1
|
Jagannath A, Li Y, Cong H, Hassan J, Gonzalez G, Wang W, Zhang N, Gilchrist MD. UV-Assisted Hyperbranched Poly(β-amino ester) Modification of a Silica Membrane for Two-Step Microfluidic DNA Extraction from Blood. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37319124 DOI: 10.1021/acsami.3c03523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Integrating nucleic acid extraction in amplification-based point-of-care diagnostics will be a significant feature for next-generation point-of-care virus detection devices. However, extracting DNA efficiently on a microfluidic chip poses many technological and commercialization challenges, including manual steps, multiple instruments, pretreatment processes, and the use of organic solvents (ethanol, IPA) that inhibit detection, which is not viable with routine testing such as viral load monitoring of transplant patients for post-operative care. This paper presents a microfluidic system capable of two-step DNA extraction from blood using a UV-assisted hyperbranched poly(β-amino ester) (HPAE)-modified silica membrane for cytomegalovirus (CMV) detection in a rapid and instrument-free manner without the presence of amplification inhibitors. HPAEs of varying branch ratios were synthesized, screened, and coated on a silica membrane and bonded between two layers of poly(methyl methacrylate) (PMMA) substrates. Our system could selectively extract DNA from blood with an efficiency of 94% and a lower limit viral load of 300 IU/mL in 20 min. The extracted DNA was used as the template for real-time loop-mediated isothermal amplification (LAMP)-based detection of CMV and was found to produce a fluorescent signal intensity that was comparable with commercially extracted templates. This system can be integrated easily with a nucleic acid amplification system and used for routine rapid testing of viral load in patient blood samples.
Collapse
Affiliation(s)
- Akshaya Jagannath
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yinghao Li
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hengji Cong
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jaythoon Hassan
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gabriel Gonzalez
- National Virus Reference Laboratory, University College Dublin, Belfield, Dublin 4, Ireland
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, N20 W10, Kita-ku, Sapporo 001-0020, Japan
| | - Wenxin Wang
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nan Zhang
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- MiNAN Technologies Ltd., NovaUCD, Belfield, Dublin 4, Ireland
| | - Michael D Gilchrist
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- MiNAN Technologies Ltd., NovaUCD, Belfield, Dublin 4, Ireland
| |
Collapse
|
2
|
Choi G, Guan W. An Ultracompact Real-Time Fluorescence Loop-Mediated Isothermal Amplification (LAMP) Analyzer. Methods Mol Biol 2022; 2393:257-278. [PMID: 34837184 PMCID: PMC9191622 DOI: 10.1007/978-1-0716-1803-5_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Low-cost access to the highly sensitive and specific detection of the pathogen in the field is a crucial attribute for the next generation point-of-care (POC) platforms. In this work, we developed a real-time fluorescence nucleic acid testing device with automated and scalable sample preparation capability for field malaria diagnosis. The palm-sized battery-powered analyzer equipped with a disposable microfluidic reagent compact disc described in the companion Chap. 16 which facilitates four isothermal nucleic acid tests in parallel from raw blood samples to answer. The platform has a user-friendly interface such as touchscreen LCD and smartphone data connectivity for on-site and remote healthcare delivery, respectively. The chapter mainly focuses on describing integration procedures of the real-time fluorescence LAMP analyzer and the validation of its subsystems. The device cost is significantly reduced compared to the commercial benchtop real-time machine and other existing POC platforms. As a platform technology, self-sustainable, portable, low-cost, and easy-to-use analyzer design should create a new paradigm of molecular diagnosis toward a variety of infectious diseases at the point of need.
Collapse
Affiliation(s)
- Gihoon Choi
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, USA.
