1
|
Ramesh V, Liu F, Minto MS, Chan U, West AE. Bidirectional regulation of postmitotic H3K27me3 distributions underlie cerebellar granule neuron maturation dynamics. eLife 2023; 12:e86273. [PMID: 37092728 PMCID: PMC10181825 DOI: 10.7554/elife.86273] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/21/2023] [Indexed: 04/25/2023] Open
Abstract
The functional maturation of neurons is a prolonged process that extends past the mitotic exit and is mediated by the chromatin-dependent orchestration of gene transcription programs. We find that expression of this maturation gene program in mouse cerebellar granule neurons (CGNs) requires dynamic changes in the genomic distribution of histone H3 lysine 27 trimethylation (H3K27me3), demonstrating a function for this chromatin modification beyond its role in cell fate specification. The developmental loss of H3K27me3 at promoters of genes activated as CGNs mature is facilitated by the lysine demethylase and ASD-risk gene, Kdm6b. Interestingly, inhibition of the H3K27 methyltransferase EZH2 in newborn CGNs not only blocks the repression of progenitor genes but also impairs the induction of mature CGN genes, showing the importance of bidirectional H3K27me3 regulation across the genome. These data demonstrate that H3K27me3 turnover in developing postmitotic neurons regulates the temporal coordination of gene expression programs that underlie functional neuronal maturation.
Collapse
Affiliation(s)
- Vijyendra Ramesh
- Molecular Cancer Biology Program, Duke UniversityDurhamUnited States
| | - Fang Liu
- Department of Neurobiology, Duke UniversityDurhamUnited States
| | - Melyssa S Minto
- Department of Neurobiology, Duke UniversityDurhamUnited States
| | - Urann Chan
- Department of Neurobiology, Duke UniversityDurhamUnited States
| | - Anne E West
- Molecular Cancer Biology Program, Duke UniversityDurhamUnited States
- Department of Neurobiology, Duke UniversityDurhamUnited States
| |
Collapse
|
2
|
Bai H, Zhang Q, Zhang S, Wang J, Luo B, Dong Y, Gao J, Cheng T, Dong F, Ema H. Multiple cells of origin in common with various types of mouse N-Myc acute leukemia. Leuk Res 2022; 117:106843. [DOI: 10.1016/j.leukres.2022.106843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
|
3
|
Wang J, Cao Y, Lu X, Wang T, Li S, Kong X, Bo C, Li J, Wang X, Ma H, Li L, Zhang H, Ning S, Wang L. MicroRNAs and nervous system diseases: network insights and computational challenges. Brief Bioinform 2021; 21:863-875. [PMID: 30953059 DOI: 10.1093/bib/bbz032] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/12/2019] [Accepted: 03/01/2019] [Indexed: 12/16/2022] Open
Abstract
The nervous system is one of the most complex biological systems, and nervous system disease (NSD) is a major cause of disability and mortality. Extensive evidence indicates that numerous dysregulated microRNAs (miRNAs) are involved in a broad spectrum of NSDs. A comprehensive review of miRNA-mediated regulatory will facilitate our understanding of miRNA dysregulation mechanisms in NSDs. In this work, we summarized currently available databases on miRNAs and NSDs, star NSD miRNAs, NSD spectrum width, miRNA spectrum width and the distribution of miRNAs in NSD sub-categories by reviewing approximately 1000 studies. In addition, we characterized miRNA-miRNA and NSD-NSD interactions from a network perspective based on miRNA-NSD benchmarking data sets. Furthermore, we summarized the regulatory principles of miRNAs in NSDs, including miRNA synergistic regulation in NSDs, miRNA modules and NSD modules. We also discussed computational challenges for identifying novel miRNAs in NSDs. Elucidating the roles of miRNAs in NSDs from a network perspective would not only improve our understanding of the precise mechanism underlying these complex diseases, but also provide novel insight into the development, diagnosis and treatment of NSDs.
