1
|
Navale GR, Ahmed I, Lim MH, Ghosh K. Transition Metal Complexes as Therapeutics: A New Frontier in Combatting Neurodegenerative Disorders through Protein Aggregation Modulation. Adv Healthc Mater 2024; 13:e2401991. [PMID: 39221545 DOI: 10.1002/adhm.202401991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Neurodegenerative disorders (NDDs) are a class of debilitating diseases that progressively impair the protein structure and result in neurological dysfunction in the nervous system. Among these disorders, Alzheimer's disease (AD), prion diseases such as Creutzfeldt-Jakob disease (CJD), and Parkinson's disease (PD) are caused by protein misfolding and aggregation at the cellular level. In recent years, transition metal complexes have gained significant attention for their potential applications in diagnosing, imaging, and curing these NDDs. These complexes have intriguing possibilities as therapeutics due to their diverse ligand systems and chemical properties and can interact with biological systems with minimal detrimental effects. This review focuses on the recent progress in transition metal therapeutics as a new era of hope in the battle against AD, CJD, and PD by modulating protein aggregation in vitro and in vivo. It may shed revolutionary insights into unlocking new opportunities for researchers to develop metal-based drugs to combat NDDs.
Collapse
Affiliation(s)
- Govinda R Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
| | - Imtiaz Ahmed
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| |
Collapse
|
2
|
Terpstra K, Huang Y, Na H, Sun L, Gutierrez C, Yu Z, Mirica LM. 2-Phenylbenzothiazolyl iridium complexes as inhibitors and probes of amyloid β aggregation. Dalton Trans 2024; 53:14258-14264. [PMID: 39129539 PMCID: PMC11445708 DOI: 10.1039/d4dt01691b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The aggregation of amyloid β (Aβ) peptides is a significant hallmark of Alzheimer's disease (AD), and the detection of Aβ aggregates and the inhibition of their formation are important for the diagnosis and treatment of AD, respectively. Herein, we report a series of benzothiazole-based Ir(III) complexes HN-1 to HN-8 that exhibit appreciable inhibition of Aβ aggregation in vitro and in living cells. These Ir(III) complexes can induce a significant fluorescence increase when binding to Aβ fibrils and Aβ oligomers, while their measured log D values suggest these compounds could have enhanced blood-brain barrier (BBB) permeability. In vivo studies show that HN-1, HN-2, HN-3, and HN-8 successfully penetrate the BBB and stain the amyloid plaques in AD mouse brains after a 10-day treatment, suggesting that these Ir(III) complexes could act as lead compounds for AD therapeutic and diagnostic agent development.
Collapse
Affiliation(s)
- Karna Terpstra
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA.
| | - Yiran Huang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA.
| | - Hanah Na
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA.
| | - Liang Sun
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA.
| | - Citlali Gutierrez
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA.
| | - Zhengxin Yu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA.
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, USA.
| |
Collapse
|
3
|
Gao F, Chen J, Zhou Y, Cheng L, Hu M, Wang X. Recent progress of small-molecule-based theranostic agents in Alzheimer's disease. RSC Med Chem 2023; 14:2231-2245. [PMID: 37974955 PMCID: PMC10650505 DOI: 10.1039/d3md00330b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/11/2023] [Indexed: 11/19/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative dementia. As a multifactorial disease, AD involves several etiopathogenic mechanisms, in which multiple pathological factors are interconnected with each other. This complicated and unclear pathogenesis makes AD lack effective diagnosis and treatment. Theranostics, exerting the synergistic effect of diagnostic and therapeutic functions, would provide a promising strategy for exploring AD pathogenesis and developing drugs for combating AD. With the efforts in small drug-like molecules for both diagnosis and treatment of AD, small-molecule-based theranostic agents have attracted significant attention owing to their facile synthesis, high biocompatibility and reproducibility, and easy clearance from the body through the excretion systems. In this review, the small-molecule-based theranostic agents reported in the literature for anti-AD are classified into four groups according to their diagnostic modalities. Their design rationales, chemical structures, and working mechanisms for theranostics are summarized. Finally, the opportunities for small-molecule-based theranostic agents in AD are also proposed.
Collapse
Affiliation(s)
- Furong Gao
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Jiefang Chen
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yuancun Zhou
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Letong Cheng
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Ming Hu
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Xiaohui Wang
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| |
Collapse
|
4
|
Kwak J, Woo J, Park S, Lim MH. Rational design of photoactivatable metal complexes to target and modulate amyloid-β peptides. J Inorg Biochem 2023; 238:112053. [PMID: 36347209 DOI: 10.1016/j.jinorgbio.2022.112053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/25/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022]
Abstract
The accumulation of amyloid-β (Aβ) aggregates is found in the brains of Alzheimer's disease patients. Thus, numerous efforts have been made to develop chemical reagents capable of targeting Aβ peptides and controlling their aggregation. In particular, tunable coordination and photophysical properties of transition metal complexes, with variable oxidation and spin states on the metal centers, can be utilized to probe Aβ aggregates and alter their aggregation profiles. In this review, we illustrate some rational strategies for designing photoactivatable metal complexes as chemical sensors for Aβ peptides or modulators against their aggregation pathways, with some examples.
