1
|
Kuriakose BB. Beyond skin deep: exploring the complex molecular mechanisms and holistic management strategies of vitiligo. Arch Dermatol Res 2025; 317:685. [PMID: 40198440 DOI: 10.1007/s00403-025-04162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 04/10/2025]
Abstract
Vitiligo is a multifactorial skin disorder characterized by the progressive loss of pigmentation due to the destruction of melanocytes, affecting 0.5-2% of the global population. This condition not only impacts physical appearance but also has profound psychosocial effects on patients. In this review, various aspects of vitiligo are explored, including its clinical forms, epidemiology, and underlying mechanisms. Advances in research have identified key molecular pathways, such as Wnt/β-Catenin, JAK-STAT, and AhR signaling, which are essential for melanocyte survival and immune regulation. These pathways provide valuable insights into the disease's progression and potential treatment targets. Furthermore, the role of microbial imbalances in the gut and skin microbiomes, stress-related factors, and nutritional deficiencies in influencing the onset and progression of vitiligo is investigated. The potential of herbal treatments to stimulate repigmentation is also discussed. By presenting a comprehensive overview, this review aims to deepen the understanding of vitiligo's complex pathology and foster the development of effective therapeutic strategies to enhance patient care.
Collapse
Affiliation(s)
- Beena Briget Kuriakose
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Khamis Mushayt, Kingdom of Saudi Arabia.
| |
Collapse
|
2
|
Sundaravel SS, Kuriakose BB, Alhazmi AH, Jeyaraman S, Jagannathan SS, Muthusamy K. Molecular insights of vitamin D receptor SNPs and vitamin D analogs: a novel therapeutic avenue for vitiligo. Mol Divers 2025:10.1007/s11030-025-11168-9. [PMID: 40117094 DOI: 10.1007/s11030-025-11168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/12/2025] [Indexed: 03/23/2025]
Abstract
Vitamin D receptor (VDR) agonists play a pivotal role in modulating immune responses and promoting melanocyte survival, making them potential candidates for vitiligo treatment. The VDR gene is integral to mediating the effects of vitamin D in the immune system, and disruptions in its structure due to missense mutations may significantly contribute to the pathogenesis of vitiligo. Missense single-nucleotide polymorphisms (SNPs) can alter the amino acid sequence of the VDR protein, potentially affecting its ligand-binding affinity and downstream signaling. Investigating these missense SNPs provides critical insights into the genetic underpinnings of vitiligo and may help identify biomarkers for early detection and precision-targeted therapies. This study explored the therapeutic potential of vitamin D analogs in vitiligo management, with a particular focus on their binding interactions and molecular efficacy. Using molecular docking and virtual screening, 24 vitamin D analogs were evaluated. Calcipotriol exhibited the highest binding affinity (-11.4 kcal/mol) and unique interactions with key residues in the VDR ligand-binding domain. Additionally, an analysis of structural variations stemming from missense mutations in the VDR gene highlighted potential impacts on receptor-ligand interactions, further emphasizing the importance of genetic factors in treatment response. These findings underscore the potential of calcipotriol to promote melanogenesis and modulate pigmentation in vitiligo. A comparative analysis identified structural variations influencing the efficacy of other analogs, such as calcitriol and tacalcitol. Although the in silico methods provided valuable insights, the study acknowledges the limitations of excluding dynamic cellular environments and emphasizes the need for experimental validation. Overall, this study enhances our understanding of VDR-targeted therapies, and calcipotriol is a promising candidate for further development in the management of vitiligo.
Collapse
Affiliation(s)
- Sakthi Sasikala Sundaravel
- Pharmacogenomics and CADD Lab, Department of Bioinformatics, Alagappa University, Tamil Nadu, Karaikudi, India
| | - Beena Briget Kuriakose
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Khamis Mushayt, Saudi Arabia
| | - Amani Hamad Alhazmi
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Khamis Mushayt, Saudi Arabia
| | - Sabareeswari Jeyaraman
- Pharmacogenomics and CADD Lab, Department of Bioinformatics, Alagappa University, Tamil Nadu, Karaikudi, India
| | - Sushma Shruthi Jagannathan
- Pharmacogenomics and CADD Lab, Department of Bioinformatics, Alagappa University, Tamil Nadu, Karaikudi, India
| | - Karthikeyan Muthusamy
- Pharmacogenomics and CADD Lab, Department of Bioinformatics, Alagappa University, Tamil Nadu, Karaikudi, India.
- Department of Bioinformatics, Alagappa University, Tamil Nadu, Karaikudi, 630 003, India.
| |
Collapse
|
3
|
Chen Z, Li Y, Tan X, Nie S, Chen B, Mei X, Wu Z. Dysregulated tryptophan metabolism and AhR pathway contributed to CXCL10 upregulation in stable non-segmental vitiligo. J Dermatol Sci 2024; 115:33-41. [PMID: 38955622 DOI: 10.1016/j.jdermsci.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/21/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Tryptophan metabolism dysregulation has been observed in vitiligo. However, drawing a mechanistic linkage between this metabolic disturbance and vitiligo pathogenesis remains challenging. OBJECTIVE Aim to reveal the characterization of tryptophan metabolism in vitiligo and investigate the role of tryptophan metabolites in vitiligo pathophysiology. METHODS LC-MS/MS, dual-luciferase reporter assay, ELISA, qRT-PCR, small interfering RNA, western blotting, and immunohistochemistry were employed. RESULTS Kynurenine pathway activation and KYAT enzyme-associated deviation to kynurenic acid (KYNA) in the plasma of stable non-segmental vitiligo were determined. Using a public microarray dataset, we next validated the activation of kynurenine pathway was related with inflammatory-related genes expression in skin of vitiligo patients. Furthermore, we found that KYNA induced CXCL10 upregulation in keratinocytes via AhR activation. Moreover, the total activity of AhR agonist was increased while the AhR concentration per se was decreased in the plasma of vitiligo patients. Finally, higher KYAT, CXCL10, CYP1A1 and lower AhR expression in vitiligo lesional skin were observed by immunohistochemistry staining. CONCLUSION This study depicts the metabolic and genetic characterizations of tryptophan metabolism in vitiligo and proposes that KYNA, a tryptophan-derived AhR ligand, can enhance CXCL10 expression in keratinocytes.
