1
|
Toader C, Eva L, Covache-Busuioc RA, Costin HP, Glavan LA, Corlatescu AD, Ciurea AV. Unraveling the Multifaceted Role of the Golgi Apparatus: Insights into Neuronal Plasticity, Development, Neurogenesis, Alzheimer's Disease, and SARS-CoV-2 Interactions. Brain Sci 2023; 13:1363. [PMID: 37891732 PMCID: PMC10605100 DOI: 10.3390/brainsci13101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
This article critically evaluates the multifunctional role of the Golgi apparatus within neurological paradigms. We succinctly highlight its influence on neuronal plasticity, development, and the vital trafficking and sorting mechanisms for proteins and lipids. The discourse further navigates to its regulatory prominence in neurogenesis and its implications in Alzheimer's Disease pathogenesis. The emerging nexus between the Golgi apparatus and SARS-CoV-2 underscores its potential in viral replication processes. This consolidation accentuates the Golgi apparatus's centrality in neurobiology and its intersections with both neurodegenerative and viral pathologies. In essence, understanding the Golgi's multifaceted functions harbors profound implications for future therapeutic innovations in neurological and viral afflictions.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (H.P.C.); (L.-A.G.); (A.D.C.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Lucian Eva
- Faculty of Medicine, “Dunarea de Jos” University of Galati, 800201 Galați, Romania
- Emergency Clinical Hospital “Prof. dr. N. Oblu”, 700309 Iasi, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (H.P.C.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (H.P.C.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Luca-Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (H.P.C.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (H.P.C.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (H.P.C.); (L.-A.G.); (A.D.C.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
2
|
Zhang Y, Xu T, Tian H, Wu J, Yu X, Zeng L, Liu F, Liu Q, Huang X. Coxsackievirus Group B3 Has Oncolytic Activity against Colon Cancer through Gasdermin E-Mediated Pyroptosis. Cancers (Basel) 2022; 14:cancers14246206. [PMID: 36551691 PMCID: PMC9776948 DOI: 10.3390/cancers14246206] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Colon cancer is the second leading cause of cancer-related death, and there are few effective therapies for colon cancer. This study explored the use of coxsackievirus group B3 (CVB3) as an oncolytic virus for the treatment of colon cancer. In this study, we verified that CVB3 induces death of colon cancer cell lines by directly observing cell morphology and Western blot results, and observed the oncolytic effects of CVB3 by constructing an immunodeficient nude mice model. Our data show that CVB3 induces pyroptosis in colon cancer cell lines. Mechanistically, we demonstrated that CVB3 causes cleavage of gasdermin E (GSDME), but not gasdermin D (GSDMD), by activating caspase-3. This leads to production of GSDME N-termini and the development of pores in the plasma membrane, inducing pyroptosis of colon cancer cell lines. We also demonstrate that CVB3-induced pyroptosis is promoted by reactive oxygen species (ROS). Finally, in vivo studies using immunodeficient nude mice revealed that intratumoral injection of CVB3 led to significant tumor regression. Our findings indicate that CVB3 has oncolytic activity in colon cancer cell lines via GSDME-mediated pyroptosis.
Collapse
Affiliation(s)
- Yejia Zhang
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Tian Xu
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Huizhen Tian
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Jianfeng Wu
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Xiaomin Yu
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Lingbing Zeng
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Fadi Liu
- The Department of Clinical Laboratory, Children’s Hospital of Jiangxi Province, Nanchang 330006, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Correspondence: (Q.L.); (X.H.)
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
- Correspondence: (Q.L.); (X.H.)
| |
Collapse
|
3
|
Tan W, Zhang J, Liu L, Liang M, Li J, Deng Z, Zheng Z, Deng Y, Liu C, Li Y, Xie G, Zhang J, Zou F, Chen X. Hsp90 Inhibitor STA9090 induced VPS35 related extracellular vesicle release and metastasis in hepatocellular carcinoma. Transl Oncol 2022; 26:101502. [PMID: 36137350 PMCID: PMC9493061 DOI: 10.1016/j.tranon.2022.101502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/28/2022] [Indexed: 11/05/2022] Open
Abstract
Heat shock protein 90 (Hsp90) has been an important therapeutic target for cancer therapy for decades. Unexpectedly, the monotherapy of N-terminal Hsp90 inhibitor STA9090 related clinical trials halted in phase III, and metastases were reported in animal models with the treatment of N-terminal Hsp90 inhibitors. Vacuolar protein sorting-associated protein 35 (VPS35) plays a vital role in endosome-derived EV (extracellular vesicle) traffic in neurodegeneration diseases, but no vps35 related EV were reported in tumors till now. Since tumor derived EVs contributes to metastasis and VPS35 is recently found to be involved in the invasion and metastasis of hepatocellular carcinoma (HCC), whether N-terminal Hsp90 inhibitor STA9090 induced EVs generation and the role of VPS35 in it were explored in this study. We found that N-terminal Hsp90 inhibitor STA9090 upregulated Bclaf1 and VPS35 levels, increased the secretion of EVs, and STA9090-induced-EVs promoted the invasion of HepG2 cells. As the clinical data suggested that the increased Bclaf1 and VPS35 levels correlated with increased metastasis and poorer prognosis in HCC, we focused on the Bclaf1-VPS35-EVs axis to further explore the mechanism of VPS35-related metastasis. The results demonstrated that Bclaf1 facilitated the transcription of VPS35 via bZIP domain, and knockdown of Bclaf1 or VPS35 alleviated pro-metastatic capability of STA9090-induced-EVs. All the results revealed the role of Bclaf1-VPS35-EVs axis on metastasis of HCC, and VPS35 knockdown decreased Hsp90 Inhibitor STA9090 induced extracellular vesicle release and metastasis, which provided a new combination therapeutic strategy to inhibit the metastasis of HCC caused by N-terminal Hsp90 inhibitor induced extracellular vesicles.