Collapse
Affiliation(s)
- Jimin Kwak
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junhyeok Woo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seongmin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
5
|
Jiang B, Martí AA. Probing Amyloid Nanostructures Using Photoluminescent Metal Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Affiliation(s)
- Bo Jiang
- Department of Chemistry Rice University 6100 Main St, Chemistry MS60 Houston Texas 77005 United States
| | - Angel A. Martí
- Department of Chemistry Department of Bioengineering, and Department of Material Science & NanoEngineering Rice University 6100 Main St, Chemistry MS60 Houston Texas 77005 United States
| |
Collapse
|
6
|
Zhang Y, Fei W, Zhang H, Zhou Y, Tian L, Hao J, Yuan Y, Li W, Liu Y. Increasing anticancer effect in vitro and vivo of liposome-encapsulated iridium(III) complexes on BEL-7402 cells. J Inorg Biochem 2021; 225:111622. [PMID: 34624670 DOI: 10.1016/j.jinorgbio.2021.111622] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 01/04/2023]
Abstract
The studies of iridium (III) complexes as potent anticancer reagents have attracted great attention. Here, a new iridium (III) complex [Ir(bzq)2(PYIP)](PF6) (Ir1, bzq = benzo[h]quinoline, PYIP = 2-(pyren-1-yl)-1H-imidazo[4,5-f][1,10]phenanthroline) was synthesized and its liposomes (Ir1Lipo) was prepared. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method was used to detect the cytotoxic activity of Ir1 and Ir1Lipo on HepG2, SGC-7901, BEL-7402, HeLa, B16, A549 and normal NIH3T3 cells. The complex Ir1 displays no obvious inhibitory effect on the growth of BEL-7402 cells, while the Ir1Lipo shows significant cytotoxic activity on BEL-7402 cells (IC50 = 2.6 ± 0.03 μM). In further studies, Ir1Lipo induced apoptosis by the mitochondrial pathways, such as increasing intracellular reactive oxygen species (ROS) content and intracellular Ca2+ level, decreasing the mitochondrial membrane potential (MMP). In addition, after incubation with Ir1Lipo, the colony formation of BEL-7402 cells was significantly inhibited. Moreover, flow cytometry was used to detect the impact of Ir1Lipo on cell cycle distribution, and western blot was used to detect the expression of caspases and Bcl-2 (B-cell lymphoma-2) family proteins. Furthermore, Ir1Lipo exhibited significant antitumor activity in vivo with an inhibitory rate of 65.8%. These results indicated that Ir1Lipo induces apoptosis in BEL-7402 cells through intrinsic mitochondrial pathway.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Weidong Fei
- Department of Pharmacy, Women's Hospital, Zejiang University School of Medicine, Hangzhou 310006, PR China
| | - Huiwen Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yi Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Li Tian
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jing Hao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuhan Yuan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
7
|
Li G, Liu H, Feng R, Kang TS, Wang W, Ko CN, Wong CY, Ye M, Ma DL, Wan JB, Leung CH. A bioactive ligand-conjugated iridium(III) metal-based complex as a Keap1-Nrf2 protein-protein interaction inhibitor against acetaminophen-induced acute liver injury. Redox Biol 2021; 48:102129. [PMID: 34526248 PMCID: PMC8710994 DOI: 10.1016/j.redox.2021.102129] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
Hepatotoxicity caused by an overdose of acetaminophen (APAP) is the leading reason for acute drug-related liver failure. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a protein that helps to regulate redox homeostasis and coordinate stress responses via binding to the Kelch-like ECH-associated protein 1 (Keap1). Targeting the Keap1-Nrf2 interaction has recently emerged as a potential strategy to alleviate liver injury caused by APAP. Here, we designed and synthesized a number of iridium (III) and rhodium (III) complexes bearing ligands with reported activity against oxidative stress, which is associated with Nrf2 transcriptional activation. The iridium (III) complex 1 bearing a bioactive ligand 2,9-dimethyl-1,10-phenanthroline and 4-chloro-2-phenylquinoline, a derivative of the bioactive ligand 2-phenylquinoline, was identified as a direct small-molecule inhibitor of the Keap1–Nrf2 protein-protein interaction. 1 could stabilize Keap1 protein, upregulate HO-1 and NQO1, and promote Nrf2 nuclear translocation in normal liver cells. Moreover, 1 reversed APAP-induced liver damage by disrupting Keap1–Nrf2 interaction and without inducing organ damage and immunotoxicity in mice. Our study demonstrates the identification of a selective and efficacious antagonist of Keap1–Nrf2 interaction possessed good cellular permeability in cellulo and ideal pharmacokinetic parameters in vivo, and, more importantly, validates the feasibility of conjugating metal complexes with bioactive ligands to generate metal-based drug leads as non-toxic Keap1–Nrf2 interaction inhibitors for treating APAP-induced acute liver injury. 1 reversed APAP-induced liver damage by disrupting Keap1–Nrf2 interaction without inducing organ damage or immunotoxicity. Complex 1 possessed good cellular permeability in cellulo and ideal pharmacokinetic parameters in vivo. Conjugating metal complexes with bioactive ligands opens a novel avenue for the treatment of APAP-induced liver damage.