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
3
|
Choi Y, Kim YT, Lee SJ, Lee E, Lee KG, Im SG. Direct Solvent-Free Modification of the Inner Wall of the Microchip for Rapid DNA Extraction with Enhanced Capturing Efficiency. Macromol Res 2019. [DOI: 10.1007/s13233-020-8028-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
4
|
Jang YO, Jin CE, Choi EH, Shin JH, Kweon J, Koo B, Lim SB, Lee SW, Shin Y. A homobifunctional imidoester-based microfluidic system for simultaneous DNA and protein isolation from solid or liquid biopsy samples. LAB ON A CHIP 2019; 19:2256-2264. [PMID: 31173022 DOI: 10.1039/c9lc00367c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The isolation of bio-molecules such as proteins and nucleic acids is a necessary step for both diagnostic and analytical processes in the broad fields of research and clinical applications. Although a myriad of isolation technologies have been developed, a method for simultaneous protein and nucleic acid isolation has not been explored for clinical use. Obtaining samples from certain cancers or rare diseases can be difficult. In addition, the heterogeneity of cancer tissues typically leads to inconsistent results when analyzing biomolecules. We here describe a homobifunctional imidoester (HI)-based microfluidic system for simultaneous DNA and protein isolation from either a solid or liquid single biopsy sample. An efficient and cost effective microfluidic design with less air bubbles was identified among several candidates using simulation and experimental results from the streamlining of isolation processing. HI groups were used as capture reagents for the simultaneous isolation of bio-molecules from a single specimen in a single microfluidic system. The clinical utility of this system for the simultaneous isolation of DNA and proteins within 40 min was validated in cancer cell lines and 23 tissue biopsies from colorectal cancer patients. The quantity of isolated protein and DNA was high using this system compared to the spin-column method. This HI-based microfluidic system shows good rapidity, affordability, and portability in the isolation of bio-molecules from limited samples for subsequent clinical analysis.
Collapse
Affiliation(s)
- Yoon Ok Jang
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Jin CE, Koo B, Lee TY, Han K, Lim SB, Park IJ, Shin Y. Simple and Low-Cost Sampling of Cell-Free Nucleic Acids from Blood Plasma for Rapid and Sensitive Detection of Circulating Tumor DNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800614. [PMID: 30356899 PMCID: PMC6193143 DOI: 10.1002/advs.201800614] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/05/2018] [Indexed: 05/07/2023]
Abstract
Cell-free nucleic acids (cfNAs) are emerging diagnostic biomarkers for monitoring the treatment and recurrence of cancers. In particular, the biological role and clinical usefulness of cfNAs obtained from the plasma of patients with various cancers are popular and still intensely explored, yet most studies are limited by technical problems during cfNA isolation. A dimethyl dithiobispropionimidate (DTBP)-based microchannel platform that enables spontaneous cfNA capture in 15 min with minimal cellular background and no requirements for use of bulky instruments is reported first. This platform identified KRAS and BRAF hot-spot mutations following cfDNA isolation from the blood plasma and tissues obtained from 30 colorectal cancer patients. The correlation of mutations between the primary tissues and plasma from the patients was high using this platform with whole genome sequencing compared to the spin-column method. This platform can also be combined with various detection approaches (biooptical sensor, Sanger sequencing, and polymerase chain reaction (PCR)) for rapid, simple, low-cost, and sensitive circulating tumor DNA detection in blood plasma. The efficiency and versatility of this platform in isolating cfNAs from liquid biopsies has applications in cancer treatment and precision medicine.
