1
|
Elwafa RAHA, Bordiny ME, Salama M, Fawzy A, Omar OM. Cyclin D2 gene variance and expression level in pediatric acute lymphoblastic leukemia. Pediatr Blood Cancer 2023; 70:e30678. [PMID: 37731174 DOI: 10.1002/pbc.30678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/22/2023]
Abstract
BACKGROUND Cyclin D2 (CCND2) is a crucial player in cell cycle regulation. CCND2 polymorphisms contribute to cancer predisposition. OBJECTIVES To evaluate the association of CCND2 rs3217927 single nucleotide polymorphisms (SNP) and its expression levels with acute lymphoblastic leukemia (ALL) susceptibility in Egyptian children and its potential prognostic role. METHODS The 5' nuclease allelic discrimination assay was used to evaluate the frequency of CCND2 rs3217927 SNP in 80 newly diagnosed children with ALL and 80 age- and sex-matched controls. CCND2 relative expression levels were determined by real-time quantitative polymerase chain reaction. RESULTS The genotype analysis revealed that the GG genotype and G allele were significantly more prevalent among ALL patients than controls (p ˂ .001). Regression analysis demonstrated that Egyptian children carrying only one G allele had about 31-fold increased risk to develop ALL compared to A allele carriers. CCND2 was overexpressed in ALL patients compared to controls (p < .001). The CCND2 overexpression was associated with the GG genotype and G allele (p < .001). Furthermore, G allele was an independent negative prognostic marker for central nervous system (CNS) involvement (odds ratio [OR] = 4.676; 95% confidence interval [CI]: 1.2-18.6), risk stratification (OR = 38; 95% CI: 7.7-188.2), and chemoresistance (OR = 9.864; 95% CI: 5.6-70.3) in ALL patients. CONCLUSIONS G allele of CCND2 rs3217927 SNP might be associated with increased risk for ALL in Egyptian children besides being an independent negative prognostic marker for their risk stratification and therapeutic outcome. CCND2 rs3217927 SNP genotyping might be used to demarcate ALL patients with aggressive disease phenotypes who may be candidate for alternative targeted therapeutic strategies.
Collapse
Affiliation(s)
| | - Magdy El Bordiny
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mostafa Salama
- Department of Pediatrics, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Amira Fawzy
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Omneya Magdy Omar
- Department of Pediatrics, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Wu H, Chen Y, Li M, Chen Z, Liu J, Lai G. Characterization of tumor microenvironment infiltration and therapeutic responses of cell cycle-related genes' signature in breast cancer. J Cancer Res Clin Oncol 2023; 149:13889-13904. [PMID: 37540256 DOI: 10.1007/s00432-023-05198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND It is unknown how the cell cycle plays a role in breast cancer (BC). This study aimed to establish a clinically applicable predictive model to predict the therapeutic responses and overall survival in BC patients. MATERIALS AND METHODS Cell cycle-related genes (CCGs) were identified within the Cancer Genome Atlas cohort (n is equal to 1001) and the Gene Expression Omnibus cohort (n is equal to 3265). An analysis of univariate and multivariate Cox was then conducted to develop a nomogram based on CCGs. After validating the nomogram, risk cohort stratification was established and the predictive value was examined. Finally, immune cell infiltration and therapeutic responses were analysed. RESULTS Based on 15 CCGs, 4 prognostic predictors were identified and entered into the nomogram. According to the curves of calibration, the estimated and observed value of the nomogram is in optimal agreement. Subsequently, stratification into two risk cohorts showed that the predictive value, immune cell infiltration and overall survival were better among patients with low risk. Immune checkpoint expression in patients with BC at higher risk was downregulated. Furthermore, the results of the study revealed that doxorubicin, paclitaxel, docetaxel, cisplatin and vinorelbine all had higher IC50 values in patients with high-risk BC. CONCLUSION The nomogram based on CCG could assess tumour immune micro-environment regulation and therapeutic responses of immunotherapy in BC. Moreover, it may provide novel information on the control of immune micro-environment infiltration in BC and aid in the development of targeted immunotherapy.
Collapse
Affiliation(s)
- Huacong Wu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Dali University, Dali, China
| | - Yutao Chen
- The Second Clinical School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Mengyi Li
- Department of Thyroid and Breast Surgery, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China
| | - Zijun Chen
- The Second Clinical School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jie Liu
- Department of Breast Cancer, Affiliated Foshan Maternity and Child Health Care Hospital, Southern Medical University, Foshan, China.
| | - Guie Lai
- Breast Disease Comprehensive Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| |
Collapse
|
3
|
Crosstalk of Transcriptional Regulators of Adaptive Immune System and microRNAs: An Insight into Differentiation and Development. Cells 2023; 12:cells12040635. [PMID: 36831302 PMCID: PMC9953855 DOI: 10.3390/cells12040635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
MicroRNAs (miRNAs), as small regulatory RNA molecules, are involved in gene expression at the post-transcriptional level. Hence, miRNAs contribute to gene regulation of various steps of different cell subsets' differentiation, maturation, and activation. The adaptive immune system arm, which exhibits the most specific immune responses, is also modulated by miRNAs. The generation and maturation of various T-cell subsets concomitant with B-cells is under precise regulation of miRNAs which function directly on the hallmark genes of each cell subset or indirectly through regulation of signaling pathway mediators and/or transcription factors involved in this maturation journey. In this review, we first discussed the origination process of common lymphocyte progenitors from hematopoietic stem cells, which further differentiate into various T-cell subsets under strict regulation of miRNAs and transcription factors. Subsequently, the differentiation of B-cells from common lymphocyte progenitors in bone marrow and periphery were discussed in association with a network of miRNAs and transcription factors.
Collapse
|
4
|
Yu Y, Li M, Zhao Y, Fan F, Wu W, Gao Y, Bai C. Immune cell-derived extracellular vesicular microRNAs induce pancreatic beta cell apoptosis. Heliyon 2022; 8:e11995. [PMID: 36561684 PMCID: PMC9763775 DOI: 10.1016/j.heliyon.2022.e11995] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/01/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) is an autoimmune disease caused by an autoimmune response against pancreatic islet β cells. Increasing evidence indicates that specific microRNAs (miRNAs) from immune cells extracellular vesicles are involved in islet β cells apoptosis. Methods In this study, the microarray datasets GSE27997 and GSE137637 were downloaded from the Gene Expression Omnibus (GEO) database. miRNAs that promote islet β cells apoptosis in T1DM were searched in PubMed. We used the FunRich tool to determine the miRNA expression in extracellular vesicles derived from immune cells associated with islet β cell apoptosis, of which we selected candidate miRNAs based on fold change expression. Potential upstream transcription factors and downstream target genes of candidate miRNAs were predicted using TransmiR V2.0 and starBase database, respectively. Results Candidate miRNAs expressed in extracellular vesicles derived from T cells, pro-inflammatory macrophages, B cells, and dendritic cells were analyzed to identify the miRNAs involved in β cells apoptosis. Based on these candidate miRNAs, 25 downstream candidate genes, which positively regulate β cell functions, were predicted and screened; 17 transcription factors that positively regulate the candidate miRNAs were also identified. Conclusions Our study demonstrated that immune cell-derived extracellular vesicular miRNAs could promote islet β cell dysfunction and apoptosis. Based on these findings, we have constructed a transcription factor-miRNA-gene regulatory network, which provides a theoretical basis for clinical management of T1DM. This study provides novel insights into the mechanism underlying immune cell-derived extracellular vesicle-mediated islet β cell apoptosis.
Collapse
Affiliation(s)
- Yueyang Yu
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Mengyin Li
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, 272067, PR China
| | - Yuxuan Zhao
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Fangzhou Fan
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Wenxiang Wu
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
| | - Yuhua Gao
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
- Corresponding author.
| | - Chunyu Bai
- Institute of Precision Medicine, Jining Medical University, Jining, Shandong 272067, PR China
- Corresponding author.
| |
Collapse
|
5
|
Zhao K, Zeng L, Cai Z, Liu M, Sun T, Li Z, Liu R. RNA sequencing-based identification of the regulatory mechanism of microRNAs, transcription factors, and corresponding target genes involved in vascular dementia. Front Neurosci 2022; 16:917489. [PMID: 36203804 PMCID: PMC9531238 DOI: 10.3389/fnins.2022.917489] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular dementia (VaD) is the second most common form of dementia with uncertain mechanisms and no effective treatments. microRNAs (miRNAs) and transcription factors (TFs) are considered regulatory factors of genes involved in many diseases. Therefore, this work investigated the aberrantly expressed miRNAs, TFs, corresponding target genes, and their co-regulatory networks in the cortex of rats with bilateral common carotid artery occlusion (2VO) to uncover the potential mechanism and biomarkers of VaD. Differentially expressed genes (DEGs), miRNAs (DEMs), and TFs (DETFs) were identified using RNA sequencing, and their interaction networks were constructed using Cytoscape. The results showed that rats with 2VO had declined cognitive abilities and neuronal loss in the cortex than sham rats. DEGs, DEMs, and DETFs were discriminated between rats with 2VO and sham rats in the cortex, as shown by the 13 aberrantly expressed miRNAs, 805 mRNAs, and 63 TFs. The miRNA-TF-target gene network was constructed, showing 523 nodes and 7237 edges. Five miRNAs (miR-5132-5p, miR-764-3p, miR-223-3p, miR-145-5p, and miR-122-5p), ten TFs (Mxi1, Nfatc4, Rxrg, Zfp523, Foxj2, Nkx6-1, Klf4, Klf5, Csrnp1, and Prdm6), and seven target genes (Serpine1, Nedd4l, Pxn, Col1a1, Plec, Trip12, and Tpm1) were chosen as the significant nodes to construct feed-forward loops (FFLs). Gene Ontology and pathway enrichment analysis revealed that these miRNA and TF-associated genes are mostly involved in the PI3K/Akt, neuroactive ligand–receptor interaction, calcium signaling, and Wnt signaling pathways, along with central locations around the cell membrane. They exert functions such as growth factor binding, integrin binding, and extracellular matrix structural constituent, with representative biological processes like vasculature development, cell–substrate adhesion, cellular response to growth factor stimulus, and synaptic transmission. Furthermore, the expression of three miRNAs (miR-145-5p, miR-122-5p, and miR-5132-5p), six TFs (Csrnp1, Klf4, Nfatc4, Rxrg, Foxj2, and Klf5), and five mRNAs (Serpine1, Plec, Nedd4l, Trip12, and Tpm1) were significantly changed in rats with VaD, in line with the outcome of RNA sequencing. In the potential FFL, miR-145-5p directly bound Csrnp1 and decreased its mRNA expression. These results might help the understanding of the underlying regulatory mechanisms of miRNA-TF-genes, providing potential therapeutic targets in VaD.
