1
|
Kamiya N, Kuramoto K, Takishima K, Yumoto T, Oda H, Shimi T, Kimura H, Matsushita M, Fujiyoshi S. Superfluid helium nanoscope insert with millimeter working range. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:103703. [PMID: 36319353 DOI: 10.1063/5.0107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
A superfluid helium insert was developed for cryogenic microscopy of millimeter-sized specimens. An optical-interferometric position sensor, cryogenic objective mirror, and piezo-driven cryogenic stage were fixed to an insert holder that was immersed in superfluid helium. The single-component design stabilized the three-dimensional position of the sample, with root-mean-square deviations of (x, lateral) 0.33 nm, (y, lateral) 0.29 nm, and (z, axial) 0.25 nm. Because of the millimeter working range of the optical sensor, the working range of the sample under the active stabilization was (x, y) 5 mm and (z) 3 mm in superfluid helium at 1.8 K. The insert was used to obtain the millimeter-sized fluorescence image of cell nuclei at 1.8 K without a sample exchange.
Collapse
Affiliation(s)
- Naoki Kamiya
- Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Kazuki Kuramoto
- Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Kento Takishima
- Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Tatsuya Yumoto
- Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Haruka Oda
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Takeshi Shimi
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroshi Kimura
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Michio Matsushita
- Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Satoru Fujiyoshi
- Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| |
Collapse
|
2
|
Dahlberg PD, Moerner WE. Cryogenic Super-Resolution Fluorescence and Electron Microscopy Correlated at the Nanoscale. Annu Rev Phys Chem 2021; 72:253-278. [PMID: 33441030 PMCID: PMC8877847 DOI: 10.1146/annurev-physchem-090319-051546] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
We review the emerging method of super-resolved cryogenic correlative light and electron microscopy (srCryoCLEM). Super-resolution (SR) fluorescence microscopy and cryogenic electron tomography (CET) are both powerful techniques for observing subcellular organization, but each approach has unique limitations. The combination of the two brings the single-molecule sensitivity and specificity of SR to the detailed cellular context and molecular scale resolution of CET. The resulting correlative data is more informative than the sum of its parts. The correlative images can be used to pinpoint the positions of fluorescently labeled proteins in the high-resolution context of CET with nanometer-scale precision and/or to identify proteins in electron-dense structures. The execution of srCryoCLEM is challenging and the approach is best described as a method that is still in its infancy with numerous technical challenges. In this review, we describe state-of-the-art srCryoCLEM experiments, discuss the most pressing challenges, and give a brief outlook on future applications.
Collapse
Affiliation(s)
- Peter D Dahlberg
- Department of Chemistry, Stanford University, Stanford, California 94305, USA;
| | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, California 94305, USA;
| |
Collapse
|
3
|
Furubayashi T, Ishida K, Nakata E, Morii T, Naruse K, Matsushita M, Fujiyoshi S. Cryogenic Far-Field Fluorescence Nanoscopy: Evaluation with DNA Origami. J Phys Chem B 2020; 124:7525-7536. [PMID: 32790384 DOI: 10.1021/acs.jpcb.0c04721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Far-field fluorescence localization nanoscopy of individual fluorophores at a temperature of 1.8 K was demonstrated using DNA origami as a one-nanometer-accurate scaffold. Red and near-infrared fluorophores were modified to the scaffold, and the fluorophores were 11 or 77 nm apart. We performed the localization nanoscopy of these two fluorophores at 1.8 K with a far-field fluorescence microscope. Under the cryogenic conditions, the fluorophores were perfectly immobilized and their photobleaching was drastically suppressed; consequently, the lateral spatial precision (a measure of reproducibility) was increased to 1 nm. However, the lateral spatial accuracy (a measure of trueness) remained tens of nanometers. We observed that the fluorophore centroids were laterally shifted as a function of the axial position. Because the orientation of the transition dipole of the fluorophores was fixed under cryogenic conditions, the anisotropic emission from the single fixed dipole had led to the lateral shift. This systematic error due to the dipole-orientation effect could be corrected by the three-dimensional localization of the individual fluorophores with spatial precisions of (lateral) 1 nm and (axial) 17 nm. In addition, the xy-error arising from the three-dimensional (3D) orientation of the scaffold with the two fluorophores 11 nm apart was estimated to be 0.3 nm. As a result, the individual fluorophores on the DNA origami were localized at the designed position, and the lateral spatial accuracy was quantified to be 4 nm in the standard error.