Collapse
Affiliation(s)
- Choong Eun Jin
- Department of Convergence MedicineAsan Medical CenterUniversity of Ulsan College of Medicine88 Olympicro‐43gil, Songpa‐gu,05505SeoulRepublic of Korea
- Biomedical Engineering Research CenterAsan Institute of Life SciencesAsan Medical Center88 Olympicro‐43gil, Songpa‐gu,05505SeoulRepublic of Korea
| | - Bonhan Koo
- Department of Convergence MedicineAsan Medical CenterUniversity of Ulsan College of Medicine88 Olympicro‐43gil, Songpa‐gu,05505SeoulRepublic of Korea
- Biomedical Engineering Research CenterAsan Institute of Life SciencesAsan Medical Center88 Olympicro‐43gil, Songpa‐gu,05505SeoulRepublic of Korea
| | - Tae Yoon Lee
- Department of Technology Education and Department of Biomedical EngineeringChungnam National University99 Daehak‐ro, Yuseong‐guDaejeon34134Republic of Korea
| | - Kyudong Han
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative MedicineDankook UniversityCheonan31116Republic of Korea
| | - Seok Byung Lim
- Department of Colon & Rectal SurgeryAsan Medical CenterUniversity of Ulsan College of Medicine88 Olympicro‐43gil, Songpa‐gu,05505SeoulRepublic of Korea
| | - In Ja Park
- Department of Colon & Rectal SurgeryAsan Medical CenterUniversity of Ulsan College of Medicine88 Olympicro‐43gil, Songpa‐gu,05505SeoulRepublic of Korea
| | - Yong Shin
- Department of Convergence MedicineAsan Medical CenterUniversity of Ulsan College of Medicine88 Olympicro‐43gil, Songpa‐gu,05505SeoulRepublic of Korea
- Biomedical Engineering Research CenterAsan Institute of Life SciencesAsan Medical Center88 Olympicro‐43gil, Songpa‐gu,05505SeoulRepublic of Korea
| |
Collapse
|
6
|
Jin CE, Koo B, Lee EY, Kim JY, Kim SH, Shin Y. Simple and label-free pathogen enrichment via homobifunctional imidoesters using a microfluidic (SLIM) system for ultrasensitive pathogen detection in various clinical specimens. Biosens Bioelectron 2018; 111:66-73. [PMID: 29653418 PMCID: PMC7125596 DOI: 10.1016/j.bios.2018.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/16/2018] [Accepted: 04/01/2018] [Indexed: 01/12/2023]
Abstract
Diseases caused by pathogenic microorganisms including bacteria and viruses can cause serious medical issues including death and result in huge economic losses. Despite the myriad of recent advances in the rapid and accurate detection of pathogens, large volume clinical samples with a low concentration of pathogens continue to present challenges for diagnosis and surveillance. We here report a simple and label-free approach via homobifunctional imidoesters (HIs) with a microfluidic platform (SLIM) to efficiently enrich and extract pathogens at low concentrations from clinical samples. The SLIM system consists of an assembled double microfluidic chip for streamlining large volume processing and HIs for capturing pathogens and isolating nucleic acids by both electrostatic and covalent interaction without a chaotropic detergent or bulky instruments. The SLIM system significantly increases the enrichment and extraction rate of pathogens (up to 80% at 10 CFU (colony forming unit) in a 1 mL volume within 50 min). We demonstrated its clinical utility in large sample volumes from 46 clinical specimens including environmental swabs, saliva, and blood plasma. The SLIM system showed higher sensitivity with these samples and could detect pathogens that were below the threshold of detection with other methods. Finally, by combining our SLIM approach with an isothermal optical sensor, pathogens could be detected at a very high sensitivity in blood plasma samples within 80 min via enrichment, extraction and detection steps. Our SLIM system thus provides a simple, reliable, cost-effective and ultrasensitive pathogen diagnosis platform for use with large volume clinical samples and would thus have significant utility for various infectious diseases. SLIM system significantly increases the enrichment and extraction rate of pathogens. Demonstrated its clinical utility in large sample volumes from 46 clinical specimens. A simple, reliable, cost-effective and ultrasensitive pathogen diagnosis platform.
Collapse
Affiliation(s)
- Choong Eun Jin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Bonhan Koo
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Eun Yeong Lee
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Ji Yeun Kim
- Department of Infectious Disease, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Disease, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Yong Shin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Liu H, Zhao F, Jin CE, Koo B, Lee EY, Zhong L, Yun K, Shin Y. Large Instrument- and Detergent-Free Assay for Ultrasensitive Nucleic Acids Isolation via Binary Nanomaterial. Anal Chem 2018; 90:5108-5115. [PMID: 29561136 DOI: 10.1021/acs.analchem.7b05136] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nucleic acid-based diagnostics are widely used for clinical applications due to their powerful recognition of biomolecule properties. Isolation and purification of nucleic acids such as DNA and RNA in the diagnostic system have been severely hampered in point-of-care testing because of low recovery yields, degradation of nucleic acids due to the use of chaotropic detergent and high temperature, and the requirement of large instruments such as centrifuges and thermal controllers. Here, we report a novel large instrument- and detergent-free assay via binary nanomaterial for ultrasensitive nucleic acid isolation and detection from cells (eukaryotic and prokaryotic). This binary nanomaterial couples a zinc oxide nanomultigonal shuttle (ZnO NMS) for cell membrane rupture without detergent and temperature control and diatomaceous earth with dimethyl suberimidate complex (DDS) for the capture and isolation of nucleic acids (NA) from cells. The ZnO NMS was synthesized to a size of 500 nm to permit efficient cell lysis at room temperature within 2 min using the biological, chemical, and physical properties of the nanomaterial. By combining the ZnO NMS with the DDS and proteinase K, the nucleic acid extraction could be completed in 15 min with high quantity and quality. For bacterial cells, DNA isolation with the binary nanomaterial yielded 100 times more DNA, than a commercial spin column based reference kit, as determined by the NanoDrop spectrophotometer. We believe that this binary nanomaterial will be a useful tool for rapid and sensitive nucleic acid isolation and detection without large instruments and detergent in the field of molecular diagnostics.