Collapse
Affiliation(s)
- Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuze Cao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoyu Lu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianfeng Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuang Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaotong Kong
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunrui Bo
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jie Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaolong Wang
- Department of Orthopedics, Harbin Medical University Cancer Hospital, Harbin, China
| | - Heping Ma
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lei Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huixue Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Terrey M, Adamson SI, Chuang JH, Ackerman SL. Defects in translation-dependent quality control pathways lead to convergent molecular and neurodevelopmental pathology. eLife 2021; 10:e66904. [PMID: 33899734 PMCID: PMC8075583 DOI: 10.7554/elife.66904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/05/2021] [Indexed: 12/27/2022] Open
Abstract
Translation-dependent quality control pathways such as no-go decay (NGD), non-stop decay (NSD), and nonsense-mediated decay (NMD) govern protein synthesis and proteostasis by resolving non-translating ribosomes and preventing the production of potentially toxic peptides derived from faulty and aberrant mRNAs. However, how translation is altered and the in vivo defects that arise in the absence of these pathways are poorly understood. Here, we show that the NGD/NSD factors Pelo and Hbs1l are critical in mice for cerebellar neurogenesis but expendable for survival of these neurons after development. Analysis of mutant mouse embryonic fibroblasts revealed translational pauses, alteration of signaling pathways, and translational reprogramming. Similar effects on signaling pathways, including mTOR activation, the translatome and mouse cerebellar development were observed upon deletion of the NMD factor Upf2. Our data reveal that these quality control pathways that function to mitigate errors at distinct steps in translation can evoke similar cellular responses.
Collapse
Affiliation(s)
- Markus Terrey
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, Division of Biological Sciences, University of California San DiegoLa JollaUnited States
- Graduate School of Biomedical Sciences and Engineering, University of MaineOronoUnited States
| | - Scott I Adamson
- The Jackson Laboratory for Genomic MedicineFarmingtonUnited States
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn HealthFarmingtonUnited States
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic MedicineFarmingtonUnited States
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, UConn HealthFarmingtonUnited States
| | - Susan L Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Section of Neurobiology, Division of Biological Sciences, University of California San DiegoLa JollaUnited States
| |
Collapse
|
5
|
Jiao X, Rahimi Balaei M, Abu-El-Rub E, Casoni F, Pezeshgi Modarres H, Dhingra S, Kong J, Consalez GG, Marzban H. Reduced Granule Cell Proliferation and Molecular Dysregulation in the Cerebellum of Lysosomal Acid Phosphatase 2 (ACP2) Mutant Mice. Int J Mol Sci 2021; 22:2994. [PMID: 33804256 PMCID: PMC7999993 DOI: 10.3390/ijms22062994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/25/2022] Open
Abstract
Lysosomal acid phosphatase 2 (Acp2) mutant mice (naked-ataxia, nax) have a severe cerebellar cortex defect with a striking reduction in the number of granule cells. Using a combination of in vivo and in vitro immunohistochemistry, Western blotting, BrdU assays, and RT-qPCR, we show downregulation of MYCN and dysregulation of the SHH signaling pathway in the nax cerebellum. MYCN protein expression is significantly reduced at P10, but not at the peak of proliferation at around P6 when the number of granule cells is strikingly reduced in the nax cerebellum. Despite the significant role of the SHH-MycN pathway in granule cell proliferation, our study suggests that a broader molecular pathway and additional mechanisms regulating granule cell development during the clonal expansion period are impaired in the nax cerebellum. In particular, our results indicate that downregulation of the protein synthesis machinery may contribute to the reduced number of granule cells in the nax cerebellum.