Collapse
Affiliation(s)
- Zile Chen
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiting Li
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Tan
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Nie
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Chen
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyu Mei
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhouwei Wu
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Xiong R, Shen Q, Li Y, Jin S, Dong T, Song X, Guan C. NAcM-OPT protects keratinocytes from H 2O 2-induced cell damage by promoting autophagy. Ann N Y Acad Sci 2024; 1537:155-167. [PMID: 38922711 DOI: 10.1111/nyas.15173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
This study aimed to investigate the protective effect of NAcM-OPT, a small molecule inhibitor of defective in cullin neddylation 1 (DCN1), on H2O2-induced oxidative damage in keratinocytes. Immortalized human keratinocytes (HaCaT cells) were treated with NAcM-OPT and exposed to oxidative stress. CCK-8 assays were used to measure cell viability. The mGFP-RFP-LC3 dual fluorescent autophagy indicator system was utilized to evaluate changes in autophagic flux. Western blotting was used to measure the expression of the autophagy-related proteins LC3 and Beclin 1. Keratinocytes were treated with the autophagy activator rapamycin, and HaCaT cell supernatant was added to PIG1 cells (immortalized human melanocytes), followed by evaluation of tyrosinase (TYR) expression via qRT-PCR. NAcM-OPT increased cell viability and cell proliferation. Furthermore, this molecule promoted autophagic flux through increased expression of autophagy-related proteins under H2O2-induced oxidative stress. Additionally, rapamycin increased the mRNA levels of TYR in PIG1 cells. Moreover, NAcM-OPT alleviated mitochondrial damage, restored mitochondrial function, and upregulated the expression of NFE2L2, HO1, NQO1, and GCLM. Importantly, NAcM-OPT also increased epidermal thickness, follicle length, and melanin synthesis under oxidative stress in vivo. These findings suggest that NAcM-OPT may be a promising small molecule antioxidant drug for the treatment of vitiligo.
Collapse
Affiliation(s)
- Renxue Xiong
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, China
| | - Qingmei Shen
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yujie Li
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Shiyu Jin
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Tingru Dong
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiuzu Song
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, China
| | - Cuiping Guan
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, China
| |
Collapse
|
5
|
Wang X, Fan J, He K, Chen J, Li S. Serum cytokine profiles predict response to systemic glucocorticoid in active vitiligo. Postepy Dermatol Alergol 2024; 41:189-196. [PMID: 38784928 PMCID: PMC11110216 DOI: 10.5114/ada.2024.138672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/28/2024] [Indexed: 05/25/2024] Open
Abstract
Introduction Vitiligo is an immune-related skin disease. Cytokines regulate immune response and inflammation and are involved in the pathogenesis of vitiligo. Aim To assess the serum levels of pro-inflammatory cytokines pre- and post- systemic glucocorticoid treatment in patients with active vitiligo. Material and methods We measured serum cytokine levels using the enzyme-linked immunosorbent assay in 31 patients with active vitiligo before and after treatment. All patients received systemic glucocorticoid (compound betamethasone injection) in combination with topical halometasone cream and tacrolimus ointment for 3 months. Twenty healthy controls were also examined. The cytokines measured included TNF-α, IL-1β, IL-6, IFN-γ, IL-2, IL-17, IL-10, IL-8, and CXCL10. Results The serum levels of TNF-α, IL-1β, IL-6, IFN-γ, IL-2, IL-17, IL-8, and CXCL10 were significantly higher, and levels of IL-10 were lower in vitiligo patients compared to controls. Additionally, serum IFN-γ (r = 0.378; p = 0.036), IL-17 (r = 0.426; p = 0.017), and CXCL10 (r = 0.514; p = 0.003) showed a positive correlation with affected body surface area in vitiligo patients. After 3 months of systemic glucocorticoid treatment, the levels of IL-1β, IFN-γ, IL-2, IL-17, and CXCL10 in responders were significantly decreased and nearly restored to normal levels. The IL-10 level was also increased in response to treatment. In contrast, the non-responder group had persistently high IL-6, IL-17, IL-8, and CXCL10 levels, and negligible changes in TNF-α, IL-1β, IFN-γ, IL-2, and IL-10. Conclusions Our study indicated that the levels of inflammatory cytokines were significantly ameliorated in the glucocorticoid responder group. Altered cell-mediated immunity may contribute to the resistance in vitiligo. The cytokines such as TNF-α, IL-1β, IFN-γ and IL-2 could serve as therapeutic targets for managing glucocorticoid-resistant vitiligo.
Collapse
Affiliation(s)
- Xinju Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jinrong Fan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- The College of Life Sciences, Northwest University, Xi’an, Shaanxi Province, China
| | - Kaiqiao He
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jianru Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
6
|
Li Y, Zeng Y, Chen Z, Tan X, Mei X, Wu Z. The role of aryl hydrocarbon receptor in vitiligo: a review. Front Immunol 2024; 15:1291556. [PMID: 38361944 PMCID: PMC10867127 DOI: 10.3389/fimmu.2024.1291556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Vitiligo is an acquired autoimmune dermatosis characterized by patchy skin depigmentation, causing significant psychological distress to the patients. Genetic susceptibility, environmental triggers, oxidative stress, and autoimmunity contribute to melanocyte destruction in vitiligo. Due to the diversity and complexity of pathogenesis, the combination of inhibiting melanocyte destruction and stimulating melanogenesis gives the best results in treating vitiligo. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that can regulate the expression of various downstream genes and play roles in cell differentiation, immune response, and physiological homeostasis maintenance. Recent studies suggested that AhR signaling pathway was downregulated in vitiligo. Activation of AhR pathway helps to activate antioxidant pathways, inhibit abnormal immunity response, and upregulate the melanogenesis gene, thereby protecting melanocytes from oxidative stress damage, controlling disease progression, and promoting lesion repigmentation. Here, we review the relevant literature and summarize the possible roles of the AhR signaling pathway in vitiligo pathogenesis and treatment, to further understand the links between the AhR and vitiligo, and provide new potential therapeutic strategies.
