Lee T, Kim S, Kim J, Park SC, Yoon J, Park C, Sohn H, Ahn JH, Min J. Recent Advances in Biomolecule-Nanomaterial Heterolayer-Based Charge Storage Devices for Bioelectronic Applications.
MATERIALS (BASEL, SWITZERLAND) 2020;
13:E3520. [PMID:
32784985 PMCID:
PMC7475838 DOI:
10.3390/ma13163520]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 11/16/2022]
Abstract
With the acceleration of the Fourth Industrial Revolution, the development of information and communications technology requires innovative information storage devices and processing devices with low power and ultrahigh stability. Accordingly, bioelectronic devices have gained considerable attention as a promising alternative to silicon-based devices because of their various applications, including human-body-attached devices, biomaterial-based computation systems, and biomaterial-nanomaterial hybrid-based charge storage devices. Nanomaterial-based charge storage devices have witnessed considerable development owing to their similarity to conventional charge storage devices and their ease of applicability. The introduction of a biomaterial-to-nanomaterial-based system using a combination of biomolecules and nanostructures provides outstanding electrochemical, electrical, and optical properties that can be applied to the fabrication of charge storage devices. Here, we describe the recent advances in charge storage devices containing a biomolecule and nanoparticle heterolayer including (1) electrical resistive charge storage devices, (2) electrochemical biomemory devices, (3) field-effect transistors, and (4) biomemristors. Progress in biomolecule-nanomaterial heterolayer-based charge storage devices will lead to unprecedented opportunities for the integration of information and communications technology, biotechnology, and nanotechnology for the Fourth Industrial Revolution.
Collapse