Collapse
Affiliation(s)
- Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Hao Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Ruibing Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Tian-Shu Kang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Chun-Yuen Wong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
8
|
Bataglioli JC, Gomes LMF, Maunoir C, Smith JR, Cole HD, McCain J, Sainuddin T, Cameron CG, McFarland SA, Storr T. Modification of amyloid-beta peptide aggregation via photoactivation of strained Ru(ii) polypyridyl complexes. Chem Sci 2021; 12:7510-7520. [PMID: 34163842 PMCID: PMC8171320 DOI: 10.1039/d1sc00004g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/19/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder characterized by progressive and irreversible damage to the brain. One of the hallmarks of the disease is the presence of both soluble and insoluble aggregates of the amyloid beta (Aβ) peptide in the brain, and these aggregates are considered central to disease progression. Thus, the development of small molecules capable of modulating Aβ peptide aggregation may provide critical insight into the pathophysiology of AD. In this work we investigate how photoactivation of three distorted Ru(ii) polypyridyl complexes (Ru1-3) alters the aggregation profile of the Aβ peptide. Photoactivation of Ru1-3 results in the loss of a 6,6'-dimethyl-2,2'-bipyridyl (6,6'-dmb) ligand, affording cis-exchangeable coordination sites for binding to the Aβ peptide. Both Ru1 and Ru2 contain an extended planar imidazo[4,5-f][1,10]phenanthroline ligand, as compared to a 2,2'-bipyridine ligand for Ru3, and we show that the presence of the phenanthroline ligand promotes covalent binding to Aβ peptide His residues, and in addition, leads to a pronounced effect on peptide aggregation immediately after photoactivation. Interestingly, all three complexes resulted in a similar aggregate size distribution at 24 h, forming insoluble amorphous aggregates as compared to significant fibril formation for peptide alone. Photoactivation of Ru1-3 in the presence of pre-formed Aβ1-42 fibrils results in a change to amorphous aggregate morphology, with Ru1 and Ru2 forming large amorphous aggregates immediately after activation. Our results show that photoactivation of Ru1-3 in the presence of either monomeric or fibrillar Aβ1-42 results in the formation of large amorphous aggregates as a common endpoint, with Ru complexes incorporating the extended phenanthroline ligand accelerating this process and thereby limiting the formation of oligomeric species in the initial stages of the aggregation process that are reported to show considerable toxicity.
Collapse
Affiliation(s)
| | - Luiza M F Gomes
- Department of Chemistry, Simon Fraser University BC Canada V5A-1S6
| | - Camille Maunoir
- Department of Chemistry, Simon Fraser University BC Canada V5A-1S6
| | - Jason R Smith
- Department of Chemistry, Simon Fraser University BC Canada V5A-1S6
| | - Houston D Cole
- Department of Chemistry and Biochemistry, University of Texas Arlington Texas USA 76019
| | - Julia McCain
- Department of Chemistry, Acadia University Wolfville Nova Scotia Canada B4P 2R6
| | - Tariq Sainuddin
- Department of Chemistry, Acadia University Wolfville Nova Scotia Canada B4P 2R6
| | - Colin G Cameron
- Department of Chemistry and Biochemistry, University of Texas Arlington Texas USA 76019
| | - Sherri A McFarland
- Department of Chemistry and Biochemistry, University of Texas Arlington Texas USA 76019
| | - Tim Storr
- Department of Chemistry, Simon Fraser University BC Canada V5A-1S6
| |
Collapse
|
9
|
Chen BB, Pan NL, Liao JX, Huang MY, Jiang DC, Wang JJ, Qiu HJ, Chen JX, Li L, Sun J. Cyclometalated iridium(III) complexes as mitochondria-targeted anticancer and antibacterial agents to induce both autophagy and apoptosis. J Inorg Biochem 2021; 219:111450. [PMID: 33826973 DOI: 10.1016/j.jinorgbio.2021.111450] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/28/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Mitochondrial damage will hinder the energy production of cells and produce excessive ROS (reactive oxygen species), resulting in cell death through autophagy or apoptosis. In this paper, four cyclometalated iridium(III) complexes (Ir1: [Ir(piq)2L]PF6; Ir2: [Ir(bzq)2L]PF6; Ir3: [Ir(dfppy)2L]PF6; Ir4: [Ir(thpy)2L]PF6; piq = 1-phenylisoquinoline; bzq = benzo[h]quinoline; dfppy = 2-(2,4-difluorophenyl)pyridine;thpy = 2-(2-thienyl)pyridine; L = 1,10-phenanthroline-5-amine) were synthesized and characterized. Cytotoxicity tests show that these complexes have excellent cytotoxicity to cancer cells, and mechanism studies indicatethat these complexes can specifically target mitochondria. Complexes Ir1 and Ir2 can damage the function of mitochondria, subsequently increasing intracellular levels of ROS, decreasing MMP (mitochondrial membrane potential), and interfering with ATP energy production, which leads to autophagy and apoptosis. Furthermore, autophagy induced by Ir1 and Ir2 can promote cell death in coordination with apoptosis. Surprisingly, these four complexes also showed moderate antibacterial activity to S. aureusand P. aeruginosa.