Collapse
Affiliation(s)
- Yiting Li
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yibin Zeng
- Department of Dermatology, Minhang Hospital, Fudan University, Shanghai, China
| | - Zile Chen
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Tan
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyu Mei
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhouwei Wu
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Trujillo-Ochoa JL, Kazemian M, Afzali B. The role of transcription factors in shaping regulatory T cell identity. Nat Rev Immunol 2023; 23:842-856. [PMID: 37336954 PMCID: PMC10893967 DOI: 10.1038/s41577-023-00893-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
Forkhead box protein 3-expressing (FOXP3+) regulatory T cells (Treg cells) suppress conventional T cells and are essential for immunological tolerance. FOXP3, the master transcription factor of Treg cells, controls the expression of multiples genes to guide Treg cell differentiation and function. However, only a small fraction (<10%) of Treg cell-associated genes are directly bound by FOXP3, and FOXP3 alone is insufficient to fully specify the Treg cell programme, indicating a role for other accessory transcription factors operating upstream, downstream and/or concurrently with FOXP3 to direct Treg cell specification and specialized functions. Indeed, the heterogeneity of Treg cells can be at least partially attributed to differential expression of transcription factors that fine-tune their trafficking, survival and functional properties, some of which are niche-specific. In this Review, we discuss the emerging roles of accessory transcription factors in controlling Treg cell identity. We specifically focus on members of the basic helix-loop-helix family (AHR), basic leucine zipper family (BACH2, NFIL3 and BATF), CUT homeobox family (SATB1), zinc-finger domain family (BLIMP1, Ikaros and BCL-11B) and interferon regulatory factor family (IRF4), as well as lineage-defining transcription factors (T-bet, GATA3, RORγt and BCL-6). Understanding the imprinting of Treg cell identity and specialized function will be key to unravelling basic mechanisms of autoimmunity and identifying novel targets for drug development.
Collapse
Affiliation(s)
- Jorge L Trujillo-Ochoa
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
8
|
Luo L, Zhu J, Guo Y, Li C. Mitophagy and immune infiltration in vitiligo: evidence from bioinformatics analysis. Front Immunol 2023; 14:1164124. [PMID: 37287971 PMCID: PMC10242039 DOI: 10.3389/fimmu.2023.1164124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
Background Vitiligo is an acquired, autoimmune, depigmented skin disease with unclear pathogenesis. Mitochondrial dysfunction contributes significantly to vitiligo, and mitophagy is vital for removing damaged mitochondria. Herein, using bioinformatic analysis, we sought to determine the possible role of mitophagy-associated genes in vitiligo and immune infiltration. Methods Microarrays GSE53146 and GSE75819 were used to identify differentially expressed genes (DEGs) in vitiligo. By crossing vitiligo DEGs with mitophagy-related genes, the mitophagy-related DEGs were identified. Functional enrichment and protein-protein intersection (PPI) analyses were conducted. Then, the hub genes were identified using two machine algorithms, and receiver operating characteristic (ROC) curves were generated. Next, the immune infiltration and its connection with hub genes in vitiligo were investigated. Finally, the Regnetwork database and NetworkAnalyst were used to predict the upstream transcriptional factors (TFs), microRNAs (miRNAs), and the protein-compound network. Results A total of 24 mitophagy-related genes were screened. Then, five mitophagy hub genes (GABARAPL2, SP1, USP8, RELA, and TBC1D17) were identified using two machine learning algorithms, and these genes showed high diagnostic specificity for vitiligo. The PPI network showed that hub genes interacted with each other. The mRNA expression levels of five hub genes were validated in vitiligo lesions by qRT-PCR and were compatible with the bioinformatic results. Compared with controls, the abundance of activated CD4+ T cells, CD8+ T cells, immature dendritic cells and B cells, myeloid-derived suppressor cells (MDSCs), gamma delta T cells, mast cells, regulatory T cells (Tregs), and T helper 2 (Th2) cells was higher. However, the abundance of CD56 bright natural killer (NK) cells, monocytes, and NK cells was lower. Correlation analysis revealed a link between hub genes and immune infiltration. Meanwhile, we predicted the upstream TFs and miRNAs and the target compounds of hub genes. Conclusion Five hub mitophagy-related genes were identified and correlated with immune infiltration in vitiligo. These findings suggested that mitophagy may promote the development of vitiligo by activating immune infiltration. Our study might enhance our comprehension of the pathogenic mechanism of vitiligo and offer a treatment option for vitiligo.
Collapse
Affiliation(s)
- Lingling Luo
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jing Zhu
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Youming Guo
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Chengrang Li
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
- Department of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Watzky M, Huard S, Juricek L, Dairou J, Chauvet C, Coumoul X, Letessier A, Miotto B. Hexokinase 2 is a transcriptional target and a positive modulator of AHR signalling. Nucleic Acids Res 2022; 50:5545-5564. [PMID: 35609998 PMCID: PMC9178003 DOI: 10.1093/nar/gkac360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) regulates the expression of numerous genes in response to activation by agonists including xenobiotics. Although it is well appreciated that environmental signals and cell intrinsic features may modulate this transcriptional response, how it is mechanistically achieved remains poorly understood. We show that hexokinase 2 (HK2) a metabolic enzyme fuelling cancer cell growth, is a transcriptional target of AHR as well as a modulator of its activity. Expression of HK2 is positively regulated by AHR upon exposure to agonists both in human cells and in mice lung tissues. Conversely, over-expression of HK2 regulates the abundance of many proteins involved in the regulation of AHR signalling and these changes are linked with altered AHR expression levels and transcriptional activity. HK2 expression also shows a negative correlation with AHR promoter methylation in tumours, and these tumours with high HK2 expression and low AHR methylation are associated with a worse overall survival in patients. In sum, our study provides novel insights into how AHR signalling is regulated which may help our understanding of the context-specific effects of this pathway and may have implications in cancer.