Collapse
|
6
|
MicroRNAs and the Diagnosis of Childhood Acute Lymphoblastic Leukemia: Systematic Review, Meta-Analysis and Re-Analysis with Novel Small RNA-Seq Tools. Cancers (Basel) 2022; 14:cancers14163976. [PMID: 36010971 PMCID: PMC9406077 DOI: 10.3390/cancers14163976] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary MicroRNAs (miRNAs) have been under the spotlight for the last three decades. These non-coding RNAs seem to be dynamic regulators of mRNA stability and translation, in addition to interfering with transcription. Circulating miRNAs play a critical role in cell-to-cell interplay; therefore, they can serve as disease biomarkers. Meta-analysis of published data revealed that the CC genotype of rs4938723 in pri-miR-34b/c and the TT genotype of rs543412 in miR-100 confer protection against acute lymphoblastic leukemia (ALL) in children. Reanalysis of small RNA-seq data with novel tools identified significantly overexpressed members of the miR-128, miR-181, miR-130 and miR-17 families and significantly lower expression of miR-30, miR-24-2 and miR143~145 clusters, miR-574 and miR-618 in pediatric T-ALL cases compared with controls. Inconsistencies in methodology and study designs in most published material preclude reproducibility, and further cohort studies need to be conducted in order to empower novel tools, such as ALLSorts and RNAseqCNV. Abstract MicroRNAs (miRNAs) have been implicated in childhood acute lymphoblastic leukemia (ALL) pathogenesis. We performed a systematic review and meta-analysis of miRNA single-nucleotide polymorphisms (SNPs) in childhood ALL compared with healthy children, which revealed (i) that the CC genotype of rs4938723 in pri-miR-34b/c and the TT genotype of rs543412 in miR-100 confer protection against ALL occurrence in children; (ii) no significant association between rs2910164 genotypes in miR-146a and childhood ALL; and (iii) SNPs in DROSHA, miR-449b, miR-938, miR-3117 and miR-3689d-2 genes seem to be associated with susceptibility to B-ALL in childhood. A review of published literature on differential expression of miRNAs in children with ALL compared with controls revealed a significant upregulation of the miR-128 family, miR-130b, miR-155, miR-181 family, miR-210, miR-222, miR-363 and miR-708, along with significant downregulation of miR-143 and miR-148a, seem to have a definite role in childhood ALL development. MicroRNA signatures among childhood ALL subtypes, along with differential miRNA expression patterns between B-ALL and T-ALL cases, were scrutinized. With respect to T-ALL pediatric cases, we reanalyzed RNA-seq datasets with a robust and sensitive pipeline and confirmed the significant differential expression of hsa-miR-16-5p, hsa-miR-19b-3p, hsa-miR-92a-2-5p, hsa-miR-128-3p (ranked first), hsa-miR-130b-3p and -5p, hsa-miR-181a-5p, -2-3p and -3p, hsa-miR-181b-5p and -3p, hsa-miR-145-5p and hsa-miR-574-3p, as described in the literature, along with novel identified miRNAs.
Collapse
|
7
|
Integrated transcriptomic and regulatory network analyses uncovers the role of let-7b-5p, SPIB, and HLA-DPB1 in sepsis. Sci Rep 2022; 12:11963. [PMID: 35831411 PMCID: PMC9279366 DOI: 10.1038/s41598-022-16183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 07/06/2022] [Indexed: 11/12/2022] Open
Abstract
Sepsis has affected millions of populations of all age groups, locations, and sexes worldwide. Immune systems, either innate or adaptive are dysregulated due to the infection. Various biomarkers are present to date, still sepsis is a primary cause of mortality. Globally, post-operative body infections can cause sepsis and septic shock in ICU. Abnormal antigen presentation to T-cells leads to a dysregulated immune system. miRNAs are sparkly evolved as biomarkers due to their high sensitivity and efficiency. In this work, we analyzed high-throughput mRNA data collected from Gene Expression Omnibus (GEO) and linked it to significant miRNAs and TFs using a network-based approach. Protein–protein interaction (PPI) network was constructed using sepsis-specific differentially expressed genes (DEGs) followed by enrichment analyses and hub module detection. Sepsis-linked decrease transcription of the classical HLA gene such as HLA-DPB1 and its interplay with miR-let-7b-5p and transcription factor SPIB was observed. This study helped to provide innovative targets for sepsis.
Collapse
|
8
|
Mohammad T, Singh P, Jairajpuri DS, Al-Keridis LA, Alshammari N, Adnan M, Dohare R, Hassan MI. Differential Gene Expression and Weighted Correlation Network Dynamics in High-Throughput Datasets of Prostate Cancer. Front Oncol 2022; 12:881246. [PMID: 35719950 PMCID: PMC9198298 DOI: 10.3389/fonc.2022.881246] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022] Open
Abstract
Precision oncology is an absolute need today due to the emergence of treatment resistance and heterogeneity among cancerous profiles. Target-propelled cancer therapy is one of the treasures of precision oncology which has come together with substantial medical accomplishment. Prostate cancer is one of the most common cancers in males, with tremendous biological heterogeneity in molecular and clinical behavior. The spectrum of molecular abnormalities and varying clinical patterns in prostate cancer suggest substantial heterogeneity among different profiles. To identify novel therapeutic targets and precise biomarkers implicated with prostate cancer, we performed a state-of-the-art bioinformatics study, beginning with analyzing high-throughput genomic datasets from The Cancer Genome Atlas (TCGA). Weighted gene co-expression network analysis (WGCNA) suggests a set of five dysregulated hub genes (MAF, STAT6, SOX2, FOXO1, and WNT3A) that played crucial roles in biological pathways associated with prostate cancer progression. We found overexpressed STAT6 and SOX2 and proposed them as candidate biomarkers and potential targets in prostate cancer. Furthermore, the alteration frequencies in STAT6 and SOX2 and their impact on the patients' survival were explored through the cBioPortal platform. The Kaplan-Meier survival analysis suggested that the alterations in the candidate genes were linked to the decreased overall survival of the patients. Altogether, the results signify that STAT6 and SOX2 and their genomic alterations can be explored in therapeutic interventions of prostate cancer for precision oncology, utilizing early diagnosis and target-propelled therapy.
Collapse
Affiliation(s)
- Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Deeba Shamim Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Lamya Ahmed Al-Keridis
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
9
|
Randhawa V, Kumar M. An integrated network analysis approach to identify potential key genes, transcription factors, and microRNAs regulating human hematopoietic stem cell aging. Mol Omics 2021; 17:967-984. [PMID: 34605522 DOI: 10.1039/d1mo00199j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hematopoietic stem cells (HSCs) undergo functional deterioration with increasing age that causes loss of their self-renewal and regenerative potential. Despite various efforts, significant success in identifying molecular regulators of HSC aging has not been achieved, one prime reason being the non-availability of appropriate human HSC samples. To demonstrate the scope of integrating and re-analyzing the HSC transcriptomics data available, we used existing tools and databases to structure a sequential data analysis pipeline to predict potential candidate genes, transcription factors, and microRNAs simultaneously. This sequential approach comprises (i) collecting matched young and aged mice HSC sample datasets, (ii) identifying differentially expressed genes, (iii) identifying human homologs of differentially expressed genes, (iv) inferring gene co-expression network modules, and (v) inferring the microRNA-transcription factor-gene regulatory network. Systems-level analyses of HSC interaction networks provided various insights based on which several candidates were predicted. For example, 16 HSC aging-related candidate genes were predicted (e.g., CD38, BRCA1, AGTR1, GSTM1, etc.) from GCN analysis. Following this, the shortest path distance-based analyses of the regulatory network predicted several novel candidate miRNAs and TFs. Among these, miR-124-3p was a common regulator in candidate gene modules, while TFs MYC and SP1 were identified to regulate various candidate genes. Based on the regulatory interactions among candidate genes, TFs, and miRNAs, a potential regulation model of biological processes in each of the candidate modules was predicted, which provided systems-level insights into the molecular complexity of each module to regulate HSC aging.
Collapse
Affiliation(s)
- Vinay Randhawa
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific & Industrial Research, Chandigarh-160036, India.
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific & Industrial Research, Chandigarh-160036, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
10
|
Sharma K, Singh P, Amjad Beg M, Dohare R, Athar F, Ali Syed M. Revealing new therapeutic opportunities in hypertension through network-driven integrative genetic analysis and drug target prediction approach. Gene 2021; 801:145856. [PMID: 34293449 DOI: 10.1016/j.gene.2021.145856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/17/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
Epidemiological studies have established that untreated hypertension (HTN) is a major independent risk factor for developing cardiovascular diseases (CVD), stroke, renal failure, and other conditions. Several important studies have been published to prevent and manage HTN; however, antihypertensive agents' optimal choice remains controversial. Therefore, the present study is undertaken to update our knowledge in the primary treatment of HTN, specifically in the setting of other three important diseases. MicroRNAs (miRNAs) are remarkably stable short endogenous conserved non-coding RNAs that bind to the mRNA at its (3' UTR) to regulate its gene expression by causing translational repression or mRNA degradation. Through their coordinated activities on different pathways and networks, individual miRNAs control normal and pathological cellular processes. Therefore, to identify the critical miRNA-mRNA-TF interactions, we performed systematic bioinformatics analysis. We have also employed the molecular modelling and docking approach to identify the therapeutic target that delivers novel empathies into Food and Drug Administration approved and herbal drug response physiology. Gene Expression Omnibus (GEO) was employed to identify the differentially expressed genes (DEGs) and hub genes- KNG1, HLA-DPB1, CXCL8, IL1B, and BCL2. The HTN associated feed-forward loop (FFL) network included miR-9-5p, KNG1 and AR. We employed high throughput screening to get the best interacting compounds, telmisartan and limonin, that provided a significant docking score (-13.3 and -12.0 kcal/mol) and a potential protective effect that may help to combat the impact of HTN. The present study provides novel insight into HTN etiology through the identification of mRNAs and miRNAs and associated pathways.