Collapse
Affiliation(s)
- Wenchong Tan
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jinxin Zhang
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lixia Liu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Manfeng Liang
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jieyou Li
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zihao Deng
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenming Zheng
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yaotang Deng
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chenyang Liu
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yan Li
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Guantai Xie
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiajie Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fei Zou
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| | - Xuemei Chen
- Department of Occupational Health and Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Yang Q, Li Y, Wang Y, Qiao X, Liu T, Wang H, Shen H. The circRNA circSIAE Inhibits Replication of Coxsackie Virus B3 by Targeting miR-331-3p and Thousand and One Amino-Acid Kinase 2. Front Cell Infect Microbiol 2022; 11:779919. [PMID: 35141166 PMCID: PMC8820919 DOI: 10.3389/fcimb.2021.779919] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/21/2021] [Indexed: 01/15/2023] Open
Abstract
Coxsackie virus B3 (CVB3), an enterovirus, is the main pathogen causing viral myocarditis, pericarditis, hepatitis and other inflammation-related diseases. Non-coding RNAs with a closed loop molecular structure, called circular RNAs (circRNAs), have been shown to be involved in multiple virus-related processes, but roles and mechanisms in CVB3 infection have not been systematically studied. In this study, when HeLa cells were infected with CVB3, the expression of hsa_circ_0000367 (circSIAE) was significantly decreased as demonstrated by real-time quantitative PCR assays. We found that circSIAE downregulated the expression of miR-331-3p through direct binding and inhibited the replication of CVB3 in HeLa and 293T cells. The analysis of signals downstream of miR-331-3p suggested that miR-331-3p promotes CVB3 replication, viral plaque formation and fluorescent virus cell production through interactions with the gene coding for thousand and one amino-acid kinase 2 (TAOK2). In conclusion, this study found that circSIAE can target TAOK2 through sponge adsorption of miR-331-3p to inhibit the replication and proliferation of CVB3 virus, providing an early molecular target for the diagnosis of CVB3 infection.
Collapse
Affiliation(s)
- Qingru Yang
- Medical College, Jiangsu University, Zhenjiang, China
- Clinical Laboratory, Jiangyin Municipal Center for Disease Control and Prevention, Jiangyin, China
| | - Yuhan Li
- Medical College, Jiangsu University, Zhenjiang, China
| | - Yan Wang
- Medical College, Jiangsu University, Zhenjiang, China
| | - Xiaorong Qiao
- Medical College, Jiangsu University, Zhenjiang, China
| | - Tingjun Liu
- Medical College, Jiangsu University, Zhenjiang, China
| | - Hua Wang
- Medical College, Jiangsu University, Zhenjiang, China
- *Correspondence: Hua Wang, ; Hongxing Shen,
| | - Hongxing Shen
- Medical College, Jiangsu University, Zhenjiang, China
- *Correspondence: Hua Wang, ; Hongxing Shen,
| |
Collapse
|
5
|
Huang B, Li X, Zhu X. The Role of GM130 in Nervous System Diseases. Front Neurol 2021; 12:743787. [PMID: 34777211 PMCID: PMC8581157 DOI: 10.3389/fneur.2021.743787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022] Open
Abstract
Golgi matrix protein 130 (GM130) is a Golgi-shaping protein located on the cis surface of the Golgi apparatus (GA). It is one of the most studied Golgin proteins so far. Its biological functions are involved in many aspects of life processes, including mitosis, autophagy, apoptosis, cell polarity, and directed migration at the cellular level, as well as intracellular lipid and protein transport, microtubule formation and assembly, lysosome function maintenance, and glycosylation modification. Mutation inactivation or loss of expression of GM130 has been detected in patients with different diseases. GM130 plays an important role in the development of the nervous system, but the studies on it are limited. This article reviewed the current research progress of GM130 in nervous system diseases. It summarized the physiological functions of GM130 in the occurrence and development of Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), microcephaly (MCPH), sepsis associated encephalopathy (SAE), and Ataxia, aiming to provide ideas for the further study of GM130 in nervous system disease detection and treatment.