Collapse
Affiliation(s)
- Manon Watzky
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014 Paris, France
| | - Solène Huard
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014 Paris, France
| | - Ludmila Juricek
- METATOX, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, INSERM UMR-S1124, F-75006 Paris, France
| | - Julien Dairou
- Université Paris Cité, UFR des Sciences Fondamentales et Biomédicales, Paris, France.,Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, CNRS, UMR 8601, Université Paris Cité, F-75006 Paris, France
| | - Caroline Chauvet
- METATOX, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, INSERM UMR-S1124, F-75006 Paris, France.,Université Paris Cité, UFR des Sciences Fondamentales et Biomédicales, Paris, France
| | - Xavier Coumoul
- METATOX, T3S, Toxicologie Environnementale, Cibles thérapeutiques, Signalisation cellulaire et Biomarqueurs, INSERM UMR-S1124, F-75006 Paris, France.,Université Paris Cité, UFR des Sciences Fondamentales et Biomédicales, Paris, France
| | - Anne Letessier
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014 Paris, France
| | - Benoit Miotto
- Université Paris Cité, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014 Paris, France
| |
Collapse
|
10
|
Research Progress on Targeted Antioxidant Therapy and Vitiligo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1821780. [PMID: 35320978 PMCID: PMC8938057 DOI: 10.1155/2022/1821780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/19/2021] [Accepted: 01/22/2022] [Indexed: 12/14/2022]
Abstract
Vitiligo is a common acquired depigmenting disease characterized by the loss of functional melanocytes and epidermal melanin. Vitiligo has a long treatment cycle and slow results, which is one of the most difficult challenges for skin diseases. Oxidative stress plays an important role as an initiating and driving factor in the pathogenesis of vitiligo. Antioxidant therapy has recently become a research hotspot in vitiligo treatment. A series of antioxidants has been discovered and applied to the treatment of vitiligo, which has returned satisfactory results. This article briefly reviews the relationship between oxidative stress and vitiligo. We also describe the progress of targeted antioxidant therapy in vitiligo, with the aim of providing a reference for new drug development and treatment options for this condition.
Collapse
|
11
|
A New Insight into the Potential Role of Tryptophan-Derived AhR Ligands in Skin Physiological and Pathological Processes. Int J Mol Sci 2021; 22:ijms22031104. [PMID: 33499346 PMCID: PMC7865493 DOI: 10.3390/ijms22031104] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) plays a crucial role in environmental responses and xenobiotic metabolism, as it controls the transcription profiles of several genes in a ligand-specific and cell-type-specific manner. Various barrier tissues, including skin, display the expression of AhR. Recent studies revealed multiple roles of AhR in skin physiology and disease, including melanogenesis, inflammation and cancer. Tryptophan metabolites are distinguished among the groups of natural and synthetic AhR ligands, and these include kynurenine, kynurenic acid and 6-formylindolo[3,2-b]carbazole (FICZ). Tryptophan derivatives can affect and regulate a variety of signaling pathways. Thus, the interest in how these substances influence physiological and pathological processes in the skin is expanding rapidly. The widespread presence of these substances and potential continuous exposure of the skin to their biological effects indicate the important role of AhR and its ligands in the prevention, pathogenesis and progression of skin diseases. In this review, we summarize the current knowledge of AhR in skin physiology. Moreover, we discuss the role of AhR in skin pathological processes, including inflammatory skin diseases, pigmentation disorders and cancer. Finally, the impact of FICZ, kynurenic acid, and kynurenine on physiological and pathological processes in the skin is considered. However, the mechanisms of how AhR regulates skin function require further investigation.
Collapse
|
12
|
Liu B, Xie Y, Mei X, Sun Y, Shi W, Wu Z. Reciprocal regulation of interleukin-17A and interleukin-22 secretion through aryl hydrocarbon receptor activation in CD4 + T cells of patients with vitiligo. Exp Ther Med 2020; 21:158. [PMID: 33456525 PMCID: PMC7792475 DOI: 10.3892/etm.2020.9589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/28/2020] [Indexed: 02/06/2023] Open
Abstract
Previous studies have shown the participation of the cytokines interleukin (IL) 17A and IL22 in the development of vitiligo. The aryl hydrocarbon receptor (AhR) functions in the pathogenesis of vitiligo and can modulate cytokine production. The aim of the present study was to determine the relationship between AhR activation and the secretion of IL17A and IL22 in CD4+ T cells in vitiligo. A total of 20 newly diagnosed patients with progressive, unstable vitiligo and 20 healthy controls were recruited. CD4+ T cells and skin samples were collected. Immunohistochemistry, ELISA, reverse transcription-quantitative PCR, western blotting and RNA interference experiments were performed. The expression of AhR was significantly lower in the CD4+ T cells and skin, both lesional and nonlesional, of patients with vitiligo compared with healthy subjects. AhR expression was markedly lower in nonlesional compared with lesional skin of patients with vitiligo. The expression levels of IL17A and IL22 were significantly higher in patients with vitiligo compared with healthy subjects. Knockdown of AhR significantly increased the production of IL17A and markedly decreased IL22 levels in the CD4+ T cells of patients with vitiligo. Ginkgo biloba extract EGb 761 activated AhR, inhibited IL17A secretion and enhanced IL22 release in the CD4+ T cells of patients with vitiligo. In conclusion, reduced AhR expression is associated with progressive, unstable vitiligo. Activation of AhR with G. biloba extract EGb 761 may have therapeutic potential for decreasing IL17A levels and increasing IL22 levels in patients with vitiligo.