Collapse
Affiliation(s)
- Kavita Sharma
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md Amjad Beg
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Fareeda Athar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mansoor Ali Syed
- Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
11
|
Khan A, Khan T, Nasir SN, Ali SS, Suleman M, Rizwan M, Waseem M, Ali S, Zhao X, Wei DQ. BC-TFdb: a database of transcription factor drivers in breast cancer. Database (Oxford) 2021; 2021:baab018. [PMID: 33882119 PMCID: PMC8060005 DOI: 10.1093/database/baab018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022]
Abstract
Transcription factors (TFs) are DNA-binding proteins, which regulate many essential biological functions. In several cancer types, TF function is altered by various direct mechanisms, including gene amplification or deletion, point mutations, chromosomal translocations, expression alterations, as well as indirectly by non-coding DNA mutations influencing the binding of the TF. TFs are also actively involved in breast cancer (BC) initiation and progression. Herein, we have developed an open-access database, BC-TFdb (Breast Cancer Transcription Factors database), of curated, non-redundant TF involved in BC. The database provides BC driver TFs related information including genomic sequences, proteomic sequences, structural data, pathway information, mutations information, DNA binding residues, survival and therapeutic resources. The database will be a useful platform for researchers to obtain BC-related TF-specific information. High-quality datasets are downloadable for users to evaluate and develop computational methods for drug designing against BC. Database URL: https://www.dqweilab-sjtu.com/index.php.
Collapse
Affiliation(s)
- Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Taimoor Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Syed Nouman Nasir
- Center for Biotechnology and Microbiology, University of Swat, Swat, KP 19200, Pakistan
| | - Syed Shujait Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, KP 19200, Pakistan
| | - Muhammad Suleman
- Center for Biotechnology and Microbiology, University of Swat, Swat, KP 19200, Pakistan
| | - Muhammad Rizwan
- Center for Biotechnology and Microbiology, University of Swat, Swat, KP 19200, Pakistan
| | - Muhammad Waseem
- Faculty of Rehabilitation and Allied Health Science, Riphah International University, Islamabad 44000, Pakistan
| | - Shahid Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, KP 19200, Pakistan
| | - Xia Zhao
- Department of Microbiology, Army Medical University, Chongqing 400044, P.R. China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic and Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
- Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
12
|
Khurana P, Gupta A, Sugadev R, Sharma YK, Kumar B. HAHmiR.DB: a server platform for high-altitude human miRNA-gene coregulatory networks and associated regulatory circuits. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:6015264. [PMID: 33259604 PMCID: PMC7706787 DOI: 10.1093/database/baaa101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/27/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022]
Abstract
Around 140 million people live in high-altitude (HA) conditions! and even a larger number visit such places for tourism, adventure-seeking or sports training. Rapid ascent to HA can cause severe damage to the body organs and may lead to many fatal disorders. During induction to HA, human body undergoes various physiological, biochemical, hematological and molecular changes to adapt to the extreme environmental conditions. Several literature references hint that gene-expression-regulation and regulatory molecules like miRNAs and transcription factors (TFs) control adaptive responses during HA stress. These biomolecules are known to interact in a complex combinatorial manner to fine-tune the gene expression and help in controlling the molecular responses during this stress and ultimately help in acclimatization. High-Altitude Human miRNA Database (HAHmiR.DB) is a unique, comprehensive and curated collection of miRNAs that have been experimentally validated to be associated with HA stress, their level of expression in different altitudes, fold change, experiment duration, biomarker association, disease and drug association, tissue-specific expression level, Gene Ontology (GO) and Kyoto Encyclopaedia of Gene and Genomes (KEGG) pathway associations. As a server platform, it also uniquely constructs and analyses interactive miRNA-TF-gene coregulatory networks and extracts regulatory circuits/feed-forward loops (FFLs). These regulatory circuits help to offer mechanistic insights into complex regulatory mechanisms during HA stress. The server can also build these regulatory networks between two and more miRNAs of the database and also identify the regulatory circuits from this network. Hence, HAHmiR.DB is the first-of-its-kind database in HA research, which is a reliable platform to explore, compare, analyse and retrieve miRNAs associated with HA stress, their coregulatory networks and FFL regulatory-circuits. HAHmiR.DB is freely accessible at http://www.hahmirdb.in.
Collapse
Affiliation(s)
- Pankaj Khurana
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| | - Apoorv Gupta
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| | - Ragumani Sugadev
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| | - Yogendra Kumar Sharma
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| | - Bhuvnesh Kumar
- Defence Institute of Physiology and Allied Sciences (DIPAS), Defence R&D Organization (DRDO), Lucknow Road, Timarpur, Delhi 110054, India
| |
Collapse
|
13
|
Lin XC, Yang Q, Fu WY, Lan LB, Ding H, Zhang YM, Li N, Zhang HT. Integrated analysis of microRNA and transcription factors in the bone marrow of patients with acute monocytic leukemia. Oncol Lett 2020; 21:50. [PMID: 33281961 PMCID: PMC7709554 DOI: 10.3892/ol.2020.12311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022] Open
Abstract
Acutemonocytic leukemia (AMoL) is a distinct subtype of acute myeloid leukemia (AML) with poor prognosis. However, the molecular mechanisms and key regulators involved in the global regulation of gene expression levels in AMoL are poorly understood. In order to elucidate the role of microRNAs (miRNAs/miRs) and transcription factors (TFs) in AMoL pathogenesis at the network level, miRNA and TF expression level profiles were systematically analyzed by miRNA sequencing and TF array, respectively; this identified 285 differentially expressed miRNAs and 139 differentially expressed TFs in AMoL samples compared with controls. By combining expression level profile data and bioinformatics tools available for predicting TF and miRNA targets, a comprehensive AMoL-specific miRNA-TF-mediated regulatory network was constructed. A total of 26 miRNAs and 23 TFs were identified as hub nodes in the network. Among these hubs, miR-29b-3p, MYC, TP53 and NFKB1 were determined to be potential AMoL regulators, and were subsequently extracted to construct sub-networks. A hypothetical pathway model was also proposed for miR-29b-3p to reveal the potential co-regulatory mechanisms of miR-29b-3p, MYC, TP53 and NFKB1 in AMoL. The present study provided an effective approach to discover critical regulators via a comprehensive regulatory network in AMoL, in addition to enhancing understanding of the pathogenesis of this disease at the molecular level.
Collapse
Affiliation(s)
- Xiao-Cong Lin
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Qin Yang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Wei-Yu Fu
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Liu-Bo Lan
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Hang Ding
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| | - Yu-Ming Zhang
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Ning Li
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Hai-Tao Zhang
- Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, Guangdong 524023, P.R. China
| |
Collapse
|
14
|
Zou D, Yin J, Ye Z, Zeng Q, Tian C, Wang Y, Chen Q, Chen R. Association Between the miR-146a Rs2910164 Polymorphism and Childhood Acute Lymphoblastic Leukemia Susceptibility in an Asian Population. Front Genet 2020; 11:886. [PMID: 33133124 PMCID: PMC7567015 DOI: 10.3389/fgene.2020.00886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/20/2020] [Indexed: 01/03/2023] Open
Abstract
Background:miR-146a has been demonstrated to be involved in normal hematopoiesis and the pathogenesis of many hematological malignancies by inhibiting the expression of its targets. Rs2910164(G>C) may modify the expression of the miR-146a gene, which might influence an individual's predisposition to childhood acute lymphoblastic leukemia (ALL). However, inconsistent findings have been reported on the association between the rs2910164(G>C) polymorphism and the risk of childhood ALL. Methods: A comprehensive meta-analysis was performed to accurately estimate the association between the miR-146a rs2910164 polymorphism and childhood ALL among four different genetic models. Results: This meta-analysis included Asian studies with a total of 1,543 patients and 1,816 controls. We observed a significant difference between patients and controls for the additive model (CC vs. GG: OR = 1.598, 95% CI: 1.003–2.545, P = 0.049) using a random effects model. Meanwhile, there was a trend of increased childhood ALL risk in the dominant model (CC + CG vs. GG: OR = 1.501, 95% CI: 0.976–2.307, P = 0.065), recessive model (CC vs. GG + CG: OR = 1.142, 95% CI: 0.946–1.380, P = 0.168) and allele model (C vs. G: OR = 1.217, 95% CI: 0.987–1.500, P = 0.066) between patients and controls. Conclusions: Our findings suggest that the miR-146a rs2910164 CC genotype was significantly associated with childhood ALL susceptibility.