Collapse
Affiliation(s)
- Bing-Bing Chen
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; Pharmacy Department, The People's Hospital of Gaozhou, Maoming 525200, China
| | - Nan-Lian Pan
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jia-Xin Liao
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Min-Ying Huang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Dong-Chun Jiang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jun-Jie Wang
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Hai-Jun Qiu
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jia-Xi Chen
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Lin Li
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing Sun
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
10
|
Zhang Y, Ding C, Li C, Wang X. Advances in fluorescent probes for detection and imaging of amyloid-β peptides in Alzheimer's disease. Adv Clin Chem 2021; 103:135-190. [PMID: 34229849 DOI: 10.1016/bs.acc.2020.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amyloid plaques generated from the accumulation of amyloid-β peptides (Aβ) fibrils in the brain is one of the main hallmarks of Alzheimer's disease (AD), a most common neurodegenerative disorder. Aβ aggregation can produce neurotoxic oligomers and fibrils, which has been widely accepted as the causative factor in AD pathogenesis. Accordingly, both soluble oligomers and insoluble fibrils have been considered as diagnostic biomarkers for AD. Among the existing analytical methods, fluorometry using fluorescent probes has exhibited promising potential in quantitative detection and imaging of both soluble and insoluble Aβ species, providing a valuable approach for the diagnosis and drug development of AD. In this review, the most recent advances in the fluorescent probes for soluble or insoluble Aβ aggregates are discussed in terms of design strategy, probing mechanism, and potential applications. In the end, future research directions of fluorescent probes for Aβ species are also proposed.
Collapse
Affiliation(s)
- Yunhua Zhang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China
| | - Cen Ding
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China
| | - Changhong Li
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China
| | - Xiaohui Wang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, PR China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, PR China.
| |
Collapse
|
11
|
Babu E, Bhuvaneswari J, Rajakumar K, Sathish V, Thanasekaran P. Non-conventional photoactive transition metal complexes that mediated sensing and inhibition of amyloidogenic aggregates. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Curcumin ligand based iridium(III) complexes as inhibition and visualization agent of beta-amyloid fibrillation. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
13
|
Park S, Yi Y, Lim MH. Reactivity of Flavonoids Containing a Catechol or Pyrogallol Moiety with Metal‐Free and Metal‐Associated Amyloid‐β. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Seongmin Park
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Yelim Yi
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
14
|
Metal complexes that bind to the amyloid-β peptide of relevance to Alzheimer’s disease. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213255
expr 886172045 + 931245952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
15
|
Gomes LM, Bataglioli JC, Storr T. Metal complexes that bind to the amyloid-β peptide of relevance to Alzheimer’s disease. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213255] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Arora H, Ramesh M, Rajasekhar K, Govindaraju T. Molecular Tools to Detect Alloforms of Aβ and Tau: Implications for Multiplexing and Multimodal Diagnosis of Alzheimer’s Disease. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190356] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Harshit Arora
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Kolla Rajasekhar
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru 560064, Karnataka, India
- VNIR Biotechnologies Pvt. Ltd., Bangalore Bioinnovation Center, Helix Biotech Park, Electronic City Phase I, Bengaluru 560100, Karnataka, India
| |
Collapse
|
17
|
Ma DL, Wu C, Li G, Yung TL, Leung CH. Transition metal complexes as imaging or therapeutic agents for neurodegenerative diseases. J Mater Chem B 2020; 8:4715-4725. [DOI: 10.1039/c9tb02669j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neurodegenerative diseases are the result of neurodegeneration, which is the process of losing neuronal functions gradually due to the irreversible damage and death of neurons. Metal complexes have attracted intense interest over recent decades as probes or inhibitors of biomolecules.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry
- Faculty of Science
- Hong Kong Baptist University
- Kowloon
- China
| | - Chun Wu
- Department of Chemistry
- Faculty of Science
- Hong Kong Baptist University
- Kowloon
- China
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Tsan-Ling Yung
- Department of Chemistry
- Faculty of Science
- Hong Kong Baptist University
- Kowloon
- China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| |
Collapse
|
18
|