Collapse
Affiliation(s)
- Baoyi Liu
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, P.R. China.,Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Yongyi Xie
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, P.R. China.,Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Xingyu Mei
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Yue Sun
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Weimin Shi
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| | - Zhouwei Wu
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, P.R. China
| |
Collapse
|
13
|
Lei Z, Yu S, Ding Y, Liang J, Halifu Y, Xiang F, Zhang D, Wang H, Hu W, Li T, Wang Y, Zou X, Zhang K, Kang X. Identification of key genes and pathways involved in vitiligo development based on integrated analysis. Medicine (Baltimore) 2020; 99:e21297. [PMID: 32756109 PMCID: PMC7402735 DOI: 10.1097/md.0000000000021297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Vitiligo is a chronic skin condition lack of melanocytes. However, researches on the aetiology and pathogenesis of vitiligo are still under debate. This study aimed to explore the key genes and pathways associated with occurrence and development of vitiligo.Weighted gene coexpression network analysis (WGCNA) was applied to reanalyze the gene expression dataset GSE65127 systematically. Functional enrichments of these modules were carried out at gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set variation analysis (GSVA), and gene set enrichment analysis (GSEA). Then, a map of regulatory network was delineated according to pivot analysis and drug prediction. In addition, hub genes and crucial pathways were validated by an independent dataset GSE75819. The expressions of hub genes in modules were also tested by quantitative real-time polymerase chain reaction (qRT-PCR).Eight coexpressed modules were identified by WGCNA based on 5794 differentially expressed genes of vitiligo. Three modules were found to be significantly correlated with Lesional, Peri-Lesional, and Non-Lesional, respectively. The persistent maladjusted genes included 269 upregulated genes and 82 downregulated genes. The enrichments showed module genes were implicated in immune response, p53 signaling pathway, etc. According to GSEA and GSVA, dysregulated pathways were activated incessantly from Non-Lesional to Peri-Lesional and then to Lesional, 4 of which were verified by an independent dataset GSE75819. Finally, 42 transcription factors and 228 drugs were spotted. Focusing on the persistent maladjusted genes, a map of regulatory network was delineated. Hub genes (CACTIN, DCTN1, GPR143, HADH, MRPL47, NKTR, NUF2) and transcription factors (ITGAV, SYK, PDPK1) were validated by an independent dataset GSE75819. In addition, hub genes (CACTIN, DCTN1, GPR143, MRPL47, NKTR) were also confirmed by qRT-PCR.The present study, at least, might provide an integrated and in-depth insight for exploring the underlying mechanism of vitiligo and predicting potential diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
| | - Shirong Yu
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Yuan Ding
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Junqin Liang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Yilinuer Halifu
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Fang Xiang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Dezhi Zhang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Hongjuan Wang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Wen Hu
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Tingting Li
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Yunying Wang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Xuelian Zou
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Kunjie Zhang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Xiaojing Kang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| |
Collapse
|
14
|
Ye W, Chen R, Chen X, Huang B, Lin R, Xie X, Chen J, Jiang J, Deng Y, Wen J. AhR regulates the expression of human cytochrome P450 1A1 (CYP1A1) by recruiting Sp1. FEBS J 2019; 286:4215-4231. [PMID: 31199573 DOI: 10.1111/febs.14956] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 12/28/2022]
Abstract
Cytochrome P450 1A1 (CYP1A1) is abundant in the kidney, liver, and intestine and is involved in the phase I metabolism of numerous endogenous and exogenous compounds. Therefore, exploring the regulatory mechanism of its basal expression in humans is particularly important to understand the bioactivation of several procarcinogens to their carcinogenic derivatives. Site-specific mutagenesis and deletion of the transcription factor binding site determined the core cis-acting elements in the human CYP1A1 proximal and distal promoter regions. The proximal promoter region [overlapping xenobiotic-responsive element (XRE) and GC box sequences] determined the basal expression of CYP1A1. In human hepatocellular carcinoma cells (HepG2) with aryl hydrocarbon receptor (AhR) or specificity protein 1 (Sp1) knockdown, we confirmed that AhR and Sp1 are involved in basal CYP1A1 expression. In HepG2 cells overexpressing either AhR or Sp1, AhR determined the proximal transactivation of basal CYP1A1 expression. Via DNA affinity precipitation assays and ChIP, we found that AhR bound to the promoter and recruited Sp1 to transactivate CYP1A1 expression. The coordinated interaction between Sp1 and AhR was identified to be DNA mediated. Our work revealed a basal regulatory mechanism of an interesting human gene by which AhR interacts with Sp1 through DNA and recruits Sp1 to regulate basal CYP1A1 expression.
Collapse
Affiliation(s)
- Wenchu Ye
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ruohong Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xiaoxuan Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Boyan Huang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Ruqin Lin
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xuan Xie
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jiongjie Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jun Jiang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University Guangzhou, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| |
Collapse
|
15
|
Wu CQ, Lin QR, Ying SJ, Luo JK, Hong WJ, Lin ZJ, Jiang Y. Association of Crohn's Disease with Aryl Hydrocarbon Receptor Gene Polymorphisms in Patients from Southeast China. Immunol Invest 2019; 48:809-821. [PMID: 31405308 DOI: 10.1080/08820139.2019.1569677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Aims The aryl hydrocarbon receptor (AhR) plays a pivotal role in regulating the innate and the acquired immune systems. The present study aimed to investigate the association of Crohn's disease (CD) with AhR polymorphisms in a cohort of patients from Southeast China. Methods An improved multiple ligase detection reaction technique was applied to examine the polymorphisms of rs2158041, rs2066853, and rs10249788 in 310 patients with CD and 573 controls. Results Compared to the controls, the variant allele (T) and genotype (CT+TT) of rs2158041 were less frequent in patients with CD (both p < 0.05). Similar conclusions were drawn from patients with ileal CD and with stricture CD as compared to the controls (all p < 0.0083). However, no significant differences were observed in allele and genotype frequencies of rs2066853 and rs10249788 between patients with CD and the controls (all p > 0.05). Although rs2158041 and rs10249788 were in complete linkage disequilibrium with rs2066853, respectively, only the frequency of haplotype (TG) formed by rs2158041 and rs2066853 was significantly lower in patients with CD than that in the controls (p < 0.05). Conclusions AhR (rs2158041) might be a susceptible locus for CD, especially for the two subtypes: ileal CD and stricture CD.