Collapse
Affiliation(s)
- Dehua Zou
- Maternal and Child Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Jingwen Yin
- Department of Psychiatry, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhonglv Ye
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qiaoli Zeng
- Maternal and Child Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Chuan Tian
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yajun Wang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qikang Chen
- Maternal and Child Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Riling Chen
- Maternal and Child Research Institute, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China.,Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
15
|
Zhang Q, Liu W, Zhang HM, Xie GY, Miao YR, Xia M, Guo AY. hTFtarget: A Comprehensive Database for Regulations of Human Transcription Factors and Their Targets. GENOMICS PROTEOMICS & BIOINFORMATICS 2020; 18:120-128. [PMID: 32858223 PMCID: PMC7647694 DOI: 10.1016/j.gpb.2019.09.006] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/17/2019] [Accepted: 10/23/2019] [Indexed: 01/07/2023]
Abstract
Transcription factors (TFs) as key regulators play crucial roles in biological processes. The identification of TF–target regulatory relationships is a key step for revealing functions of TFs and their regulations on gene expression. The accumulated data of chromatin immunoprecipitation sequencing (ChIP-seq) provide great opportunities to discover the TF–target regulations across different conditions. In this study, we constructed a database named hTFtarget, which integrated huge human TF target resources (7190 ChIP-seq samples of 659 TFs and high-confidence binding sites of 699 TFs) and epigenetic modification information to predict accurate TF–target regulations. hTFtarget offers the following functions for users to explore TF–target regulations: (1) browse or search general targets of a query TF across datasets; (2) browse TF–target regulations for a query TF in a specific dataset or tissue; (3) search potential TFs for a given target gene or non-coding RNA; (4) investigate co-association between TFs in cell lines; (5) explore potential co-regulations for given target genes or TFs; (6) predict candidate TF binding sites on given DNA sequences; (7) visualize ChIP-seq peaks for different TFs and conditions in a genome browser. hTFtarget provides a comprehensive, reliable and user-friendly resource for exploring human TF–target regulations, which will be very useful for a wide range of users in the TF and gene expression regulation community. hTFtarget is available at http://bioinfo.life.hust.edu.cn/hTFtarget.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Liu
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hong-Mei Zhang
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Gui-Yan Xie
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ya-Ru Miao
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mengxuan Xia
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - An-Yuan Guo
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
16
|
Wang Q, Tang Q, Zhao L, Zhang Q, Wu Y, Hu H, Liu L, Liu X, Zhu Y, Guo A, Yang X. Time serial transcriptome reveals Cyp2c29 as a key gene in hepatocellular carcinoma development. Cancer Biol Med 2020; 17:401-417. [PMID: 32587777 PMCID: PMC7309465 DOI: 10.20892/j.issn.2095-3941.2019.0335] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
Objective: Hepatocellular carcinoma (HCC) is a severely lethal cancer that usually originates from chronic liver injury and inflammation. Although progress on diagnosis and treatment is obvious, the cause of HCC remains unclear. In this study, we sought to determine key genes in HCC development. Methods: To identify key regulators during HCC progression, we performed transcriptome sequencing to obtain time series gene expression data from a mouse model with diethylnitrosamine-induced liver tumors and further verified gene expression and function in vitro and in vivo. Results: Among the differentially expressed genes, Cyp2c29 was continuously downregulated during HCC progression. Overexpression of Cyp2c29 suppressed NF-κB activation and proinflammatory cytokine production by increasing the production of 14,15-epoxyeicosatrienoic acid in vitro. Furthermore, overexpression of Cyp2c29 in vivo protected against liver inflammation in mouse models of liver injury induced by both acetaminophen and CCl4. Two human homologs of mouse Cyp2c29, CYP2C8 and CYP2C9, were found to be downregulated in human HCC progression, and their expression was positively correlated with overall survival in patients with HCC (significance: P = 0.046 and 0.0097, respectively). Conclusions: Collectively, through systematic analysis and verification, we determined that Cyp2c29 is a novel gene involved in liver injury and inflammation, which may be a potential biomarker for HCC prevention and prognosis determination.
Collapse
Affiliation(s)
- Qi Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qin Tang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lijun Zhao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiong Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuxin Wu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Hu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lanlan Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiang Liu
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yanhong Zhu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Anyuan Guo
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangliang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
17
|
Zhang Q, Li J, Luo M, Xie GY, Zeng W, Wu Y, Zhu Y, Yang X, Guo AY. Systematic Transcriptome and Regulatory Network Analyses Reveal the Hypoglycemic Mechanism of Dendrobium fimbriatum. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1-14. [PMID: 31790971 PMCID: PMC6909217 DOI: 10.1016/j.omtn.2019.10.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/21/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022]
Abstract
Type 2 diabetes (T2D) is a long-term metabolic disorder disease characterized by high blood sugar and relative lack of insulin. Previous studies have demonstrated that Dendrobium has potent glucose-lowing effects and may serve as add-ons or alternatives to classic medications for T2D prevention and treatment, but the underlying molecular mechanisms were still unclear. We performed biochemical and transcriptional profiling (RNA sequencing [RNA-seq] and microRNA sequencing [miRNA-seq]) analyses on the pancreas and liver of Dendrobium fimbriatum extract (DFE)-fed diabetic rats and control animals. Our sequencing and experimental data indicated that DFE significantly alleviated diabetes symptoms through inhibiting inflammation and preventing islet cell apoptosis in diabetic pancreas. Transcription factors in Stat/nuclear factor κB (NF-κB)/Irf families combined with miR-148a/375/9a served as key regulators in the inflammation and apoptosis pathways under DFE administration. Meanwhile, DFE improved the energy metabolism, lipid transport, and oxidoreductase activity in the liver, and thus decreased lipid accumulation and lipotoxicity-induced hepatocyte apoptosis. Our findings revealed that DFE may serve as a potential therapeutic agent to prevent T2D, and also showed the combination of transcriptome profiling and regulatory network analysis could act as an effective approach for investigating potential molecular mechanisms of traditional Chinese medicine on diseases.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Li
- National Engineering Research Center for Nano Medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Luo
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Gui-Yan Xie
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Weiwei Zeng
- National Engineering Research Center for Nano Medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxin Wu
- National Engineering Research Center for Nano Medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yanhong Zhu
- National Engineering Research Center for Nano Medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nano Medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - An-Yuan Guo
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
18
|
Wang X, Xu Y, Xu K, Chen Y, Xiao X, Guan X. BCL11A confers cell invasion and migration in androgen receptor-positive triple-negative breast cancer. Oncol Lett 2020; 19:2916-2924. [PMID: 32218847 PMCID: PMC7068233 DOI: 10.3892/ol.2020.11383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is associated with poor clinical prognosis due to a lack of effective therapeutic options. The expression of B-cell lymphoma/leukemia 11A (BCL11A) has been indicated to correlate with TNBC carcinogenesis, though the precise mechanisms of BCL11A-induced tumorigenesis in TNBC remain unclear. Using data retrieved from The Cancer Genome Atlas (TCGA) database, the present study demonstrated that BCL11A expression was upregulated in TNBC, compared with other types of breast cancer. Furthermore, in a tissue microarray of 140 patients with breast cancer, an elevated BCL11A level was correlated with unfavorable overall survival (OS), and exogenous BCL11A-knockdown was subsequently verified to inhibit tumor growth and metastasis in TNBC. Notably, the same tissue microarray revealed that a favorable patient outcome was associated with high expression levels of BCL11A and androgen receptor (AR). Moreover, BCL11A-knockdown significantly inhibited the expression level of AR and further had an influence on proliferation, migration and invasion in TNBC cell lines. Collectively, the results of the current study indicate the function of BCL11A in TNBC progression, and provide new insights into the unique mechanism of BCL11A in AR regulation, emphasizing the significance of more research on BCL11A and AR regulation in TNBC molecular treatment.
Collapse
Affiliation(s)
- Xin Wang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yumei Xu
- Department of Gynaecology and Obstetrics, Zhongshan People's Hospital, Zhongshan, Guangdong 528403, P.R. China
| | - Kun Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yajuan Chen
- Department of Medical Oncology, Jinling Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| | - Xiudi Xiao
- Department of Breast Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Xiaoxiang Guan
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China.,Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Department of Medical Oncology, Jinling Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
19
|
Taz TA, Kawsar M, Paul BK, Ahmed K, Bhuyian T. Characterizing topological properties and network pathway model among vector borne diseases. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
20
|
Slattery ML, Mullany LE, Sakoda LC, Wolff RK, Samowitz WS, Herrick JS. Dysregulated genes and miRNAs in the apoptosis pathway in colorectal cancer patients. Apoptosis 2019. [PMID: 29516317 PMCID: PMC5856858 DOI: 10.1007/s10495-018-1451-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apoptosis is genetically regulated and involves intrinsic and extrinsic pathways. We examined 133 genes within these pathways to identify whether they are expressed differently in colorectal carcinoma (CRC) and normal tissue (N = 217) and if they are associated with similar differential miRNA expression. Gene expression data (RNA-Seq) and miRNA expression data (Agilent Human miRNA Microarray V19.0) were generated. We focused on dysregulated genes with a fold change (FC) of > 1.50 or < 0.67, that were significant after adjustment for multiple comparisons. miRNA:mRNA seed-region matches were determined. Twenty-three genes were significantly downregulated (FC < 0.67) and 18 were significantly upregulated (FC > 1.50). Of these 41 genes, 11 were significantly associated with miRNA differential expression. BIRC5 had the greatest number of miRNA associations (14) and the most miRNAs with a seed-region match (10). Four of these matches, miR-145-5p, miR-150-5p, miR-195-5p, and miR-650, had a negative beta coefficient. CSF2RB was associated with ten total miRNAs (five with a seed-region match, and one miRNA, miR-92a-3p, with a negative beta coefficient). Of the three miRNAs associated with CTSS, miR-20b-5p, and miR-501-3p, had a seed-region match and a negative beta coefficient between miRNA:mRNA pairs. Several miRNAs that were associated with dysregulated gene expression, seed-region matches, and negative beta coefficients also were associated with CRC-specific survival. Our data suggest that miRNAs could influence several apoptosis-related genes. BIRC5, CTSS, and CSF2R all had seed-region matches with miRNAs that would favor apoptosis. Our study identifies several miRNA associated with apoptosis-related genes, that if validated, could be important therapeutic targets.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, 84108, USA.
| | - Lila E Mullany
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, 84108, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Roger K Wolff
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, 84108, USA
| | - Wade S Samowitz
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Jennifer S Herrick
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, 84108, USA
| |
Collapse
|
21
|
Zhang Q, Liu W, Liu C, Lin SY, Guo AY. SEGtool: a specifically expressed gene detection tool and applications in human tissue and single-cell sequencing data. Brief Bioinform 2019; 19:1325-1336. [PMID: 28981576 DOI: 10.1093/bib/bbx074] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Indexed: 12/20/2022] Open
Abstract
Different tissues and diseases have distinct transcriptional profilings with specifically expressed genes (SEGs). So, the identification of SEGs is an important issue in the studies of gene function, biological development, disease mechanism and biomarker discovery. However, few accurate and easy-to-use tools are available for RNA sequencing (RNA-seq) data to detect SEGs. Here, we presented SEGtool, a tool based on fuzzy c-means, Jaccard index and greedy annealing method for SEG detection automatically and self-adaptively ignoring data distribution. Testing result showed that our SEGtool outperforms the existing tools, which was mainly developed for microarray data. By applying SEGtool to Genotype-Tissue Expression (GTEx) human tissue data set, we detected 3181 SEGs with tissue-related functions. Regulatory networks reveal tissue-specific transcription factors regulating many SEGs, such as ETV2 in testis, HNF4A in liver and NEUROD1 in brain. Applied to a case study of single-cell sequencing (SCS) data from embryo cells, we identified many SEGs in specific stages of human embryogenesis. Notably, SEGtool is suitable for RNA-seq data and even SCS data with high specificity and accuracy. An implementation of SEGtool R package is freely available at http://bioinfo.life.hust.edu.cn/SEGtool/.