Collapse
Affiliation(s)
- Huifang Liu
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine and Biomedical Engineering Research Center, Asan Institute of Life Sciences , Asan Medical Center , 88 Olympicro-43gil , Songpa-gu, Seoul 05505 , Republic of Korea
| | - Fei Zhao
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine and Biomedical Engineering Research Center, Asan Institute of Life Sciences , Asan Medical Center , 88 Olympicro-43gil , Songpa-gu, Seoul 05505 , Republic of Korea
| | - Choong Eun Jin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine and Biomedical Engineering Research Center, Asan Institute of Life Sciences , Asan Medical Center , 88 Olympicro-43gil , Songpa-gu, Seoul 05505 , Republic of Korea
| | - Bonhan Koo
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine and Biomedical Engineering Research Center, Asan Institute of Life Sciences , Asan Medical Center , 88 Olympicro-43gil , Songpa-gu, Seoul 05505 , Republic of Korea
| | - Eun Yeong Lee
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine and Biomedical Engineering Research Center, Asan Institute of Life Sciences , Asan Medical Center , 88 Olympicro-43gil , Songpa-gu, Seoul 05505 , Republic of Korea
| | - Linlin Zhong
- Department of Bionanotechnology , Gachon University , Gyeonggi-do 13120 , Republic of Korea
| | - Kyusik Yun
- Department of Bionanotechnology , Gachon University , Gyeonggi-do 13120 , Republic of Korea
| | - Yong Shin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine and Biomedical Engineering Research Center, Asan Institute of Life Sciences , Asan Medical Center , 88 Olympicro-43gil , Songpa-gu, Seoul 05505 , Republic of Korea
| |
Collapse
|
8
|
Siracusa J, Koulmann N, Banzet S. Circulating myomiRs: a new class of biomarkers to monitor skeletal muscle in physiology and medicine. J Cachexia Sarcopenia Muscle 2018; 9:20-27. [PMID: 29193905 PMCID: PMC5803618 DOI: 10.1002/jcsm.12227] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/13/2017] [Accepted: 07/05/2017] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNA) are small non-coding RNAs that target mRNAs and are consequently involved in the post-transcriptional regulation of gene expression. Some miRNAs are ubiquitously expressed in tissue, while others are tissue-specific or tissue-enriched. miRNAs can be released by cells and are found in various biofluids, including serum and plasma. Thus, measuring miRNAs in the circulation may provide information on the originating tissue or cells. MyomiRs are described as striated muscle-specific or muscle-enriched miRNAs. Their circulating levels can be measured and have been proposed to be new biomarkers of physiological and pathological muscle processes. The aims of this review are to summarize the current knowledge of circulating myomiRs, to identify the types of information they can provide about skeletal muscle, and to determine how to apply that information in the fields of research and medicine.