Collapse
Affiliation(s)
- Xiaodan Jiao
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Maryam Rahimi Balaei
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Ejlal Abu-El-Rub
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Physiology and Pathophysiology, Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid 21163, Jordan
| | - Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, San Raffaele University, 20132 Milan, Italy
| | - Hassan Pezeshgi Modarres
- BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sanjiv Dhingra
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Giacomo G Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, San Raffaele University, 20132 Milan, Italy
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, The Children's Hospital Research Institute of Manitoba (CHRIM), Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| |
Collapse
|
6
|
Fu Y, Dong J, You M, Cong Z, Wei L, Fu H, Wang Y, Wang Y, Chen J. Maternal di-(2-ethylhexyl) phthalate exposure inhibits cerebellar granule precursor cell proliferation via down-regulating the Shh signaling pathway in male offspring. CHEMOSPHERE 2019; 215:313-322. [PMID: 30336312 DOI: 10.1016/j.chemosphere.2018.10.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/04/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is an endocrine disrupting chemical (EDC) widely used as a plasticizer in many materials. Epidemiological investigations have shown that DEHP exposure during early development is related to cerebellar-related adverse neurodevelopmental outcomes. However, animal studies involving the effect of DEHP exposure on cerebellar development have rarely been reported and the potential mechanisms are unclear. The aim of this study was to investigate the effect of maternal DEHP exposure on the proliferation of cerebellar granule cell precursor cells (GCPs) and the mechanisms involved. Wistar rats were randomly assigned to four exposure groups and given 0, 30, 300, or 750 mg/kg/d DEHP by intragastric administration from gestational day (GD) 0 to postnatal day (PN) 21. Exposure to 300 and 750 mg/kg/d DEHP restrained GCPs proliferation and impaired neurodevelopment for males. Furthermore, exposure to 300 and 750 mg/kg/d DEHP decreased male pups protein expressions and mRNA levels of molecules related to proliferation, including Shh, Gli1, N-Myc, CyclinD1. In addition, the estrogen level and aromatase expression also reduced in male pups after maternal exposure to DEHP. However, effects on females were not obvious. These results suggested that 300 and 750 mg/kg/d DEHP exposure inhibit the proliferation of GCPs in male offspring and ultimately contribute to the impairment of neuromotor development. This, may be caused by the down-regulation of Shh signaling. And the susceptibility of male offspring to DEHP exposure may be attributed to the decreased estrogen level and aromatase expression in male pup's cerebellum.
Collapse
Affiliation(s)
- Yuanyuan Fu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Jing Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Zhangzhao Cong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Lingling Wei
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Hui Fu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Yi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Yuan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, PR China.
| |
Collapse
|
7
|
Otx2 promotes granule cell precursor proliferation and Shh-dependent medulloblastoma maintenance in vivo. Oncogenesis 2018; 7:60. [PMID: 30100614 PMCID: PMC6087714 DOI: 10.1038/s41389-018-0070-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 02/08/2023] Open
Abstract
The developmental gene OTX2 is expressed by cerebellar granule cell precursors (GCPs), a cell population which undergoes massive expansion during the early postnatal period in response to sonic hedgehog (Shh). GCPs are thought to be at the origin of most medulloblastomas, a devastating paediatric cancer that arises in the developing cerebellum. OTX2 is overexpressed in all types of medulloblastomas, except in Shh-dependent type 2 medulloblastomas, although it has GCPs as cell-of-origin. This has led to the current view that OTX2 is not involved in tumorigenesis of this subgroup. How OTX2 might contribute to normal or tumoral GCP development in vivo remains unresolved. Here, we have investigated, for the first time, the physiological function of this factor in regulating proliferation and tumorigenesis in the developing mouse cerebellum. We first characterized Otx2-expressing cells in the early postnatal cerebellum and showed that they represent a unique subpopulation of highly proliferative GCPs. We next performed in vivo loss-of-function analysis to dissect out the role of Otx2 in these cells and identified a novel, Shh-independent, function for this factor in controlling postnatal GCP proliferation and cerebellum morphogenesis. Finally, we addressed the function of Otx2 in the context of type 2 medulloblastomas by directing Shh-dependent tumour formation in Otx2+ cells of the developing cerebellum and assessing the effects of Otx2 ablation in this context. We unravel an unexpected, mandatory function for Otx2 in sustaining cell proliferation and long-term maintenance of these tumours in vivo, therefore bringing unpredicted insight into the mechanisms of type 2 medulloblastoma subsistence. Together, these data pinpoint, for the first time, a crucial Shh-independent role for Otx2 in the control of proliferation of normal and tumoral granule cell precursors in vivo and make it an attractive candidate for targeted therapy in Shh-dependent medulloblastomas.