Collapse
Affiliation(s)
- Qiong Zhang
- Huazhong University of Science and Technology, China
| | - Wei Liu
- Huazhong University of Science and Technology, China
| | - Chunjie Liu
- Huazhong University of Science and Technology, China
| | - Sheng-Yan Lin
- Huazhong University of Science and Technology, China
| | - An-Yuan Guo
- Huazhong University of Science and Technology, China
| |
Collapse
|
22
|
Zhang Q, Hu H, Chen SY, Liu CJ, Hu FF, Yu J, Wu Y, Guo AY. Transcriptome and Regulatory Network Analyses of CD19-CAR-T Immunotherapy for B-ALL. GENOMICS PROTEOMICS & BIOINFORMATICS 2019; 17:190-200. [PMID: 31201998 PMCID: PMC6620363 DOI: 10.1016/j.gpb.2018.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/06/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has exhibited dramatic anti-tumor efficacy in clinical trials. In this study, we reported the transcriptome profiles of bone marrow cells in four B cell acute lymphoblastic leukemia (B-ALL) patients before and after CD19-specific CAR-T therapy. CD19-CAR-T therapy remarkably reduced the number of leukemia cells, and three patients achieved bone marrow remission (minimal residual disease negative). The efficacy of CD19-CAR-T therapy on B-ALL was positively correlated with the abundance of CAR and immune cell subpopulations, e.g., CD8+ T cells and natural killer (NK) cells, in the bone marrow. Additionally, CD19-CAR-T therapy mainly influenced the expression of genes linked to cell cycle and immune response pathways, including the NK cell mediated cytotoxicity and NOD-like receptor signaling pathways. The regulatory network analyses revealed that microRNAs (e.g., miR-148a-3p and miR-375), acting as oncogenes or tumor suppressors, could regulate the crosstalk between the genes encoding transcription factors (TFs; e.g., JUN and FOS) and histones (e.g., HIST1H4A and HIST2H4A) involved in CD19-CAR-T therapy. Furthermore, many long non-coding RNAs showed a high degree of co-expression with TFs or histones (e.g., FOS and HIST1H4B) and were associated with immune processes. These transcriptome analyses provided important clues for further understanding the gene expression and related mechanisms underlying the efficacy of CAR-T immunotherapy.
Collapse
Affiliation(s)
- Qiong Zhang
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Hu
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Si-Yi Chen
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chun-Jie Liu
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fei-Fei Hu
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianming Yu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yaohui Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - An-Yuan Guo
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
23
|
Mohamed RH, Abu-Shahba N, Mahmoud M, Abdelfattah AMH, Zakaria W, ElHefnawi M. Co-regulatory Network of Oncosuppressor miRNAs and Transcription Factors for Pathology of Human Hepatic Cancer Stem Cells (HCSC). Sci Rep 2019; 9:5564. [PMID: 30944375 PMCID: PMC6447552 DOI: 10.1038/s41598-019-41978-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/21/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatic cancer stem cells (HCSCs) are considered as main players for the hepatocellular carcinoma (HCC) initiation, metastasis, drug resistance and recurrence. There is a growing evidence supporting the down-regulated miRNAs in HCSCs as key suppressors for the stemness traits, but still more details are vague about how these miRNAs modulate the HCC development. To uncover some of these miRNA regulatory aspects in HCSC, we compiled 15 down-regulated miRNA and their validated and predicted up-regulated targets in HCSC. The targets were enriched for several cancer cell stemness hallmarks and CSC pre-metastatic niche, which support these miRNAs role in suppression of HCSCs neoplastic transformation. Further, we constructed miRNA-Transcription factor (TF) regulatory networks, which provided new insights on the role of the proposed miRNA-TF co-regulation in the cancer stemness axis and its cross talk with the surrounding microenvironment. Our analysis revealed HCSC important hubs as candidate regulators for targeting hepatic cancer stemness such as, miR-148a, miR-214, E2F family, MYC and SLC7A5. Finally, we proposed a possible model for miRNA and TF co-regulation of HCSC signaling pathways. Our study identified an HCSC signature and set bridges between the reported results to give guide for future validation of HCC therapeutic strategies avoiding drug resistance.
Collapse
Affiliation(s)
- Rania Hassan Mohamed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nourhan Abu-Shahba
- Stem Cell Research Group, Centre of Excellence for Advanced Sciences, Department of Medical Molecular Genetics, National Research Centre, Cairo, Egypt
| | - Marwa Mahmoud
- Stem Cell Research Group, Centre of Excellence for Advanced Sciences, Department of Medical Molecular Genetics, National Research Centre, Cairo, Egypt
| | - Ahmed M H Abdelfattah
- Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt.,VAP, CS Department, SUNY, Oswego, NY, USA
| | - Wael Zakaria
- Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mahmoud ElHefnawi
- Biomedical informatics and Chemoinformatics group, Centre of Excellence for Advanced Sciences, Informatics and Systems Department, National Research Centre, Cairo, Egypt. .,Informatics and systems Department, Division of Engineering research, National Research Centre, Cairo, Egypt.
| |
Collapse
|
24
|
Transcriptome profiling reveals the anti-diabetic molecular mechanism of Cyclocarya paliurus polysaccharides. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
25
|
Shivram H, Le SV, Iyer VR. MicroRNAs reinforce repression of PRC2 transcriptional targets independently and through a feed-forward regulatory network. Genome Res 2019; 29:184-192. [PMID: 30651280 PMCID: PMC6360819 DOI: 10.1101/gr.238311.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/21/2018] [Indexed: 12/17/2022]
Abstract
Gene expression can be regulated at multiple levels, but it is not known if and how there is broad coordination between regulation at the transcriptional and post-transcriptional levels. Transcription factors and chromatin regulate gene expression transcriptionally, whereas microRNAs (miRNAs) are small regulatory RNAs that function post-transcriptionally. Systematically identifying the post-transcriptional targets of miRNAs and the mechanism of transcriptional regulation of the same targets can shed light on regulatory networks connecting transcriptional and post-transcriptional control. We used individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) for the RNA-induced silencing complex (RISC) component AGO2 and global miRNA depletion to identify genes directly targeted by miRNAs. We found that Polycomb repressive complex 2 (PRC2) and its associated histone mark, H3K27me3, is enriched at hundreds of miRNA-repressed genes. We show that these genes are directly repressed by PRC2 and constitute a significant proportion of direct PRC2 targets. For just over half of the genes corepressed by PRC2 and miRNAs, PRC2 promotes their miRNA-mediated repression by increasing expression of the miRNAs that are likely to target them. miRNAs also repress the remainder of the PRC2 target genes, but independently of PRC2. Thus, miRNAs post-transcriptionally reinforce silencing of PRC2-repressed genes that are inefficiently repressed at the level of chromatin, by either forming a feed-forward regulatory network with PRC2 or repressing them independently of PRC2.
Collapse
Affiliation(s)
- Haridha Shivram
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Steven V Le
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Vishwanath R Iyer
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
26
|
Xia M, Zhang Q, Luo M, Li P, Wang Y, Lei Q, Guo AY. Regulatory network analysis reveals the oncogenesis roles of feed-forward loops and therapeutic target in T-cell acute lymphoblastic leukemia. BMC Med Genomics 2019; 12:8. [PMID: 30646895 PMCID: PMC6332896 DOI: 10.1186/s12920-018-0469-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 12/26/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy. Aberrant expressed genes contribute to the development and progression of T-ALL. However, the regulation underlying their aberrant expression remains elusive. Dysregulated expression of transcription factors and miRNAs played important regulatory roles in the pathogenesis of T-ALL. METHODS In this study, we analyzed the alteration of transcriptome profiling and regulatory networks between T-ALL sample and normal T cell samples at transcriptional and post-transcriptional levels. RESULTS Our results demonstrated that genes related to cell cycle and cell proliferation processes were significantly upregulated in T-ALL comparing to normal samples. Meanwhile, regulatory network analyses revealed that FOXM1, MYB, SOX4 and miR-21/19b as core regulators played vital roles in the development of T-ALL. FOXM1-miR-21-5p-CDC25A and MYB/SOX4-miR-19b-3p-RBBP8 were identified as important feed-forward loops involved in the oncogenesis of T-ALL. Drug-specific analyses showed that GSK-J4 may be an effective drug, and CDC25A/CAPN2/MCM2 could serve as potential therapeutic targets for T-ALL. CONCLUSIONS This study may provide novel insights for the regulatory mechanisms underlying the development of T-ALL and potential therapeutic targets.
Collapse
Affiliation(s)
- Mengxuan Xia
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 China
| | - Qiong Zhang
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 China
| | - Mei Luo
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 China
| | - Pan Li
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 China
| | - Yingxue Wang
- Department of Hematology, the Second Hospital of Shandong University, Jinan, 250033 Shandong China
| | - Qian Lei
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 China
| | - An-Yuan Guo
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 China
| |
Collapse
|
27
|
Mullany LE, Slattery ML. The functional role of miRNAs in colorectal cancer: insights from a large population-based study. Cancer Biol Med 2019; 16:211-219. [PMID: 31516743 PMCID: PMC6713639 DOI: 10.20892/j.issn.2095-3941.2018.0514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Identification of causal microRNAs (miRNAs) in colorectal cancer (CRC) is elusive, due to our lack of understanding of how specific miRNAs affect biological pathways and outcomes. An miRNA can regulate many mRNAs and an mRNA can be associated with many miRNAs; appreciation of these complex networks in which miRNAs operate is necessary to transition from identifying dysregulated miRNAs to identifying individual miRNAs or groups of miRNAs that are suitable for therapeutic purposes. The aim of the paper is to compile results from a population-based study (n = 1,954 cases with matched carcinoma/normal tissue) of miRNAs in CRC. The information gained allows for cohesive and comprehensive insight into miRNAs and CRC in terms of function and impact. Comparison of miRNA expression with mRNA expression from nine signaling pathways in carcinogenic processes allowed us to identify miRNA targets within a biological context. MiRNAs that directly influence mRNA expression may be effective biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Lila E Mullany
- Department of Internal Medicine, University of Utah, Salt Lake City 84108, UT, USA
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City 84108, UT, USA
| |
Collapse
|
28
|
Su LN, Song XQ, Xue ZX, Zheng CQ, Yin HF, Wei HP. Network analysis of microRNAs, transcription factors, and target genes involved in axon regeneration. J Zhejiang Univ Sci B 2018; 19:293-304. [PMID: 29616505 DOI: 10.1631/jzus.b1700179] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Axon regeneration is crucial for recovery from neurological diseases. Numerous studies have identified several genes, microRNAs (miRNAs), and transcription factors (TFs) that influence axon regeneration. However, the regulatory networks involved have not been fully elucidated. In the present study, we analyzed a regulatory network of 51 miRNAs, 27 TFs, and 59 target genes, which is involved in axon regeneration. We identified 359 pairs of feed-forward loops (FFLs), seven important genes (Nap1l1, Arhgef12, Sema6d, Akt3, Trim2, Rab11fip2, and Rps6ka3), six important miRNAs (hsa-miR-204-5p, hsa-miR-124-3p, hsa-miR-26a-5p, hsa-miR-16-5p, hsa-miR-17-5p, and hsa-miR-15b-5p), and eight important TFs (Smada2, Fli1, Wt1, Sp6, Sp3, Smad4, Smad5, and Creb1), which appear to play an important role in axon regeneration. Functional enrichment analysis revealed that axon-associated genes are involved mainly in the regulation of cellular component organization, axonogenesis, and cell morphogenesis during neuronal differentiation. However, these findings need to be validated by further studies.