Collapse
Affiliation(s)
- Julien Siracusa
- Institut de Recherche Biomédicale des Armées, 1 place Valérie André, BP73, 91220, Brétigny sur Orge, France
| | - Nathalie Koulmann
- Institut de Recherche Biomédicale des Armées, 1 place Valérie André, BP73, 91220, Brétigny sur Orge, France.,Ecole du Val de Grâce, 1 place Alphonse Laveran, 75005, Paris, France
| | - Sébastien Banzet
- Ecole du Val de Grâce, 1 place Alphonse Laveran, 75005, Paris, France.,Institut de Recherche Biomédicale des Armées, 1 Rue Lieutenant Raoul Batany, 92140, Clamart, France.,INSERM UMRS1197, 1 Rue Lieutenant Raoul Batany, 92140, Clamart, France
| |
Collapse
|
9
|
Zhao F, Koo B, Liu H, Eun Jin C, Shin Y. A single-tube approach for in vitro diagnostics using diatomaceous earth and optical sensor. Biosens Bioelectron 2018; 99:443-449. [PMID: 28818785 PMCID: PMC7127695 DOI: 10.1016/j.bios.2017.08.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/03/2017] [Accepted: 08/11/2017] [Indexed: 12/20/2022]
Abstract
Versatile, simple and efficient sample preparation is desirable for point-of-care testing of emerging diseases such as zoonoses, but current sample preparation assays are insensitive, labour-intensive and time-consuming and require multiple instruments. We developed a single-tube sample preparation approach involving direct pathogen enrichment and extraction from human specimens using diatomaceous earth (DE). Amine-modified DE was used to directly enrich a zoonotic pathogen, Brucella, in a large sample volume. Next, a complex of amine-modified DE and dimethyl suberimidate was used for nucleic acid extraction from the enriched pathogen. Using our single-tube approach, the pathogen can be enriched and extracted within 60min at a level of 1 colony formation unit (CFU) from a 1ml sample volume in the same tube. The performance of this approach is 10-100 times better than that of a commercial kit (102 to 103CFU/ml) but does not require a large centrifuge. Finally, we combined the single-tube approach with a bio-optical sensor for rapid and accurate zoonotic pathogen detection in human urine samples. Using the combination system, Brucella in human urine can be efficiently enriched (~ 8-fold) and the detection limit is enhanced by up to 100 times (1CFU/ml bacteria in urine) compared with the commercial kit. This combined system is fast and highly sensitive and thus represents a promising approach for disease diagnosis in the clinical setting.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, and Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Bonhan Koo
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, and Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Huifang Liu
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, and Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Choong Eun Jin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, and Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Yong Shin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, and Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Jin CE, Lee TY, Koo B, Choi KC, Chang S, Park SY, Kim JY, Kim SH, Shin Y. Use of Dimethyl Pimelimidate with Microfluidic System for Nucleic Acids Extraction without Electricity. Anal Chem 2017. [PMID: 28633525 DOI: 10.1021/acs.analchem.7b01193] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The isolation of nucleic acids in the lab on a chip is crucial to achieve the maximal effectiveness of point-of-care testing for detection in clinical applications. Here, we report on the use of a simple and versatile single-channel microfluidic platform that combines dimethyl pimelimidate (DMP) for nucleic acids (both RNA and DNA) extraction without electricity using a thin-film system. The system is based on the adaption of DMP into nonchaotropic-based nucleic acids and the capture of reagents into a low-cost thin-film platform for use as a microfluidic total analysis system, which can be utilized for sample processing in clinical diagnostics. Moreover, we assessed the use of the DMP system for the extraction of nucleic acids from various samples, including mammalian cells, bacterial cells, and viruses from human disease, and we also confirmed that the quality and quantity of the nucleic acids extracted were sufficient to allow for the robust detection of biomarkers and/or pathogens in downstream analysis. Furthermore, this DMP system does not require any instruments and electricity, and has improved time efficiency, portability, and affordability. Thus, we believe that the DMP system may change the paradigm of sample processing in clinical diagnostics.