De Simone A, Naldi M, Tedesco D, Bartolini M, Davani L, Andrisano V. Advanced analytical methodologies in Alzheimer’s disease drug discovery. J Pharm Biomed Anal 2020; 178:112899. [DOI: 10.1016/j.jpba.2019.112899] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/13/2022]
|
19
|
Aliyan A, Cook NP, Martí AA. Interrogating Amyloid Aggregates using Fluorescent Probes. Chem Rev 2019; 119:11819-11856. [DOI: 10.1021/acs.chemrev.9b00404] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Amir Aliyan
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran 1991633361
- Khatam University, Tehran, Iran 1991633356
| | - Nathan P. Cook
- Department of Chemistry, Williams College, Williamstown, Massachusetts 01267, United States
| | | |
Collapse
|
20
|
Yang GJ, Liu H, Ma DL, Leung CH. Rebalancing metal dyshomeostasis for Alzheimer's disease therapy. J Biol Inorg Chem 2019; 24:1159-1170. [PMID: 31486954 DOI: 10.1007/s00775-019-01712-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/29/2019] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is a type of neurodegenerative malady that is associated with the accumulation of amyloid plaques. Metal ions are critical for the development and upkeep of brain activity, but metal dyshomeostasis can contribute to the development of neurodegenerative diseases, including AD. This review highlights the association between metal dyshomeostasis and AD pathology, the feasibility of rebalancing metal homeostasis as a therapeutic strategy for AD, and a survey of current drugs that action via rebalancing metal homeostasis. Finally, we discuss the challenges that should be overcome by researchers in the future to enable the practical use of metal homeostasis rebalancing agents for clinical application.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - Hao Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong SAR, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong SAR, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| |
Collapse
|
21
|
Nam G, Ji Y, Lee HJ, Kang J, Yi Y, Kim M, Lin Y, Lee YH, Lim MH. Orobol: An Isoflavone Exhibiting Regulatory Multifunctionality against Four Pathological Features of Alzheimer's Disease. ACS Chem Neurosci 2019; 10:3386-3390. [PMID: 31199606 DOI: 10.1021/acschemneuro.9b00232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We report orobol as a multifunctional isoflavone with the ability to (i) modulate the aggregation pathways of both metal-free and metal-bound amyloid-β, (ii) interact with metal ions, (iii) scavenge free radicals, and (iv) inhibit the activity of acetylcholinesterase. Such a framework with multifunctionality could be useful for developing chemical reagents to advance our understanding of multifaceted pathologies of neurodegenerative disorders, including Alzheimer's disease.
Collapse
Affiliation(s)
- Geewoo Nam
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yonghwan Ji
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Chemistry Education, Kongju National University, Gongju 32588, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yelim Yi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mingeun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yuxi Lin
- Protein Structure Research Group, Korea Basic Science Institute (KBSI), Chungbuk 28119, Republic of Korea
| | - Young-Ho Lee
- Protein Structure Research Group, Korea Basic Science Institute (KBSI), Chungbuk 28119, Republic of Korea
- Bio-Analytical Science, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
22
|
Kang J, Nam JS, Lee HJ, Nam G, Rhee HW, Kwon TH, Lim MH. Chemical strategies to modify amyloidogenic peptides using iridium(iii) complexes: coordination and photo-induced oxidation. Chem Sci 2019; 10:6855-6862. [PMID: 31391908 PMCID: PMC6657414 DOI: 10.1039/c9sc00931k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Effective chemical strategies, i.e., coordination and coordination-/photo-mediated oxidation, are rationally developed towards modification of amyloidogenic peptides and subsequent control of their aggregation and toxicity.
Amyloidogenic peptides are considered central pathological contributors towards neurodegeneration as observed in neurodegenerative disorders [e.g., amyloid-β (Aβ) peptides in Alzheimer's disease (AD)]; however, their roles in the pathologies of such diseases have not been fully elucidated since they are challenging targets to be studied due to their heterogeneous nature and intrinsically disordered structure. Chemical approaches to modify amyloidogenic peptides would be valuable in advancing our molecular-level understanding of their involvement in neurodegeneration. Herein, we report effective chemical strategies for modification of Aβ peptides (i.e., coordination and coordination-/photo-mediated oxidation) implemented by a single Ir(iii) complex in a photo-dependent manner. Such peptide variations can be achieved by our rationally designed Ir(iii) complexes (Ir-Me, Ir-H, Ir-F, and Ir-F2) leading to significantly modulating the aggregation pathways of two main Aβ isoforms, Aβ40 and Aβ42, as well as the production of toxic Aβ species. Overall, we demonstrate chemical tactics for modification of amyloidogenic peptides in an effective and manageable manner utilizing the coordination capacities and photophysical properties of transition metal complexes.