Collapse
Affiliation(s)
- Li-Ning Su
- Department of Basic Medicine, Hebei North University, Zhangjiakou 075029, China
| | - Xiao-Qing Song
- Department of Basic Medicine, Hebei North University, Zhangjiakou 075029, China
| | - Zhan-Xia Xue
- Department of Pharmacy, Hebei North University, Zhangjiakou 075029, China
| | - Chen-Qing Zheng
- Shenzhen RealOmics (Biotech) Co., Ltd., Shenzhen 518081, China
| | - Hai-Feng Yin
- Department of Basic Medicine, Hebei North University, Zhangjiakou 075029, China
| | - Hui-Ping Wei
- Department of Basic Medicine, Hebei North University, Zhangjiakou 075029, China
| |
Collapse
|
29
|
Li J, Zhang Q, Zeng W, Wu Y, Luo M, Zhu Y, Guo AY, Yang X. Integrating Transcriptome and Experiments Reveals the Anti-diabetic Mechanism of Cyclocarya paliurus Formula. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:419-430. [PMID: 30388616 PMCID: PMC6205057 DOI: 10.1016/j.omtn.2018.09.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes (T2D) is generally regarded as a metabolic disorder disease with various phenotypic expressions. Traditional Chinese medicine (TCM) has been widely used for preventing and treating diabetes. In our study, we demonstrated that Cyclocarya paliurus formula extractum (CPE), a compound of TCM, can ameliorate diabetes in diabetic rats. Transcriptome profiles were performed to elucidate the anti-diabetic mechanisms of CPE on pancreas and liver. Pancreatic transcriptome analysis showed CPE treatment significantly inhibited gene expressions related to inflammation and apoptosis pathways, among which the transcription factors (TFs) nuclear factor κB (NF-κB), STAT, and miR-9a/148/200 may serve as core regulators contributing to ameliorate diabetes. Biochemical studies also demonstrated CPE treatment decreased pro-inflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin [IL]-1β, and IL-6) and reduced β cell apoptosis. In liver tissue, our transcriptome and biochemical experiments showed that CPE treatment reduced lipid accumulation and liver injury, and it promoted glycogen synthesis, which may be regulated by TFs Srebf1, Mlxipl, and miR-122/128/192. Taken together, our findings revealed CPE could be used as a potential therapeutic agent to prevent and treat diabetes. It is the first time to combine transcriptome and regulatory network analyses to study the mechanism of CPE in preventing diabetes, giving a demonstration of exploring the mechanism of TCM on complex diseases.
Collapse
Affiliation(s)
- Jing Li
- National Engineering Research Center for Nano medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Zhang
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Weiwei Zeng
- National Engineering Research Center for Nano medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxin Wu
- National Engineering Research Center for Nano medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Luo
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yanhong Zhu
- National Engineering Research Center for Nano medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - An-Yuan Guo
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiangliang Yang
- National Engineering Research Center for Nano medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
30
|
Luo M, Zhang Q, Xia M, Hu F, Ma Z, Chen Z, Guo AY. Differential Co-expression and Regulatory Network Analysis Uncover the Relapse Factor and Mechanism of T Cell Acute Leukemia. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:184-194. [PMID: 30195757 PMCID: PMC6023839 DOI: 10.1016/j.omtn.2018.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/02/2018] [Accepted: 05/04/2018] [Indexed: 01/17/2023]
Abstract
The pediatric T cell acute lymphoblastic leukemia (T-ALL) still remains a cancer with worst prognosis for high recurrence. Massive studies were conducted for the leukemia relapse based on diagnosis and relapse paired samples. However, the initially diagnostic samples may contain the relapse information and mechanism, which were rarely studied. In this study, we collected mRNA and microRNA (miRNA) data from initially diagnosed pediatric T-ALL samples with their relapse or remission status after treatment. Integrated differential co-expression and miRNA-transcription factor (TF)-gene regulatory network analyses were used to reveal the possible relapse mechanisms for pediatric T-ALL. We detected miR-1246/1248 and NOTCH2 served as key nodes in the relapse network, and they combined with TF WT1/SOX4/REL to form regulatory modules that influence the progress of T-ALL. A regulatory loop miR-429-MYCN-MFHAS1 was found potentially associated with the remission of T-ALL. Furthermore, we proved miR-1246/1248 combined with NOTCH2 could promote cell proliferation in the T-ALL cell line by experiments. Meanwhile, analysis based on the miRNA-drug relationships demonstrated that drugs 5-fluorouracil, ascorbate, and trastuzumab targeting miR-1246 could serve as potential supplements for the standard therapy. In conclusion, our findings revealed the potential molecular mechanisms of T-ALL relapse by the combination of co-expression and regulatory network, and they provide preliminary clues for precise treatment of T-ALL patients.
Collapse
Affiliation(s)
- Mei Luo
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiong Zhang
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mengxuan Xia
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Feifei Hu
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhaowu Ma
- Laboratory of Neuronal Network and Brain Diseases Modulation, School of Medicine, Yangtze University, Jingzhou, Hubei 434023, China
| | - Zehua Chen
- Joint Laboratory for the Research of Pharmaceutics-Huazhong University of Science and Technology and Infinitus, Wuhan, China
| | - An-Yuan Guo
- Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
31
|
Wang K, Ma C, Xing C, Chen CL, Chen Z, Yao Y, Wang J, Tao C. Burkitt lymphoma-associated network construction and important network motif analysis. Oncol Lett 2018; 16:3054-3062. [PMID: 30127896 PMCID: PMC6096059 DOI: 10.3892/ol.2018.9010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 05/11/2018] [Indexed: 12/13/2022] Open
Abstract
Biological and medical researchers have discovered numerous transcription factors (TFs), microRNAs (miRNAs) and genes associated with Burkitt lymphoma (BL) through individual experiments; however, their regulatory mechanisms remain unclear. In the present study, BL-dysregulated and BL-associated networks were constructed to investigate these mechanisms. All data and regulatory associations were from known data resources and literature. The dysregulated network consisted of dysregulated TFs, miRNAs and genes, and partially determined the pathogenesis mechanisms underlying BL. The BL-associated network consisted of BL-associated TFs, miRNAs and genes. It has been indicated that the network motif consisted of TFs, miRNAs and genes serve potential functions in numerous biological processes within cancer. Two of the most studied network motifs are feedback loop (FBL) and feed-forward loop (FFL). The important network motifs were extracted, including the FBL motif, 3-nodes FFL motif and 4-nodes motif, from BL-dysregulated and BL-associated networks, and 10 types of motifs were identified from BL-associated network. Finally, 26/31 FBL motifs, 45/75 3-nodes FFL motifs and 54/94 4-nodes motifs were obtained from the dysregulated/associated networks. A total of four TFs (E2F1, NFKB1, E2F4 and TCF3) exhibit complicated regulation associations in BL-associated networks. The biological network does not demonstrate the dysregulated status for healthy people. When the individual becomes unwell, their biological network exhibits a dysregulated status. If the dysregulated status is regulated to a normal status by a number of medical methods, the diseases may be treated successfully. BL-dysregulated networks serve important roles in pathogenesis mechanisms underlying BL regulation of the dysregulated network, which may be an effective strategy that contributes to gene therapy for BL.
Collapse
Affiliation(s)
- Kunhao Wang
- School of Information Engineering, Changchun University of Science and Technology, Changchun, Jilin 130600, P.R. China
| | - Chao Ma
- College of Digital Media, Shenzhen Institute of Information Technology, Shenzhen, Guangdong 518172, P.R. China
| | - Chong Xing
- Department of Information and Technology, Changchun Finance College, Changchun, Jilin 130028, P.R. China
| | - Chin-Ling Chen
- Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung 41349, Taiwan, R.O.C
| | - Zhigang Chen
- School of Information Engineering, Changchun University of Science and Technology, Changchun, Jilin 130600, P.R. China
| | - Yuxia Yao
- School of Information Engineering, Changchun University of Science and Technology, Changchun, Jilin 130600, P.R. China
| | - Jianan Wang
- School of Information Engineering, Changchun University of Science and Technology, Changchun, Jilin 130600, P.R. China
| | - Chunyu Tao
- School of Information Engineering, Changchun University of Science and Technology, Changchun, Jilin 130600, P.R. China
| |
Collapse
|
32
|
Li J, Luo M, Hu M, Guo AY, Yang X, Zhang Q, Zhu Y. Investigating the Molecular Mechanism of Aqueous Extract of Cyclocarya paliurus on Ameliorating Diabetes by Transcriptome Profiling. Front Pharmacol 2018; 9:912. [PMID: 30140229 PMCID: PMC6095059 DOI: 10.3389/fphar.2018.00912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022] Open
Abstract
Diabetes is generally regarded as a metabolic disorder disease caused by various reasons, including pancreas islet injury and lipid metabolism disorders. The aqueous extract of Cyclocarya paliurus leaves (CPAE) was reported to be anti-diabetic. However, the possible molecular mechanisms have not been investigated. To elucidate the anti-diabetic effects of CPAE and the underlying potential mechanisms, we performed transcriptome profiling (RNA-Seq and miRNA-Seq) on the pancreas and liver from non-diabetic, diabetic and diabetic-CPAE rats. Our results demonstrated the CPAE could reduce excessive oxidative stress and inflammation in the pancreas, and maintain the balance of glucose and lipid metabolism in the liver. Transcriptome profiling and regulatory network analysis indicated that CPAE may ameliorate diabetes through improving β-cell survival and strengthening insulin secretion in the pancreas. Meanwhile, CPAE could improve impaired lipid metabolism and reduce excessive oxidative damage in the liver probably through miR-200/375-Aldh1b1/Hps5-Hes1 co-regulatory network. Taken together, our biochemical experiments combined with transcriptome profiling showed that the effects of CPAE on anti-diabetes may work through protecting pancreatic β-cell, improving dyslipidaemia and lipid metabolism disorders.