Collapse
Affiliation(s)
- Bei Huang
- Operational Management Office, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xihong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaoshi Zhu
- Pediatric Intensive Care Unit, Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
6
|
Zhang H, Zeng L, Liu Q, Jin G, Zhang J, Li Z, Xu Y, Tian H, Deng S, Shi Q, Huang X. CVB3 VP1 interacts with MAT1 to inhibit cell proliferation by interfering with Cdk-activating kinase complex activity in CVB3-induced acute pancreatitis. PLoS Pathog 2021; 17:e1008992. [PMID: 33556114 PMCID: PMC7895353 DOI: 10.1371/journal.ppat.1008992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/19/2021] [Accepted: 01/08/2021] [Indexed: 01/09/2023] Open
Abstract
Coxsackievirus B3 (CVB3) belongs to the genus Enterovirus of the family Picornaviridae and can cause acute acinar pancreatitis in adults. However, the molecular mechanisms of pathogenesis underlying CVB3-induced acute pancreatitis have remained unclear. In this study, we discovered that CVB3 capsid protein VP1 inhibited pancreatic cell proliferation and exerted strong cytopathic effects on HPAC cells. Through yeast two-hybrid, co-immunoprecipitation, and confocal microscopy, we show that Menage a trois 1 (MAT1), a subunit of the Cdk-Activating Kinase (CAK) complex involved in cell proliferation and transcription, is a novel interaction protein with CVB3 VP1. Moreover, CVB3 VP1 inhibited MAT1 accumulation and localization, thus interfering with its interaction with CDK7. Furthermore, CVB3 VP1 could suppress CAK complex enzymic phosphorylation activity towards RNA Pol II and CDK4/6, direct substrates of CAK. VP1 also suppresses phosphorylation of retinoblastoma protein (pRb), an indirect CAK substrate, especially at phospho-pRb Ser780 and phospho-pRb Ser807/811 residues, which are associated with cell proliferation. Finally, we present evidence using deletion mutants that the C-terminal domain (VP1-D8, 768-859aa) is the minimal VP1 region required for its interaction with MAT1, and furthermore, VP1-D8 alone was sufficient to arrest cells in G1/S phase as observed during CVB3 infection. Taken together, we demonstrate that CVB3 VP1 can inhibit CAK complex assembly and activity through direct interaction with MAT1, to block MAT1-mediated CAK-CDK4/6-Rb signaling, and ultimately suppress cell proliferation in pancreatic cells. These findings substantially extend our basic understanding of CVB3-mediated pancreatitis, providing strong candidates for strategic therapeutic targeting.
Collapse
Affiliation(s)
- Hongxia Zhang
- The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Lingbing Zeng
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Guilin Jin
- The Affiliated Hospital of JiangXi university of TCM, Nanchang, China
| | - Jieyu Zhang
- Fuzhou Medical School of Nanchang University, Fuzhou, China
| | - Zengbin Li
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Yilian Xu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Huizhen Tian
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Shanshan Deng
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Qiaofa Shi
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
- * E-mail:
| |
Collapse
|
7
|
Blum SI, Tse HM. Innate Viral Sensor MDA5 and Coxsackievirus Interplay in Type 1 Diabetes Development. Microorganisms 2020; 8:microorganisms8070993. [PMID: 32635205 PMCID: PMC7409145 DOI: 10.3390/microorganisms8070993] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is a polygenic autoimmune disease characterized by immune-mediated destruction of insulin-producing β-cells. The concordance rate for T1D in monozygotic twins is ≈30-50%, indicating that environmental factors also play a role in T1D development. Previous studies have demonstrated that enterovirus infections such as coxsackievirus type B (CVB) are associated with triggering T1D. Prior to autoantibody development in T1D, viral RNA and antibodies against CVB can be detected within the blood, stool, and pancreata. An innate pathogen recognition receptor, melanoma differentiation-associated protein 5 (MDA5), which is encoded by the IFIH1 gene, has been associated with T1D onset. It is unclear how single nucleotide polymorphisms in IFIH1 alter the structure and function of MDA5 that may lead to exacerbated antiviral responses contributing to increased T1D-susceptibility. Binding of viral dsRNA via MDA5 induces synthesis of antiviral proteins such as interferon-alpha and -beta (IFN-α/β). Viral infection and subsequent IFN-α/β synthesis can lead to ER stress within insulin-producing β-cells causing neo-epitope generation, activation of β-cell-specific autoreactive T cells, and β-cell destruction. Therefore, an interplay between genetics, enteroviral infections, and antiviral responses may be critical for T1D development.