Collapse
Affiliation(s)
- Juhye Kang
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea . .,Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea .
| | - Jung Seung Nam
- Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea .
| | - Hyuck Jin Lee
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea . .,Department of Chemistry Education , Kongju National University , Gongju 32588 , Republic of Korea
| | - Geewoo Nam
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea . .,Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea .
| | - Hyun-Woo Rhee
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea
| | - Tae-Hyuk Kwon
- Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea .
| | - Mi Hee Lim
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea .
| |
Collapse
|
23
|
Elucidating the inhibitory potential of Vitamin A against fibrillation and amyloid associated cytotoxicity. Int J Biol Macromol 2019; 129:333-338. [DOI: 10.1016/j.ijbiomac.2019.01.134] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/16/2019] [Accepted: 01/24/2019] [Indexed: 01/17/2023]
|
24
|
Sales TA, Prandi IG, Castro AAD, Leal DHS, Cunha EFFD, Kuca K, Ramalho TC. Recent Developments in Metal-Based Drugs and Chelating Agents for Neurodegenerative Diseases Treatments. Int J Mol Sci 2019; 20:E1829. [PMID: 31013856 PMCID: PMC6514778 DOI: 10.3390/ijms20081829] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023] Open
Abstract
The brain has a unique biological complexity and is responsible for important functions in the human body, such as the command of cognitive and motor functions. Disruptive disorders that affect this organ, e.g. neurodegenerative diseases (NDDs), can lead to permanent damage, impairing the patients' quality of life and even causing death. In spite of their clinical diversity, these NDDs share common characteristics, such as the accumulation of specific proteins in the cells, the compromise of the metal ion homeostasis in the brain, among others. Despite considerable advances in understanding the mechanisms of these diseases and advances in the development of treatments, these disorders remain uncured. Considering the diversity of mechanisms that act in NDDs, a wide range of compounds have been developed to act by different means. Thus, promising compounds with contrasting properties, such as chelating agents and metal-based drugs have been proposed to act on different molecular targets as well as to contribute to the same goal, which is the treatment of NDDs. This review seeks to discuss the different roles and recent developments of metal-based drugs, such as metal complexes and metal chelating agents as a proposal for the treatment of NDDs.
Collapse
Affiliation(s)
- Thais A Sales
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Ingrid G Prandi
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Alexandre A de Castro
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Daniel H S Leal
- Department of Health Sciences, Federal University of Espírito Santo, São Mateus/ES, 29932-540, Brazil.
| | - Elaine F F da Cunha
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 500 03, Czech Republic..
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, 500 03 Czech Republic.
| | - Teodorico C Ramalho
- Laboratory of Molecular Modeling, Department of Chemistry, Federal University of Lavras, Lavras/MG, 37200-000, Brazil.
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 500 03, Czech Republic..
| |
Collapse
|
25
|
Gomes LMF, Mahammed A, Prosser KE, Smith JR, Silverman MA, Walsby CJ, Gross Z, Storr T. A catalytic antioxidant for limiting amyloid-beta peptide aggregation and reactive oxygen species generation. Chem Sci 2019; 10:1634-1643. [PMID: 30842826 PMCID: PMC6369440 DOI: 10.1039/c8sc04660c] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is a multifaceted disease that is characterized by increased oxidative stress, metal-ion dysregulation, and the formation of intracellular neurofibrillary tangles and extracellular amyloid-β (Aβ) aggregates. In this work we report the large affinity binding of the iron(iii) 2,17-bis-sulfonato-5,10,15-tris(pentafluorophenyl)corrole complex FeL1 to the Aβ peptide (K d ∼ 10-7) and the ability of the bound FeL1 to act as a catalytic antioxidant in both the presence and absence of Cu(ii) ions. Specific findings are that: (a) an Aβ histidine residue binds axially to FeL1; (b) that the resulting adduct is an efficient catalase; (c) this interaction restricts the formation of high molecular weight peptide aggregates. UV-Vis and electron paramagnetic resonance (EPR) studies show that although the binding of FeL1 does not influence the Aβ-Cu(ii) interaction (K d ∼ 10-10), bound FeL1 still acts as an antioxidant thereby significantly limiting reactive oxygen species (ROS) generation from Aβ-Cu. Overall, FeL1 is shown to bind to the Aβ peptide, and modulate peptide aggregation. In addition, FeL1 forms a ternary species with Aβ-Cu(ii) and impedes ROS generation, thus showing the promise of discrete metal complexes to limit the toxicity pathways of the Aβ peptide.