Collapse
Affiliation(s)
- Jing Li
- National Engineering Research Center for Nano medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Luo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Minghua Hu
- Joint Laboratory for the Research of Pharmaceutics, Huazhong University of Science and Technology and Infinitus, Wuhan, China
| | - An-Yuan Guo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangliang Yang
- National Engineering Research Center for Nano medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qiong Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yanhong Zhu
- National Engineering Research Center for Nano medicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Slattery ML, Mullany LE, Wolff RK, Sakoda LC, Samowitz WS, Herrick JS. The p53-signaling pathway and colorectal cancer: Interactions between downstream p53 target genes and miRNAs. Genomics 2018; 111:762-771. [PMID: 29860032 DOI: 10.1016/j.ygeno.2018.05.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION We examined expression of genes in the p53-signaling pathway. We determine if genes that have significantly different expression in carcinoma tissue compared to normal mucosa also have significantly differentially expressed miRNAs. We utilize a sample of 217 CRC cases. METHODS We focused on fold change (FC) > 1.50 or <0.67 for genes and miRNAs, that were statistically significant after adjustment for multiple comparisons. We evaluated the linear association between the differential expression of miRNA and mRNA. miRNA:mRNA seed-region matches also were determined. RESULTS Eleven dysregulated genes were associated with 37 dysregulated miRNAs; all were down-stream from the TP53 gene. MiR-150-5p (HR = 0.82) and miR-196b-5p (HR 0.73) significantly reduced the likelihood of dying from CRC when miRNA expression increased in rectal tumors. CONCLUSIONS Our data suggest that activation of p53 from cellular stress, could target downstream genes that in turn could influence cell cycle arrest, apoptosis, and angiogenesis through mRNA:miRNA interactions.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, United States.
| | - Lila E Mullany
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, United States
| | - Roger K Wolff
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, United States
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, United States
| | - Wade S Samowitz
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Jennifer S Herrick
- Department of Medicine, University of Utah, 383 Colorow, Salt Lake City, UT, United States
| |
Collapse
|
34
|
Slattery ML, Mullany LE, Sakoda LC, Wolff RK, Samowitz WS, Herrick JS. The MAPK-Signaling Pathway in Colorectal Cancer: Dysregulated Genes and Their Association With MicroRNAs. Cancer Inform 2018; 17:1176935118766522. [PMID: 29636593 PMCID: PMC5888819 DOI: 10.1177/1176935118766522] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 12/11/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways regulate many cellular functions including cell proliferation and apoptosis. We examined associations of differential gene and microRNA (miRNA) expression between carcinoma and paired normal mucosa for 241 genes in the KEGG-identified MAPK-signaling pathway among 217 colorectal cancer (CRC) cases. Gene expression data (RNA-Seq) and miRNA expression data (Agilent Human miRNA Microarray V19.0; Agilent Technologies Inc., Santa Clara, CA, USA) were analyzed. We first identified genes most strongly associated with CRC using a fold change (FC) of >1.50 or <0.67) that were statistically significant after adjustment for multiple comparisons. We then determined miRNAs associated with dysregulated genes and through miRNA:mRNA (messenger RNA) seed region matches discerned genes with a greater likelihood of having a direct biological association. Ninety-nine genes had a meaningful FC for all CRC, microsatellite unstable–specific tumors, or microsatellite stable–specific tumors. Thirteen dysregulated genes were associated with miRNAs, totaling 68 miRNA:mRNA associations. Thirteen of the miRNA:mRNA associations had seed region matches where the differential expression between the miRNA and mRNA was inversely related suggesting a direct association as a result of their binding. Several direct associations, upstream of ERK1/ERK2, JNK, and p38, were found for PDGFRA with 7 miRNAs; RASGRP3 and PRKCB with miR-203a; and TGFBR1 with miR-6071 and miR-2117. Other associations between miRNAs and mRNAs are most likely indirect, resulting from feedback and feed forward loops. Our results suggest that miRNAs may alter MAPK signaling through direct binding with key genes in this pathway. We encourage others to validate results in targeted CRC experiments that can help solidify important therapeutic targets.
Collapse
Affiliation(s)
| | - Lila E Mullany
- School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Roger K Wolff
- School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Wade S Samowitz
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
35
|
Nagel S, Pommerenke C, Meyer C, Kaufmann M, MacLeod RA, Drexler HG. Aberrant expression of NKL homeobox gene HLX in Hodgkin lymphoma. Oncotarget 2018; 9:14338-14353. [PMID: 29581848 PMCID: PMC5865674 DOI: 10.18632/oncotarget.24512] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/10/2018] [Indexed: 12/13/2022] Open
Abstract
NKL homeobox genes are basic regulators of cell and tissue differentiation, many acting as oncogenes in T-cell leukemia. Recently, we described an hematopoietic NKL-code comprising six particular NKL homeobox genes expressed in hematopoietic stem cells and lymphoid progenitors, unmasking their physiological roles in the development of these cell types. Hodgkin lymphoma (HL) is a B-cell malignancy showing aberrant activity of several developmental genes resulting in disturbed B-cell differentiation. To examine potential concordances in abnormal lymphoid differentiation of T- and B-cell malignancies we analyzed the expression of the hematopoietic NKL-code associated genes in HL, comprising HHEX, HLX, MSX1, NKX2-3, NKX3-1 and NKX6-3. Our approach revealed aberrant HLX activity in 8 % of classical HL patients and additionally in HL cell line L-540. Accordingly, to identify upstream regulators and downstream target genes of HLX we used L-540 cells as a model and performed chromosome and genome analyses, comparative expression profiling and functional assays via knockdown and overexpression experiments therein. These investigations excluded chromosomal rearrangements of the HLX locus at 1q41 and demonstrated that STAT3 operated directly as transcriptional activator of the HLX gene. Moreover, subcellular analyses showed highly enriched STAT3 protein in the nucleus of L-540 cells which underwent cytoplasmic translocation by repressing deacetylation. Finally, HLX inhibited transcription of B-cell differentiation factors MSX1, BCL11A and SPIB and of pro-apoptotic factor BCL2L11/BIM, thereby suppressing Etoposide-induced cell death. Collectively, we propose that aberrantly expressed NKL homeobox gene HLX is part of a pathological gene network in HL, driving deregulated B-cell differentiation and survival.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Claudia Pommerenke
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Maren Kaufmann
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Roderick A.F. MacLeod
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Hans G. Drexler
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
36
|
Tang Q, Zhang Q, Lv Y, Miao YR, Guo AY. SEGreg: a database for human specifically expressed genes and their regulations in cancer and normal tissue. Brief Bioinform 2018; 20:1322-1328. [DOI: 10.1093/bib/bbx173] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/22/2017] [Indexed: 12/26/2022] Open
Abstract
AbstractHuman specifically expressed genes (SEGs) usually serve as potential biomarkers for disease diagnosis and treatment. However, the regulation underlying their specific expression remains to be revealed. In this study, we constructed SEG regulation database (SEGreg; available at http://bioinfo.life.hust.edu.cn/SEGreg) for showing SEGs and their transcription factors (TFs) and microRNA (miRNA) regulations under different physiological conditions, which include normal tissue, cancer tissue and cell line. In total, SEGreg collected 6387, 1451, 4506 and 5320 SEGs from expression profiles of 34 cancer types and 55 tissues of The Cancer Genome Atlas, Cancer Cell Line Encyclopedia, Human Body Map and Genotype-Tissue Expression databases/projects, respectively. The cancer or tissue corresponding expressed miRNAs and TFs were identified from miRNA and gene expression profiles, and their targets were collected from several public resources. Then the regulatory networks of all SEGs were constructed and integrated into SEGreg. Through a user-friendly interface, users can browse and search SEGreg by gene name, data source, tissue, cancer type and regulators. In summary, SEGreg is a specialized resource to explore SEGs and their regulations, which provides clues to reveal the mechanisms of carcinogenesis and biological processes.
Collapse
|
37
|
Integrated regulatory network reveals novel candidate regulators in the development of negative energy balance in cattle. Animal 2017; 12:1196-1207. [PMID: 29282162 DOI: 10.1017/s1751731117003524] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Negative energy balance (NEB) is an altered metabolic state in modern high-yielding dairy cows. This metabolic state occurs in the early postpartum period when energy demands for milk production and maintenance exceed that of energy intake. Negative energy balance or poor adaptation to this metabolic state has important effects on the liver and can lead to metabolic disorders and reduced fertility. The roles of regulatory factors, including transcription factors (TFs) and micro RNAs (miRNAs) have often been separately studied for evaluating of NEB. However, adaptive response to NEB is controlled by complex gene networks and still not fully understood. In this study, we aimed to discover the integrated gene regulatory networks involved in NEB development in liver tissue. We downloaded data sets including mRNA and miRNA expression profiles related to three and four cows with severe and moderate NEB, respectively. Our method integrated two independent types of information: module inference network by TFs, miRNAs and mRNA expression profiles (RNA-seq data) and computational target predictions. In total, 176 modules were predicted by using gene expression data and 64 miRNAs and 63 TFs were assigned to these modules. By using our integrated computational approach, we identified 13 TF-module and 19 miRNA-module interactions. Most of these modules were associated with liver metabolic processes as well as immune and stress responses, which might play crucial roles in NEB development. Literature survey results also showed that several regulators and gene targets have already been characterized as important factors in liver metabolic processes. These results provided novel insights into regulatory mechanisms at the TF and miRNA levels during NEB. In addition, the method described in this study seems to be applicable to construct integrated regulatory networks for different diseases or disorders.