Collapse
Affiliation(s)
- Taku Furubayashi
- Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Keita Ishida
- Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kanta Naruse
- Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Michio Matsushita
- Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Satoru Fujiyoshi
- Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| |
Collapse
|
4
|
Furubayashi T, Ishida K, Kashida H, Nakata E, Morii T, Matsushita M, Fujiyoshi S. Nanometer Accuracy in Cryogenic Far-Field Localization Microscopy of Individual Molecules. J Phys Chem Lett 2019; 10:5841-5846. [PMID: 31525978 DOI: 10.1021/acs.jpclett.9b02184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We demonstrate the nanometer accuracy of far-field fluorescence localization microscopy at a temperature of 1.8 K using near-infrared and red fluorophores bonded to double-stranded DNA molecules (10.2 nm length). Although each fluorophore was localized with a 1 nm lateral precision by acquiring an image at one axial position within the focal depth of ±0.7 μm, the distance between the two fluorophores on the lateral plane (Dxy) was distributed from 0 to 50 nm. This systematic error was mainly due to detecting with the large focal depth the dipole emission from orientationally fixed fluorophores. Each fluorophore was localized with precisions of ±1 nm (lateral) and simultaneously ±11 nm (axial) by acquiring images every 100 nm in the axial direction from -900 to 900 nm. By correcting the dipole orientation effects, the distribution of Dxy was centered around the DNA length. The average and standard deviation of Dxy were 10 and 5 nm.
Collapse
Affiliation(s)
- Taku Furubayashi
- Department of Physics , Tokyo Institute of Technology , Meguro , Tokyo 152-8550 , Japan
| | - Keita Ishida
- Department of Physics , Tokyo Institute of Technology , Meguro , Tokyo 152-8550 , Japan
| | - Hiromu Kashida
- Graduate School of Engineering , Nagoya University , Chikusa, Nagoya 464-8603 , Japan
| | - Eiji Nakata
- Institute of Advanced Energy , Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - Takashi Morii
- Institute of Advanced Energy , Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - Michio Matsushita
- Department of Physics , Tokyo Institute of Technology , Meguro , Tokyo 152-8550 , Japan
| | - Satoru Fujiyoshi
- Department of Physics , Tokyo Institute of Technology , Meguro , Tokyo 152-8550 , Japan
| |
Collapse
|
5
|
Tabe H, Sukenobe K, Kondo T, Sakurai A, Maruo M, Shimauchi A, Hirano M, Uno SN, Kamiya M, Urano Y, Matsushita M, Fujiyoshi S. Cryogenic Fluorescence Localization Microscopy of Spectrally Selected Individual FRET Pairs in a Water Matrix. J Phys Chem B 2018; 122:6906-6911. [DOI: 10.1021/acs.jpcb.8b03977] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroaki Tabe
- Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Kei Sukenobe
- Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Toru Kondo
- Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Atsunori Sakurai
- Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Minako Maruo
- Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Akari Shimauchi
- Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Mitsuharu Hirano
- Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | | | - Mako Kamiya
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Yasuteru Urano
- CREST, Japan Agency for Medical Research and Development (AMED), Chiyoda, Tokyo 100-0004, Japan
| | - Michio Matsushita
- Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
| | - Satoru Fujiyoshi
- Department of Physics, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
6
|
Kabir MM, Choubal AM, Toussaint KC. Application of a reflective microscope objective for multiphoton microscopy. J Microsc 2018; 271:129-135. [PMID: 29676795 DOI: 10.1111/jmi.12702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 12/01/2022]
Abstract
Reflective objectives (ROs) mitigate chromatic aberration across a broad wavelength range. Yet, a systematic performance characterisation of ROs has not been done. In this paper, we compare the performance of a 0.5 numerical-aperture (NA) reflective objective (RO) with a 0.55 NA standard glass objective (SO), using two-photon fluorescence (TPF) and second-harmonic generation (SHG). For experiments spanning ∼1 octave in the visible and NIR wavelengths, the SO leads to defocusing errors of 25-40% for TPF images of subdiffraction fluorescent beads and 10-12% for SHG images of collagen fibres. The corresponding error for the RO is ∼4% for both imaging modalities. This work emphasises the potential utility of ROs for multimodal multiphoton microscopy applications.
