016-3002-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/26/2016] [Indexed: 01/16/2023]
Abstract
We characterized the genome of a densovirus, tentatively called human CSF-associated densovirus 1 (HuCSFDV1), in cerebrospinal fluid (CSF) from a human case of encephalitis with antibodies against the N-methyl D-aspartate receptor. The presence of the viral genome in CSF was independently confirmed. This virus, which is proposed to be a member of a new species in the genus Iteradensovirus of the subfamily Densovirinae, showed the typical two ORFs encoding nonstructural and structural proteins with low-level identities of 22 and 16 % to the closest known densovirus relative. No other eukaryotic viral sequences were detected using deep sequencing. The replication and pathogenicity in humans of this virus, which belongs to a viral subfamily whose members are only known to replicate in invertebrates, remain to be demonstrated. Alternative explanations for the detection of densovirus DNA in CSF are discussed.
Collapse
Affiliation(s)
- Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA, 94118, USA.,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA, 94118, USA
| | - Kevin Messacar
- Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO, USA
| | - Samuel R Dominguez
- Children's Hospital Colorado and University of Colorado School of Medicine, Aurora, CO, USA
| | - Antonio Charlys da Costa
- Blood Systems Research Institute, San Francisco, CA, 94118, USA.,Institute of Tropical Medicine, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Xutao Deng
- Blood Systems Research Institute, San Francisco, CA, 94118, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, 94118, USA. .,Department of Laboratory Medicine, University of California at San Francisco, San Francisco, CA, 94118, USA.
| |
Collapse
|