Collapse
Affiliation(s)
- Chao-Qun Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang Province , China
| | - Qian-Ru Lin
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang Province , China
| | - Shi-Jie Ying
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang Province , China
| | - Jia-Kai Luo
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang Province , China
| | - Wei-Jun Hong
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang Province , China
| | - Zi-Jian Lin
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang Province , China
| | - Yi Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , Zhejiang Province , China
| |
Collapse
|
16
|
Ames J, Warner M, Mocarelli P, Brambilla P, Signorini S, Siracusa C, Huen K, Holland N, Eskenazi B. AHR gene-dioxin interactions and birthweight in the Seveso Second Generation Health Study. Int J Epidemiol 2018; 47:1992-2004. [PMID: 30124847 PMCID: PMC6280946 DOI: 10.1093/ije/dyy165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2018] [Indexed: 12/22/2022] Open
Abstract
Background 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) is proposed to interfere with fetal growth via altered activity of the aryl hydrocarbon receptor (protein: AHR; gene: AHR) pathway which regulates diverse biological and developmental processes including xenobiotic metabolism. Genetic variation in AHR is an important driver of susceptibility to low birthweight in children exposed to prenatal smoking, but less is known about these genetic interactions with TCDD, AHR's most potent xenobiotic ligand. Methods The Seveso Women's Health Study (SWHS), initiated in 1996, is a cohort of 981 Italian women exposed to TCDD from an industrial explosion in July 1976. We measured TCDD concentrations in maternal serum collected close to the time of the accident. In 2008 and 2014, we followed up the SWHS cohort and collected data on birth outcomes of SWHS women with post-accident pregnancies. We genotyped 19 single nucleotide polymorphisms (SNPs) in AHR among the 574 SWHS mothers. Results Among 901 singleton births, neither SNPs nor TCDD exposure alone were significantly associated with birthweight. However, we found six individual SNPs in AHR which adversely modified the association between maternal TCDD and birthweight, implicating gene-environment interaction. We saw an even stronger susceptibility to TCDD due to interaction when we examined the joint contribution of these SNPs in a risk allele score. These SNPs were all located in noncoding regions of AHR, particularly in proximity to the promoter. Conclusions This is the first study to demonstrate that genetic variation across the maternal AHR gene may shape fetal susceptibilities to TCDD exposure.
Collapse
Affiliation(s)
- Jennifer Ames
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Marcella Warner
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Paolo Mocarelli
- Department of Laboratory Medicine, University of Milan-Bicocca, Hospital of Desio, Desio-Milano, Italy
| | - Paolo Brambilla
- Department of Laboratory Medicine, University of Milan-Bicocca, Hospital of Desio, Desio-Milano, Italy
| | - Stefano Signorini
- Department of Laboratory Medicine, University of Milan-Bicocca, Hospital of Desio, Desio-Milano, Italy
| | - Claudia Siracusa
- Department of Laboratory Medicine, University of Milan-Bicocca, Hospital of Desio, Desio-Milano, Italy
| | - Karen Huen
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Nina Holland
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children’s Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
17
|
Li ZZ, Zhong WL, Hu H, Chen XF, Zhang W, Huang HY, Yu B, Dou X. Aryl hydrocarbon receptor polymorphisms are associated with dry skin phenotypes in Chinese patients with atopic dermatitis. Clin Exp Dermatol 2018; 44:613-619. [PMID: 30499126 DOI: 10.1111/ced.13841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Epidermal barrier dysfunction is the initial event in the development of atopic dermatitis (AD). Recent studies have identified a crucial role for the aryl hydrocarbon receptor (AHR) in controlling the gene expression of filaggrin and other skin barrier proteins, suggesting an underlying association between AHR and AD pathogenesis. AIM To investigate the role of AHR gene polymorphisms in the susceptibility to AD and in AD-associated phenotypes. METHODS We enrolled 487 patients with AD, 210 patients with psoriasis and 226 healthy controls (HCs) from the Han Chinese population, and genotyped two AHR single-nucleotide polymorphisms (rs10249788 and rs2066853) by PCR and subsequent DNA sequencing. RESULTS The AHR rs10249788 and rs2066853 polymorphisms were found in both sets of patients (AD and psoriasis) and in HCs, but no significant differences were detected in genotype or allele frequencies between the three groups. However, patients with AD with the rs10249788 (CT/TT) or rs2066853 (AG + AA) genotype were more likely to have severe dry skin scores. In the stratification analysis, the AHR rs2066853 (AG + AA) and rs10249788 (CT + TT) genotypes could predict a higher risk of severe dry skin phenotypes in the male, early-onset and allergic rhinitis subgroups. Furthermore, the combined rs10249788 (CT + TT) and rs2066853 (AG + AA) genotypes led to a higher risk for severe dry skin in patients with AD. CONCLUSION AHR polymorphisms are not associated with the risk of AD; however, they may predict a dry skin phenotype in patients with AD.
Collapse
Affiliation(s)
- Z Z Li
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China.,Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - W L Zhong
- Department of Dermatology, Peking University First Hospital, Beijing, China
| | - H Hu
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - X F Chen
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - W Zhang
- Shenzhen Key Laboratory for Translational Medicine of Dermatology, Shenzhen-Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong, China
| | - H Y Huang
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - B Yu
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - X Dou
- Department of Dermatology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
18
|
Behfarjam F, Jadali Z. Vitiligo patients show significant up-regulation of aryl hydrocarbon receptor transcription factor. An Bras Dermatol 2018; 93:302-303. [PMID: 29723348 PMCID: PMC5916416 DOI: 10.1590/abd1806-4841.20187183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/09/2017] [Indexed: 11/21/2022] Open
Abstract
IL-22 has been implicated in the pathogenesis of vitiligo. However, the role of aryl hydrocarbon receptor transcription factor that acts as a master regulator of IL-22-producing Th22 cells is not fully understood. The goal of this study was to investigate the expression pattern of aryl hydrocarbon receptor in peripheral blood mononuclear cells of patients with vitiligo and in normal controls. Transcript levels were determined by a reverse transcription quantitative real-time polymerase chain reaction. Aryl hydrocarbon receptor mRNA expression was drastically increased in patients with vitiligo compared to healthy controls (P = 0.000). Th22 cells may contribute to abnormal immune responses underlying vitiligo.