Collapse
Affiliation(s)
- Choong Eun Jin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center , 88 Olympicro-43gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Tae Yoon Lee
- Department of Technology Education and Department of Biomedical Engineering, Chungnam National University , Daejeon 34134, Republic of Korea
| | - Bonhan Koo
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center , 88 Olympicro-43gil, Songpa-gu, Seoul 05505, Republic of Korea
| | - Kyung-Chul Choi
- Department of Biomedical Sciences and Department of Pharmacology, University of Ulsan College of Medicine , Seoul 05505, Republic of Korea
| | - Suhwan Chang
- Department of Biomedical Sciences, University of Ulsan College of Medicine , Seoul 05505, Republic of Korea
| | - Se Yoon Park
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine , Seoul 05505, Republic of Korea.,Division of Infectious Diseases, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine , Seoul 140-743, Republic of Korea
| | - Ji Yeun Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine , Seoul 05505, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine , Seoul 05505, Republic of Korea
| | - Yong Shin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center , 88 Olympicro-43gil, Songpa-gu, Seoul 05505, Republic of Korea
| |
Collapse
|
11
|
Koo B, Jin CE, Lee TY, Lee JH, Park MK, Sung H, Park SY, Lee HJ, Kim SM, Kim JY, Kim SH, Shin Y. An isothermal, label-free, and rapid one-step RNA amplification/detection assay for diagnosis of respiratory viral infections. Biosens Bioelectron 2017; 90:187-194. [PMID: 27894035 PMCID: PMC7127409 DOI: 10.1016/j.bios.2016.11.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/31/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022]
Abstract
Recently, RNA viral infections caused by respiratory viruses, such as influenza, parainfluenza, respiratory syncytial virus, coronavirus, and Middle East respiratory syndrome-coronavirus (MERS-CoV), and Zika virus, are a major public health threats in the world. Although myriads of diagnostic methods based on RNA amplification have been developed in the last decades, they continue to lack speed, sensitivity, and specificity for clinical use. A rapid and accurate diagnostic method is needed for appropriate control, including isolation and treatment of the patients. Here, we report an isothermal, label-free, one-step RNA amplification and detection system, termed as iROAD, for the diagnosis of respiratory diseases. It couples a one-step isothermal RNA amplification method and a bio-optical sensor for simultaneous viral RNA amplification/detection in a label-free and real-time manner. The iROAD assay offers a one-step viral RNA amplification/detection example to rapid analysis (<20min). The detection limit of iROAD assay was found to be 10-times more sensitive than that of real-time reverse transcription-PCR method. We confirmed the clinical utility of the iROAD assay by detecting viral RNAs obtained from 63 human respiratory samples. We envision that the iROAD assay will be useful and potentially adaptable for better diagnosis of emerging infectious diseases including respiratory diseases.
Collapse
Affiliation(s)
- Bonhan Koo
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Choong Eun Jin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Tae Yoon Lee
- Department of Technology Education, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong Hoon Lee
- Department of Electrical Engineering, Kwangwoon University, 447-1 Wolgye, Nowon, Seoul 136-791, Republic of Korea
| | - Mi Kyoung Park
- One BioMed Pte Ltd, 60 Biopolis street, Genome #02-01, Singapore 138672, Singapore
| | - Heungsup Sung
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Se Yoon Park
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea; Division of Infectious Diseases, Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Sun Mi Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Ji Yeun Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea.
| | - Yong Shin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Two-stage sample-to-answer system based on nucleic acid amplification approach for detection of malaria parasites. Biosens Bioelectron 2016; 82:1-8. [PMID: 27031184 DOI: 10.1016/j.bios.2016.03.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 01/07/2023]
Abstract
Rapid, early, and accurate diagnosis of malaria is essential for effective disease management and surveillance, and can reduce morbidity and mortality associated with the disease. Although significant advances have been achieved for the diagnosis of malaria, these technologies are still far from ideal, being time consuming, complex and poorly sensitive as well as requiring separate assays for sample processing and detection. Therefore, the development of a fast and sensitive method that can integrate sample processing with detection of malarial infection is desirable. Here, we report a two-stage sample-to-answer system based on nucleic acid amplification approach for detection of malaria parasites. It combines the Dimethyl adipimidate (DMA)/Thin film Sample processing (DTS) technique as a first stage and the Mach-Zehnder Interferometer-Isothermal solid-phase DNA Amplification (MZI-IDA) sensing technique as a second stage. The system can extract DNA from malarial parasites using DTS technique in a closed system, not only reducing sample loss and contamination, but also facilitating the multiplexed malarial DNA detection using the fast and accurate MZI-IDA technique. Here, we demonstrated that this system can deliver results within 60min (including sample processing, amplification and detection) with high sensitivity (<1 parasite μL(-1)) in a label-free and real-time manner. The developed system would be of great potential for better diagnosis of malaria in low-resource settings.
Collapse
|