Collapse
Affiliation(s)
- Luiza M F Gomes
- Department of Chemistry , Simon Fraser University , V5A-1S6 , Burnaby , BC , Canada .
| | - Atif Mahammed
- Schulich Faculty of Chemistry , Technion-Israel Institute of Technology , Haifa , 32000 , Israel .
| | - Kathleen E Prosser
- Department of Chemistry , Simon Fraser University , V5A-1S6 , Burnaby , BC , Canada .
| | - Jason R Smith
- Department of Chemistry , Simon Fraser University , V5A-1S6 , Burnaby , BC , Canada .
| | - Michael A Silverman
- Department of Biological Sciences , Simon Fraser University , V5A-1S6 , Burnaby , BC , Canada
| | - Charles J Walsby
- Department of Chemistry , Simon Fraser University , V5A-1S6 , Burnaby , BC , Canada .
| | - Zeev Gross
- Schulich Faculty of Chemistry , Technion-Israel Institute of Technology , Haifa , 32000 , Israel .
| | - Tim Storr
- Department of Chemistry , Simon Fraser University , V5A-1S6 , Burnaby , BC , Canada .
| |
Collapse
|
26
|
Connell TU, Donnelly PS. Labelling proteins and peptides with phosphorescent d6 transition metal complexes. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
27
|
Lu L, Su H, Liu Q, Li F. Development of a Luminescent Dinuclear Ir(III) Complex for Ultrasensitive Determination of Pesticides. Anal Chem 2018; 90:11716-11722. [PMID: 30192517 DOI: 10.1021/acs.analchem.8b03687] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To improve the G-quadruplex specificity of Ir(III) complexes, a novel dinuclear Ir(III) complex (Din Ir(III)-1) was designed and synthesized through connecting two mononuclear Ir(III) complexes via a diphenyl bridge. Din Ir(III)-1 presents 3.4-4.1-fold enhancements for G-quadruplex relative to ssDNA and 4.3-5.3-fold enhancements relative to dsDNA in luminescence intensity, respectively, demonstrating an excellent G-quadruplex selectivity. Ascribed to its superior specificity to G-quadruplex, Din Ir(III)-1 was employed to construct a highly sensitive luminescent pesticides' detection platform. The detection is based on acetylcholinesterase (AChE)-catalyzed hydrolysis product-induced DNA conformational transformation and subsequent terminal deoxynucleotidyl transferase (TdT) directed G-quadruplex formation. The assay exhibited a linear response between the emission intensity of Din Ir(III)-1 and the pesticide concentration in the range of 0.5-25 μg/L ( R2 = 0.994), and the limit of detection for the pesticide was as low as 0.37 μg/L when using aldicarb as the model pesticide. Moreover, this strategy demonstrates good applicability for the pesticide detection in real samples. It is also versatile for the detection of other organophosphate or carbamate pesticides, which have the inhibition ability toward AChE. Therefore, the proposed approach is scalable for practical application in food safety and environmental monitoring fields and will provide promising solutions for the assay of pesticide residues.
Collapse
Affiliation(s)
- Lihua Lu
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , People's Republic of China
| | - Huijuan Su
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , People's Republic of China
| | - Qingyun Liu
- College of Chemical and Environmental Engineering , Shandong University of Science and Technology , Qingdao 266510 , China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , People's Republic of China
| |
Collapse
|
28
|
Gabr MT, Pigge FC. Rhenium Complexes of Bis(benzothiazole)‐Based Tetraarylethylenes as Selective Luminescent Probes for Amyloid Fibrils. Chemistry 2018; 24:11729-11737. [DOI: 10.1002/chem.201801801] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/12/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Moustafa T. Gabr
- Department of ChemistryUniversity of Iowa Iowa City IA 52242 USA
| | | |
Collapse
|
29
|
Wang X, Wang X, Guo Z. Metal-involved theranostics: An emerging strategy for fighting Alzheimer’s disease. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
|
31
|
Amyloid β-targeted metal complexes for potential applications in Alzheimer's disease. Future Med Chem 2018; 10:679-701. [DOI: 10.4155/fmc-2017-0248] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is currently an incurable neurodegenerative disorder that affects millions of people around the world. The aggregation of amyloid-β peptides (Aβ), one of the primary pathological hallmarks of AD, plays a key role in the AD pathogenesis. In this regard, Aβ aggregates have been considered as both biomarkers and drug targets for the diagnosis and therapy of AD. Various Aβ-targeted metal complexes have exhibited promising potential as anti-AD agents due to their fascinating physicochemical properties over the past two decades. This review classifies the complexes into three groups based on their potential applications in AD including therapy, diagnosis and theranosis. The recent representative examples are highlighted in terms of design rationale, working mechanism and potential applications.