Collapse
|
8
|
Tanno B, Babini G, Leonardi S, Giardullo P, De Stefano I, Pasquali E, Ottolenghi A, Atkinson MJ, Saran A, Mancuso M. Ex vivo miRNome analysis in Ptch1+/- cerebellum granule cells reveals a subset of miRNAs involved in radiation-induced medulloblastoma. Oncotarget 2018; 7:68253-68269. [PMID: 27626168 PMCID: PMC5356552 DOI: 10.18632/oncotarget.11938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/05/2016] [Indexed: 12/15/2022] Open
Abstract
It has historically been accepted that incorrectly repaired DNA double strand breaks (DSBs) are the principal lesions of importance regarding mutagenesis, and long-term biological effects associated with ionizing radiation. However, radiation may also cause dysregulation of epigenetic processes that can lead to altered gene function and malignant transformation, and epigenetic alterations are important causes of miRNAs dysregulation in cancer. Patched1 heterozygous (Ptch1+/−) mice, characterized by aberrant activation of the Sonic hedgehog (Shh) signaling pathway, are a well-known murine model of spontaneous and radiation-induced medulloblastoma (MB), a common pediatric brain tumor originating from neural granule cell progenitors (GCPs). The high sensitivity of neonatal Ptch1+/− mice to radiogenic MB is dependent on deregulation of the Ptch1 gene function. Ptch1 activates a growth and differentiation programme that is a strong candidate for regulation through the non-coding genome. Therefore we carried out miRNA next generation sequencing in ex vivo irradiated and control GCPs, isolated and purified from cerebella of neonatal WT and Ptch1+/− mice. We identified a subset of miRNAs, namely let-7 family and miR-17∼92 cluster members, whose expression is altered in GCPs by radiation alone, or by synergistic interaction of radiation with Shh-deregulation. The same miRNAs were further validated in spontaneous and radiation-induced MBs from Ptch1+/− mice, confirming persistent deregulation of these miRNAs in the pathogenesis of MB. Our results support the hypothesis that miRNAs dysregulation is associated with radiosensitivity of GCPs and their neoplastic transformation in vivo.
Collapse
Affiliation(s)
- Barbara Tanno
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | | | - Simona Leonardi
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Paola Giardullo
- Department of Radiation Physics, Guglielmo Marconi University, Rome, Italy.,Department of Sciences, Roma Tre University, Rome, Italy
| | - Ilaria De Stefano
- Department of Radiation Physics, Guglielmo Marconi University, Rome, Italy
| | - Emanuela Pasquali
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | | | - Michael J Atkinson
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany
| | - Anna Saran
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| |
Collapse
|
9
|
Tanno B, Leonardi S, Babini G, Giardullo P, De Stefano I, Pasquali E, Saran A, Mancuso M. Nanog-driven cell-reprogramming and self-renewal maintenance in Ptch1 +/- granule cell precursors after radiation injury. Sci Rep 2017; 7:14238. [PMID: 29079783 PMCID: PMC5660207 DOI: 10.1038/s41598-017-14506-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/11/2017] [Indexed: 12/31/2022] Open
Abstract
Medulloblastoma (MB) is the most common pediatric brain tumor, comprising four distinct molecular variants, one of which characterized by activation of the Sonic Hedgehog (SHH) pathway, driving 25–30% of sporadic MB. SHH-dependent MBs arise from granule cell precursors (GCPs), are fatal in 40–70% of cases and radioresistance strongly contributes to poor prognosis and tumor recurrence. Patched1 heterozygous (Ptch1+/−) mice, carrying a germ-line heterozygous inactivating mutation in the Ptch1 gene, the Shh receptor and negative regulator of the pathway, are uniquely susceptible to MB development after radiation damage in neonatal cerebellum. Here, we irradiated ex-vivo GCPs isolated from cerebella of neonatal WT and Ptch1+/− mice. Our results highlight a less differentiated status of Ptch1-mutated cells after irradiation, influencing DNA damage response. Increased expression levels of pluripotency genes Nanog, Oct4 and Sal4, together with greater clonogenic potential, clearly suggest that radiation induces expansion of the stem-like cell compartment through cell-reprogramming and self-renewal maintenance, and that this mechanism is strongly dependent on Nanog. These results contribute to clarify the molecular mechanisms that control radiation-induced Shh-mediated tumorigenesis and may suggest Nanog as a potential target to inhibit for adjuvant radiotherapy in treatment of SHH-dependent MB.