Collapse
Affiliation(s)
- Farinaze Behfarjam
- Clinical Genetics Department, National Institute of Genetic
Engineering and Biotechnology Tehran, Iran
| | - Zohreh Jadali
- Department of Immunology, School of Public Health, Tehran
University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Roman ÁC, Carvajal-Gonzalez JM, Merino JM, Mulero-Navarro S, Fernández-Salguero PM. The aryl hydrocarbon receptor in the crossroad of signalling networks with therapeutic value. Pharmacol Ther 2017; 185:50-63. [PMID: 29258844 DOI: 10.1016/j.pharmthera.2017.12.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is well-known for its major contributions to the cellular responses against environmental toxins and carcinogens. Notably, AhR has also emerged as a key transcription factor controlling many physiological processes including cell proliferation and apoptosis, differentiation, adhesion and migration, pluripotency and stemness. These novel functions have broadened our understanding of the signalling pathways and molecular intermediates interacting with AhR under both homeostatic and pathological conditions. Recent discoveries link AhR with the function of essential organs such as liver, skin and gonads, and with complex organismal structures including the immune and cardiovascular systems. The identification of potential endogenous ligands able to regulate AhR activity, opens the possibility of designing ad hoc molecules with pharmacological and/or therapeutic value to treat human diseases in which AhR may have a causal role. Integration of experimental data from in vitro and in vivo studies with "omic" analyses of human patients affected with cancer, immune diseases, inflammation or neurological disorders will likely contribute to validate the clinical relevance of AhR and the possible benefits of modulating its activity by pharmacologically-driven strategies. In this review, we will highlight signalling pathways involved in human diseases that could be targetable by AhR modulators and discuss the feasibility of using such molecules in therapy. The pros and cons of AhR-aimed approaches will be also mentioned.
Collapse
Affiliation(s)
- Ángel C Roman
- Champalimaud Neuroscience Programme, Champalimoud Center for the Unknown, Lisbon, Portugal
| | - José M Carvajal-Gonzalez
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Jaime M Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | - Sonia Mulero-Navarro
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain.
| | - Pedro M Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain.
| |
Collapse
|
20
|
Rekik R, Ben Hmid A, Lajnef C, Zamali I, Zaraa I, Ben Ahmed M. Aryl hydrocarbon receptor (AhR) transcription is decreased in skin of vitiligo patients. Int J Dermatol 2017; 56:1509-1512. [PMID: 28960282 DOI: 10.1111/ijd.13761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/07/2017] [Accepted: 08/22/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Raja Rekik
- Laboratory of Transmission, Control and Immunobiology of Infection, LR11IPT02, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Ahlem Ben Hmid
- Laboratory of Clinical Immunology, Institut Pasteur de Tunis, Tunis, Tunisia
- Université de Tunis El Manar, Faculté de Médecine de Tunis, Tunis, Tunisia
| | - Chayma Lajnef
- Laboratory of Clinical Immunology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Imen Zamali
- Laboratory of Clinical Immunology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Ines Zaraa
- Department of Dermatology, La Rabta Hospital, Tunis, Tunisia
| | - Mélika Ben Ahmed
- Laboratory of Transmission, Control and Immunobiology of Infection, LR11IPT02, Institut Pasteur de Tunis, Tunis, Tunisia
- Laboratory of Clinical Immunology, Institut Pasteur de Tunis, Tunis, Tunisia
- Université de Tunis El Manar, Faculté de Médecine de Tunis, Tunis, Tunisia
| |
Collapse
|
21
|
Liu H, Zhan S, Zhang Y, Ma Y, Chen L, Chen L, Dong H, Ma M, Zhang Z. Molecular network-based analysis of the mechanism of liver injury induced by volatile oils from Artemisiae argyi folium. Altern Ther Health Med 2017; 17:491. [PMID: 29145837 PMCID: PMC5691807 DOI: 10.1186/s12906-017-1997-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/07/2017] [Indexed: 01/17/2023]
Abstract
Background Volatile oils from Artemisiae argyi folium (VOAAF) is reported with hepatotoxicity, but the underlying mechanism is still unclear. Methods In the present study this molecular mechanism was explored with the Ingenuity Pathway Analysis (IPA). The chemical components of the VOAAF were searched in the database, and their target proteins were all identified in the PubChem, while drug-induced liver injury (DILI) genes were searched in the PubMed gene databases. The molecular network of protein targets for VOAAF and DILI genes was built with the IPA. The canonical pathways between the 2 networks were compared to decipher the molecular mechanisms of the liver injury induced by VOAAF. Results There were 159 target proteins for VOAAF and 338 genes related to DILI identified, which were further analyzed in the IPA. The canonical pathway comparison showed that VOAAF and DILI both worked on aryl hydrocarbon receptor (AHR), lipopolysaccharide (LPS)/interleukin 1 (IL-1) mediated inhibition of retinoid X receptor (RXR) function, pregnane X receptor (PXR)/RXR activation, xenobiotic metabolism, peroxisome proliferator-activated receptor (PPAR), hepatic cholestasis, farnesoid X receptor (FXR)/RXR activation, and glucocorticoid receptor. Conclusion VOAAF-induced liver injury may be involved in many pathways in which the AHR signaling and LPS/IL-1 mediated inhibition of RXR function pathways could be the most vital. Electronic supplementary material The online version of this article (doi: 10.1186/s12906-017-1997-4) contains supplementary material, which is available to authorized users.