Collapse
|
8
|
He F, Xiao Z, Yao H, Li S, Feng M, Wang W, Liu Z, Liu Z, Wu J. The protective role of microRNA-21 against coxsackievirus B3 infection through targeting the MAP2K3/P38 MAPK signaling pathway. J Transl Med 2019; 17:335. [PMID: 31585536 PMCID: PMC6778380 DOI: 10.1186/s12967-019-2077-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/21/2019] [Indexed: 12/15/2022] Open
Abstract
Background The P38 mitogen-activated protein kinase (MAPK) pathway plays an essential role in CVB3-induced diseases. We previously demonstrated microRNA-21 has potential inhibitory effect on the MAP2K3 which locates upstream of P38 MAPK and was upregulated in mouse hearts upon CVB3 infection. However, the effect and underlying mechanism of miRNA-21 on CVB3 infection remain unclear. Methods We detected continuous changes of cellular miRNA-21 and P38 MAPK proteins expression profiling post CVB3 infection in vitro within 12 h. P38 MAPK signaling was inhibited by the specific inhibitor, small interfering RNA and miRNA-21 mimic in vitro, CVB3 replication, cell apoptosis rate and proliferation were detected. Viral load in the mice heart, cardiomyocyte apoptosis rate and histological of the heart were also detected in the mice model of viral myocarditis pretreated with miRNA-21-lentivirus. Results We observed significant upregulation of miRNA-21 expression followed by suppression of the MAP2K3/P38 MAPK signaling in CVB3-infected Hela cells. The inactivation of the MAP2K3/P38 MAPK signaling by P38 MAPK specific inhibitor, small interfering RNA against MAP2K3, or miRNA-21 overexpression significantly inhibited viral progeny release from CVB3-infected cells. Mechanistically, when compared with control miRNA, miRNA-21 showed no effect on capsid protein VP1 expression and viral load within host cells, while significantly reversing CVB3-induced caspase-3 activation and cell apoptosis rate, further promoting proliferation of infected cells, which indicates the inhibitory effect of miRNA-21 on CVB3 progeny release. In the in vivo study, when compared with control miRNA, miRNA-21 pretreatment remarkably inactivated the MAP2K3/P38 MAPK signaling in mice and protected them against CVB3 infection as evidenced by significantly alleviated cell apoptosis rate, reduced viral titers, necrosis in the heart as well as by remarkably prolonged survival time. Conclusions miRNA-21 were reverse correlated with P38 MAPK activation post CVB3 infection, miRNA-21 overexpression significantly inhibited viral progeny release and decreased myocytes apoptosis rate in vitro and in vivo, suggesting that miRNA-21 may serve as a potential therapeutic agent against CVB3 infection through targeting the MAP2K3/P38 MAPK signaling.
Collapse
Affiliation(s)
- Feng He
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics-Peking University Teaching Hospital, YaBao Road 2, Beijing, 100020, China
| | - Zonghui Xiao
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China
| | - Hailan Yao
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China
| | - Sen Li
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China
| | - Miao Feng
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China
| | - Wei Wang
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China
| | - Zhewei Liu
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China
| | - Zhuo Liu
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China.
| | - Jianxin Wu
- Department of Biochemistry & Immunology, Capital Institute of Pediatrics-Peking University Teaching Hospital, YaBao Road 2, Beijing, 100020, China. .,Department of Biochemistry & Immunology, Capital Institute of Pediatrics, YaBao Road 2, Beijing, 100020, China.
| |
Collapse
|
9
|
Mucin-1 is required for Coxsackie Virus B3-induced inflammation in pancreatitis. Sci Rep 2019; 9:10656. [PMID: 31337812 PMCID: PMC6650496 DOI: 10.1038/s41598-019-46933-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/01/2019] [Indexed: 12/14/2022] Open
Abstract
The Muc-1 oncoprotein is a tumor-associated mucin often overexpressed in pancreatic cancer. We report that knockout of Muc-1 reduced the degree of pancreatic inflammation that resulted from infection with Coxsackievirus B3 (CVB3) in a mouse model. CVB3-infected Muc-1-deficient (Muc-1KO) mice had significantly reduced infiltration of macrophages into the murine pancreas. We found that Muc-1 signaling through NF-κB increased expression of ICAM-1, a pro-inflammatory mediator that recruits macrophages. Further investigation revealed that bone marrow derived macrophages (BMDM) from the Muc-1KO mice exhibited defective migration properties, in part due to low expression of the C-C motif chemokine receptor (CCR2) and the integrin Very Late Antigen 4 (VLA-4). The results presented here provide novel insight into the role of Muc-1 in regulating the inflammatory response and the cellular microenvironment in pancreatitis.
Collapse
|