Collapse
Affiliation(s)
- Barbara Tanno
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Simona Leonardi
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | | | - Paola Giardullo
- Department of Radiation Physics, Guglielmo Marconi University, Rome, Italy.,Department of Sciences, Roma Tre University, Rome, Italy
| | - Ilaria De Stefano
- Department of Radiation Physics, Guglielmo Marconi University, Rome, Italy
| | - Emanuela Pasquali
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Anna Saran
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy.
| | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy.
| |
Collapse
|
10
|
Roese-Koerner B, Stappert L, Brüstle O. Notch/Hes signaling and miR-9 engage in complex feedback interactions controlling neural progenitor cell proliferation and differentiation. NEUROGENESIS 2017; 4:e1313647. [PMID: 28573150 PMCID: PMC5443189 DOI: 10.1080/23262133.2017.1313647] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/27/2016] [Accepted: 01/18/2017] [Indexed: 02/04/2023]
Abstract
Canonical Notch signaling has diverse functions during nervous system development and is critical for neural progenitor self-renewal, timing of differentiation and specification of various cell fates. A key feature of Notch-mediated self-renewal is its fluctuating activity within the neural progenitor cell population and the oscillatory expression pattern of the Notch effector Hes1 and its target genes. A negative feedback loop between Hes1 and neurogenic microRNA miR-9 was found to be part of this oscillatory clock. In a recent study we discovered that miR-9 expression is further modulated by direct binding of the Notch intracellular domain/RBPj transcriptional complex to the miR-9_2 promoter. In turn, miR-9 not only targets Hes1 but also Notch2 to attenuate Notch signaling and promote neuronal differentiation. Here, we discuss how the two interwoven feedback loops may provide an additional fail-save mechanism to control proliferation and differentiation within the neural progenitor cell population. Furthermore, we explore potential implications of miR-9-mediated regulation of Notch/Hes1 signaling with regard to neural progenitor homeostasis, patterning, timing of differentiation and tumor formation.
Collapse
Affiliation(s)
- Beate Roese-Koerner
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty, Bonn, Germany
| | - Laura Stappert
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, LIFE & BRAIN Center, University of Bonn Medical Faculty, Bonn, Germany
| |
Collapse
|
11
|
Ward SA, Warrington NM, Taylor S, Kfoury N, Luo J, Rubin JB. Reprogramming Medulloblastoma-Propagating Cells by a Combined Antagonism of Sonic Hedgehog and CXCR4. Cancer Res 2016; 77:1416-1426. [PMID: 28031228 DOI: 10.1158/0008-5472.can-16-0847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 01/10/2023]
Abstract
The CXCR4 chemokine and Sonic Hedgehog (SHH) morphogen pathways are well-validated therapeutic targets in cancer, including medulloblastoma. However, single-agent treatments with SHH or CXCR4 antagonists have not proven efficacious in clinical trials to date. Here, we discovered that dual inhibition of the SHH and CXCR4 pathways in a murine model of SHH-subtype medulloblastoma exerts potent antitumor effects. This therapeutic synergy resulted in the suppression of tumor-propagating cell function and correlated with increased histone H3 lysine 27 trimethylation within the promoters of stem cell genes, resulting in their decreased expression. These results demonstrate that CXCR4 contributes to the epigenetic regulation of a tumor-propagating cell phenotype. Moreover, they provide a mechanistic rationale to evaluate the combination of SHH and CXCR4 inhibitors in clinical trials for the treatment of medulloblastoma, as well as other cancers driven by SHH that coexpress high levels of CXCR4. Cancer Res; 77(6); 1416-26. ©2016 AACR.
Collapse
Affiliation(s)
- Stacey A Ward
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Nicole M Warrington
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Sara Taylor
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Najla Kfoury
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri. .,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
12
|
Constantin L. The Role of MicroRNAs in Cerebellar Development and Autism Spectrum Disorder During Embryogenesis. Mol Neurobiol 2016; 54:6944-6959. [PMID: 27774573 DOI: 10.1007/s12035-016-0220-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/12/2016] [Indexed: 02/03/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules with wide-ranging and subtle effects on protein production. Their activity during the development of the cerebellum provides a valuable exemplar of how non-coding molecules may assist the development and function of the central nervous system and drive neurodevelopmental disorders. Three distinct aspects of miRNA contribution to early cerebellar development will here be reviewed. Aspects are the establishment of the cerebellar anlage, the generation and maturation of at least two principal cell types of the developing cerebellar microcircuit, and the etiology and early progression of autism spectrum disorder. It will be argued here that the autism spectrum is an adept model to explore miRNA impact on the cognitive and affective processes that descend from the developing cerebellum.
Collapse
Affiliation(s)
- Lena Constantin
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia. .,Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|