Collapse
|
22
|
Aftabi Y, Hosseinzadeh Colagar A, Mehrnejad F, Seyedrezazadeh E, Moudi E. Aryl hydrocarbon receptor gene transitions (c.-742C>T; c.1661G>A) and idiopathic male infertility: a case-control study with in silico and meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20599-20615. [PMID: 28712079 DOI: 10.1007/s11356-017-9701-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/04/2017] [Indexed: 06/07/2023]
Abstract
Aryl hydrocarbon receptor (AHR) is responsible for crucial events in male reproductive biology. Here, the association of the AHR transitions c.-742C>T and c.1661G>A with idiopathic male infertility was investigated in a case-control study, which is followed by a meta-analysis and a bioinformatic investigation. Blood and semen samples were obtained from a total of 135 idiopathic infertile men and 130 healthy controls. Participants were genotyped for the transitions using a PCR-RFLP method. A meta-analysis of five sets of data evaluated the association of c.1661G>A with male infertility, and using an in silico analysis, the possible molecular effects of the transitions predicted. Genotypes and alleles of AHR-c.-742C>T and c.1661G>A polymorphisms were not associated with the risk of male infertility significantly. However, the frequency of C/A haplotype was significantly associated with the increased risk of male infertility, and T/A haplotype was higher among controls significantly. Also, the frequencies of combined genotypes CT/GG, CT/GA and TT/GG were significantly associated with decreased risk of infertility. And, the meta-analysis showed that the AA versus GA/GG recessive model is associated with decreased risk of male infertility among the Iranian population. In silico analysis predicted that c.-742C>T does not alter the binding sites of the proposed transcription factors, but c.1661G>A poses a tolerable structural disturbance in AHR protein. In conclusion, these results showed that AHR c.-742C>T and c.1661G>A transitions separately could not be nominated as a risk or protective factor for male infertility. However, some combined models could affect infertility risk, especially among Iranian men.
Collapse
Affiliation(s)
- Younes Aftabi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Mazandaran, Post Code: 47416-95447, Iran
| | - Abasalt Hosseinzadeh Colagar
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Mazandaran, Post Code: 47416-95447, Iran.
| | - Faramarz Mehrnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box: 14395-1561, Tehran, Iran
| | - Ensiyeh Seyedrezazadeh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, P.O. Box: 53714-161, Tabriz, Iran
| | - Emadoddin Moudi
- Department of Urology, Babol University of Medical Sciences, P.O. Box: 47745-47176, Babol, Iran
| |
Collapse
|
23
|
He Y, Li S, Zhang W, Dai W, Cui T, Wang G, Gao T, Li C. Dysregulated autophagy increased melanocyte sensitivity to H 2O 2-induced oxidative stress in vitiligo. Sci Rep 2017; 7:42394. [PMID: 28186139 PMCID: PMC5301258 DOI: 10.1038/srep42394] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/10/2017] [Indexed: 11/09/2022] Open
Abstract
In vitiligo, melanocytes are particularly vulnerable to oxidative stress owing to the pro-oxidant state generated during melanin synthesis and to the genetic antioxidant defects. Autophagy is a controlled self-digestion process which can protect cells against oxidative damage. However, the exact role of autophagy in vitiligo melanocytes in response to oxidative stress and the mechanism involved are still not clear. To determine the implications of autophagy for melanocyte survival in response to oxidative stress, we first detected the autophagic flux in normal melanocytes exposure to H2O2, and found that autophagy was significantly enhanced in normal melanocytes, for protecting cells against H2O2-induced oxidative damage. Nevertheless, vitiligo melanocytes exhibited dysregulated autophagy and hypersensitivity to H2O2-induced oxidative injury. In addition, we confirmed that the impairment of Nrf2-p62 pathway is responsible for the defects of autophagy in vitiligo melanocytes. Noteworthily, upregulation of the Nrf2-p62 pathway or p62 reduced H2O2-induced oxidative damage of vitiligo melanocytes. Therefore, our data demonstrated that dysregulated autophagy owing to the impairment of Nrf2-p62 pathway increase the sensitivity of vitiligo melanocytes to oxidative stress, thus promote the development of vitiligo. Upregulation of p62-dependent autophagy may be applied to vitiligo treatment in the future.
Collapse
Affiliation(s)
- Yuanmin He
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shuli Li
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weigang Zhang
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Dai
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tingting Cui
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Gang Wang
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tianwen Gao
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
24
|
Identification of Novel HLA-A*0201-Restricted CTL Epitopes in Chinese Vitiligo Patients. Sci Rep 2016; 6:36360. [PMID: 27821860 PMCID: PMC5099573 DOI: 10.1038/srep36360] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/07/2016] [Indexed: 01/10/2023] Open
Abstract
Generalized vitiligo is an autoimmune disease characterized by melanocyte loss, which results in patchy depigmentation of skin and hair. Recent studies suggested the key role of CD8+T lymphocytes for mediating immune response in vitiligo through melanocyte differentiation antigens, including tyrosinase, gp100 and MelanA/Mart-1. However, the specific epitopes of these auto-antigens are still unknown. In our study, we predicted the possible HLA-A*0201-restricted nonapeptides overlaying the full-length amino acid sequences of these three known antigens and investigated the lymphocytes reactivity to these nonapeptides by Elispot assay. In addition, we evaluated the abilities of these nonapeptides to activate CD8+T cells. We screened out 5 possible epitopes originated from tyrosinase and gp100, numbered P28, P41, P112, P118 and P119. Among these 5 epitopes, notably, P28 and P119 played the dominant role in activating CTLs, with a significant increase in proliferation rate and Interferon-γ (IFN-γ) production of CD8+T cells. Nevertheless, antigen-specific T cell reactivity was not detected in MelanA/Mart-1 peptides. Our studies identified two novel epitopes originated from proteins of gp100 and tyrosinase, which may have implications for the development of immunotherapies for vitiligo.
Collapse
|