Collapse
Affiliation(s)
- Mohammad M Kabir
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Aakash M Choubal
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Kimani C Toussaint
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
7
|
|
8
|
Furubayashi T, Motohashi K, Wakao K, Matsuda T, Kii I, Hosoya T, Hayashi N, Sadaie M, Ishikawa F, Matsushita M, Fujiyoshi S. Three-Dimensional Localization of an Individual Fluorescent Molecule with Angstrom Precision. J Am Chem Soc 2017. [PMID: 28644014 DOI: 10.1021/jacs.7b03899] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Among imaging techniques, fluorescence microscopy is a unique method to noninvasively image individual molecules in whole cells. If the three-dimensional spatial precision is improved to the angstrom level, various molecular arrangements in the cell can be visualized on an individual basis. We have developed a cryogenic reflecting microscope with a numerical aperture of 0.99 and an imaging stability of 0.05 nm in standard deviation at a temperature of 1.8 K. The key optics to realize the cryogenic performances is the reflecting objective developed by our laboratory. With this cryogenic microscope, an individual fluorescent molecule (ATTO647N) at 1.8 K was localized with standard errors of 0.53 nm (x), 0.31 nm (y), and 0.90 nm (z) when 106 fluorescence photons from the molecule were accumulated in 5 min.
Collapse
Affiliation(s)
| | | | | | | | - Isao Kii
- Pathophysiological and Health Science Team, Imaging Platform and Innovation Group, Division of Bio-Function Dynamics Imaging, RIKEN Center for Life Science Technologies , Chuo, Kobe, 650-0047, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , Chiyoda, Tokyo, 101-0062, Japan
| | | | - Mahito Sadaie
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University , Sakyo, Kyoto, 606-8501, Japan
| | - Fuyuki Ishikawa
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University , Sakyo, Kyoto, 606-8501, Japan
| | | | - Satoru Fujiyoshi
- Japan Science and Technology Agency, PRESTO , Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
9
|
Kondo T, Chen WJ, Schlau-Cohen GS. Single-Molecule Fluorescence Spectroscopy of Photosynthetic Systems. Chem Rev 2017; 117:860-898. [DOI: 10.1021/acs.chemrev.6b00195] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Toru Kondo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Wei Jia Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| |
Collapse
|
10
|
Wolff G, Hagen C, Grünewald K, Kaufmann R. Towards correlative super-resolution fluorescence and electron cryo-microscopy. Biol Cell 2016; 108:245-58. [PMID: 27225383 PMCID: PMC5524168 DOI: 10.1111/boc.201600008] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 12/31/2022]
Abstract
Correlative light and electron microscopy (CLEM) has become a powerful tool in life sciences. Particularly cryo-CLEM, the combination of fluorescence cryo-microscopy (cryo-FM) permitting for non-invasive specific multi-colour labelling, with electron cryo-microscopy (cryo-EM) providing the undisturbed structural context at a resolution down to the Ångstrom range, has enabled a broad range of new biological applications. Imaging rare structures or events in crowded environments, such as inside a cell, requires specific fluorescence-based information for guiding cryo-EM data acquisition and/or to verify the identity of the structure of interest. Furthermore, cryo-CLEM can provide information about the arrangement of specific proteins in the wider structural context of their native nano-environment. However, a major obstacle of cryo-CLEM currently hindering many biological applications is the large resolution gap between cryo-FM (typically in the range of ∼400 nm) and cryo-EM (single nanometre to the Ångstrom range). Very recently, first proof of concept experiments demonstrated the feasibility of super-resolution cryo-FM imaging and the correlation with cryo-EM. This opened the door towards super-resolution cryo-CLEM, and thus towards direct correlation of structural details from both imaging modalities.
Collapse
Affiliation(s)
- Georg Wolff
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Christoph Hagen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kay Grünewald
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Rainer Kaufmann
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
11
|
Karlsson J, Rippe L, Kröll S. A confocal optical microscope for detection of single impurities in a bulk crystal at cryogenic temperatures. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:033701. [PMID: 27036778 DOI: 10.1063/1.4942906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
A compact sample-scanning confocal optical microscope for detection of single impurities below the surface of a bulk crystal at cryogenic temperatures is described. The sample, lens, and scanners are mounted inside a helium bath cryostat and have a footprint of only 19 × 19 mm. Wide field imaging and confocal imaging using a Blu-ray lens immersed in liquid helium are demonstrated with excitation at 370 nm. A spatial resolution of 300 nm and a detection efficiency of 1.6% were achieved.
Collapse
Affiliation(s)
- Jenny Karlsson
- Department of Physics, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| | - Lars Rippe
- Department of Physics, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| | - Stefan Kröll
- Department of Physics, Lund University, P.O. Box 118, SE-22100 Lund, Sweden
| |
Collapse
|