Collapse
|
32
|
Wang FX, Chen MH, Lin YN, Zhang H, Tan CP, Ji LN, Mao ZW. Dual Functions of Cyclometalated Iridium(III) Complexes: Anti-Metastasis and Lysosome-Damaged Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42471-42481. [PMID: 29140069 DOI: 10.1021/acsami.7b10258] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Four phosphorescent cyclometalated iridium(III) complexes containing benzimidazole moiety have been designed and synthesized. These Ir(III) complexes can effectively inhibit several cancerous processes, including cell migration, invasion, colony formation, and angiogenesis. Interestingly, they show a much higher singlet oxygen quantum yield in an acidic solution than in a neutral solution. Upon irradiation at 425 nm with low energy (1.2 J cm-2), they can induce apoptosis through lysosomal damage, evaluation of reactive oxygen species level, and activation of caspase-3/7. The highest phototoxicity index is >476, with almost no dark cytotoxicity observed for Ir4. Ir4 can also inhibit tumor growth effectively in nude mice in vivo after photodynamic therapy. An in vitro assay against 70 kinases indicates that maternal embryonic leucine zipper kinase (MELK), PIK3CA, and AMPK are the possible molecular targets. The half maximal inhibitory concentration of Ir4 toward MELK is 1.27 μM. Our study demonstrates that these Ir(III) complexes are promising anticancer agents with dual functions, including metastasis inhibition and lysosome-damaged photodynamic therapy.
Collapse
Affiliation(s)
- Fang-Xin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Mu-He Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Yan-Nan Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Cai-Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University , Guangzhou 510275, P. R. China
| |
Collapse
|
33
|
Zhong HJ, Wang W, Kang TS, Yan H, Yang Y, Xu L, Wang Y, Ma DL, Leung CH. A Rhodium(III) Complex as an Inhibitor of Neural Precursor Cell Expressed, Developmentally Down-Regulated 8-Activating Enzyme with in Vivo Activity against Inflammatory Bowel Disease. J Med Chem 2016; 60:497-503. [PMID: 27976900 DOI: 10.1021/acs.jmedchem.6b00250] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report herein the identification of the rhodium(III) complex [Rh(phq)2(MOPIP)]+ (1) as a potent and selective ATP-competitive neural precursor cell expressed, developmentally down-regulated 8 (NEDD8)-activating enzyme (NAE) inhibitor. Structure-activity relationship analysis indicated that the overall organometallic design of complex 1 was important for anti-inflammatory activity. Complex 1 showed promising anti-inflammatory activity in vivo for the potential treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Hai-Jing Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Taipa, Macao P. R China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University , T1303, Cha Chi-Ming Science Tower, Kowloon Tong, Hong Kong, P. R. China
| | - Tian-Shu Kang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Taipa, Macao P. R China
| | - Hui Yan
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, Jinan University College of Pharmacy , Guangzhou 510632, China
| | - Yali Yang
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, Jinan University College of Pharmacy , Guangzhou 510632, China
| | - Lipeng Xu
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, Jinan University College of Pharmacy , Guangzhou 510632, China
| | - Yuqiang Wang
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, Jinan University College of Pharmacy , Guangzhou 510632, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University , T1303, Cha Chi-Ming Science Tower, Kowloon Tong, Hong Kong, P. R. China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Taipa, Macao P. R China
| |
Collapse
|
34
|
Ma DL, Wang M, Liu C, Miao X, Kang TS, Leung CH. Metal complexes for the detection of disease-related protein biomarkers. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.07.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Yang T, Wang X, Zhang C, Ma X, Wang K, Wang Y, Luo J, Yang L, Yao C, Wang X. Specific self-monitoring of metal-associated amyloid-β peptide disaggregation by a fluorescent chelator. Chem Commun (Camb) 2016; 52:2245-8. [DOI: 10.1039/c5cc08898d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A dual-functional fluorescent chelator can specifically target and disassemble metal-associated Aβ aggregates and simultaneously self-monitor the disaggregation by fluorescence in brain homogenates of mice with Alzheimer's disease.
Collapse
Affiliation(s)
- Tao Yang
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Xiaohui Wang
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
- State Key Laboratory of Coordination Chemistry
| | - Changli Zhang
- Department of Chemistry
- Nanjing Xiaozhuang College
- Nanjing
- P. R. China
| | - Xiang Ma
- State Key Laboratory of Coordination Chemistry
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Kun Wang
- State Key Laboratory of Coordination Chemistry
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Yanqing Wang
- School of Chemistry and Chemical Engineering
- Yancheng Teachers University
- Yancheng 224002
- P. R. China
| | - Jian Luo
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Liu Yang
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Cheng Yao
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Sciences
- State Key Laboratory of Analytical Chemistry for Life Science
- Nanjing University
- Nanjing
| |
Collapse
|