Collapse
|
38
|
Tang Q, Wang Q, Zhang Q, Lin SY, Zhu Y, Yang X, Guo AY. Gene expression, regulation of DEN and HBx induced HCC mice models and comparisons of tumor, para-tumor and normal tissues. BMC Cancer 2017; 17:862. [PMID: 29254483 PMCID: PMC5735680 DOI: 10.1186/s12885-017-3860-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 11/29/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the leading cause of cancer mortality. Chemical and virus induction are two major risk factors, however, the potential molecular mechanisms of their differences remain elusive. In this study, to identify the similarities and differences between chemical and virus induced HCC models, we compared the gene expression profiles between DEN and HBx mice models, as well as the differences among tumor, para-tumor and normal tissues. METHODS We sequenced both gene and microRNA (miRNA) expression for HCC tumor tissues, para-tumor and normal liver tissues from DEN model mice (30-week-old) and downloaded the corresponding microarray expression data of HBx model from GEO database. Then differentially expressed genes (DEGs), miRNAs and transcription factors (TFs) were detected by R packages and performed functional enrichment analysis. To explore the gene regulatory network in HCC models, miRNA and TF regulatory networks were constructed by target prediction. RESULTS For model comparison, although DEGs between tumor and normal tissues in DEN and HBx models only had a small part of overlapping, they shared common pathways including lipid metabolism, oxidation-reduction process and immune process. For tissue comparisons in each model, genes in oxidation-reduction process were down-regulated in tumor tissues and genes in inflammatory response showed the highest expression level in para-tumor tissues. Genes highly expressed in both tumor and para-tumor tissues in two models mainly participated in immune and inflammatory response. Genes expressed in HBx model were also involved in cell proliferation and cell migration etc. Network analysis revealed that several miRNAs such as miR-381-3p, miR-142a-3p, miR-214-3p and TFs such as Egr1, Atf3 and Klf4 were the core regulators in HCC. CONCLUSIONS Through the comparative analyses, we found that para-tumor tissue is a highly inflammatory tissue while the tumor tissue is specific with both inflammatory and cancer signaling pathways. The DEN and HBx mice models have different gene expression pattern but shared pathways. This work will help to elucidate the molecular mechanisms underlying different HCC models.
Collapse
Affiliation(s)
- Qin Tang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Qi Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiong Zhang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Sheng-Yan Lin
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Yanhong Zhu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - An-Yuan Guo
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China.
| |
Collapse
|
39
|
Slattery ML, Mullany LE, Sakoda LC, Wolff RK, Stevens JR, Samowitz WS, Herrick JS. The PI3K/AKT signaling pathway: Associations of miRNAs with dysregulated gene expression in colorectal cancer. Mol Carcinog 2017; 57:243-261. [PMID: 29068474 PMCID: PMC5760356 DOI: 10.1002/mc.22752] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/03/2017] [Accepted: 10/23/2017] [Indexed: 01/04/2023]
Abstract
The PI3K/AKT‐signaling pathway is one of the most frequently activated signal‐transduction pathways in cancer. We examined how dysregulated gene expression is associated with miRNA expression in this pathway in colorectal cancer (CRC). We used data from 217 CRC cases to evaluate differential pathway gene expression between paired carcinoma and normal mucosa and identify miRNAs that are associated with these genes. Gene expression data from RNA‐Seq and miRNA expression data from Agilent Human miRNA Microarray V19.0 were analyzed. We focused on genes most associated with CRC (fold change (FC) of >1.5 or <0.67) that were statistically significant after adjustment for multiple comparisons. Of the 304 genes evaluated, 76 had a FC of <0.67, and 57 had a FC of >1.50; 47 of these genes were associated with miRNA differential expression. There were 145 mRNA:miRNA seed‐region matches of which 26 were inversely associated suggesting a greater likelihood of a direct association. Most miRNA:mRNA associations were with factors that stimulated the pathway. For instance, both IL6R and PDGFRA had inverse seed‐region matches with seven miRNAs, suggesting that these miRNAs have a direct effect on these genes and may be key elements in activation of the pathway. Other miRNA:mRNA associations with similar impact on the pathway were miR‐203a with ITGA4, miR‐6071 with ITGAV, and miR‐375 with THBS2, all genes involved in extracellular matrix function that activate PI3Ks. Gene expression in the PI3K/Akt‐signaling pathway is dysregulated in CRC. MiRNAs were associated with many of these dysregulated genes either directly or in an indirect manner.
Collapse
Affiliation(s)
- Martha L Slattery
- Department of Medicine, University of Utah, Colorow, Salt Lake City, Utah
| | - Lila E Mullany
- Department of Medicine, University of Utah, Colorow, Salt Lake City, Utah
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, California
| | - Roger K Wolff
- Department of Medicine, University of Utah, Colorow, Salt Lake City, Utah
| | - John R Stevens
- Department of Mathematics and Statistics, Utah State University, Logan, Utah
| | - Wade S Samowitz
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - Jennifer S Herrick
- Department of Medicine, University of Utah, Colorow, Salt Lake City, Utah
| |
Collapse
|
40
|
Shu J, Silva BVRE, Gao T, Xu Z, Cui J. Dynamic and Modularized MicroRNA Regulation and Its Implication in Human Cancers. Sci Rep 2017; 7:13356. [PMID: 29042600 PMCID: PMC5645395 DOI: 10.1038/s41598-017-13470-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 09/26/2017] [Indexed: 12/19/2022] Open
Abstract
MicroRNA is responsible for the fine-tuning of fundamental cellular activities and human disease development. The altered availability of microRNAs, target mRNAs, and other types of endogenous RNAs competing for microRNA interactions reflects the dynamic and conditional property of microRNA-mediated gene regulation that remains under-investigated. Here we propose a new integrative method to study this dynamic process by considering both competing and cooperative mechanisms and identifying functional modules where different microRNAs co-regulate the same functional process. Specifically, a new pipeline was built based on a meta-Lasso regression model and the proof-of-concept study was performed using a large-scale genomic dataset from ~4,200 patients with 9 cancer types. In the analysis, 10,726 microRNA-mRNA interactions were identified to be associated with a specific stage and/or type of cancer, which demonstrated the dynamic and conditional miRNA regulation during cancer progression. On the other hands, we detected 4,134 regulatory modules that exhibit high fidelity of microRNA function through selective microRNA-mRNA binding and modulation. For example, miR-18a-3p, -320a, -193b-3p, and -92b-3p co-regulate the glycolysis/gluconeogenesis and focal adhesion in cancers of kidney, liver, lung, and uterus. Furthermore, several new insights into dynamic microRNA regulation in cancers have been discovered in this study.
Collapse
Affiliation(s)
- Jiang Shu
- Systems Biology and Biomedical Informatics (SBBI) Laboratory, Department of Computer Science and Engineering, Lincoln, NE, 68588, USA
| | - Bruno Vieira Resende E Silva
- Systems Biology and Biomedical Informatics (SBBI) Laboratory, Department of Computer Science and Engineering, Lincoln, NE, 68588, USA
| | - Tian Gao
- Systems Biology and Biomedical Informatics (SBBI) Laboratory, Department of Computer Science and Engineering, Lincoln, NE, 68588, USA
| | - Zheng Xu
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Quantitative Life Sciences Initiative, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Juan Cui
- Systems Biology and Biomedical Informatics (SBBI) Laboratory, Department of Computer Science and Engineering, Lincoln, NE, 68588, USA.
| |
Collapse
|
41
|
Slattery ML, Herrick JS, Mullany LE, Samowitz WS, Sevens JR, Sakoda L, Wolff RK. The co-regulatory networks of tumor suppressor genes, oncogenes, and miRNAs in colorectal cancer. Genes Chromosomes Cancer 2017; 56:769-787. [PMID: 28675510 PMCID: PMC5597468 DOI: 10.1002/gcc.22481] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/30/2017] [Accepted: 07/01/2017] [Indexed: 12/14/2022] Open
Abstract
Tumor suppressor genes (TSGs) and oncogenes (OG) are involved in carcinogenesis. MiRNAs also contribute to cellular pathways leading to cancer. We use data from 217 colorectal cancer (CRC) cases to evaluate differences in TSGs and OGs expression between paired CRC and normal mucosa and evaluate how TSGs and OGs are associated with miRNAs. Gene expression data from RNA-Seq and miRNA expression data from Agilent Human miRNA Microarray V19.0 were used. We focus on genes most strongly associated with CRC (fold change (FC) of ≥1.5 or ≤0.67) that were statistically significant after adjustment for multiple comparisons. Of the 74 TSGs evaluated, 22 were associated with carcinoma/normal mucosa differential expression. Ten TSGs were up-regulated (FAM123B, RB1, TP53, RUNX1, MSH2, BRCA1, BRCA2, SOX9, NPM1, and RNF43); six TSGs were down-regulated (PAX5, IZKF1, GATA3, PRDM1, TET2, and CYLD); four were associated with MSI tumors (MLH1, PTCH1, and CEBPA down-regulated and MSH6 up-regulated); and two were associated with MSS tumors (PHF6 and ASXL1 up-regulated). Thirteen of these TSGs were associated with 44 miRNAs. Twenty-seven of the 59 OGs evaluated were dysregulated: 14 down-regulated (KLF4, BCL2, SSETBP1, FGFR2, TSHR, MPL, KIT, PDGFRA, GNA11, GATA2, FGFR3, AR, CSF1R, and JAK3), seven up-regulated (DNMT1, EZH2, PTPN11, SKP2, CCND1, MET, and MYC); three down-regulated for MSI (FLT3, CARD11, and ALK); two up-regulated for MSI (IDH2 and HRAS); and one up-regulated with MSS tumors (CTNNB1). These findings suggest possible co-regulatory function between TSGs, OGs, and miRNAs, involving both direct and indirect associations that operate through feedback and feedforward loops.
Collapse
Affiliation(s)
| | | | - Lila E Mullany
- Department of Medicine, University of Utah, Salt Lake City, Utah
| | - Wade S Samowitz
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | - John R Sevens
- Department of Mathematics and Statistics, Utah State University, Logan, Utah
| | - Lori Sakoda
- Kaiser Permanente Medical Research Program, Oakland, California
| | - Roger K Wolff
- Department of Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
42
|
Lei Q, Liu T, Gao F, Xie H, Sun L, Zhao A, Ren W, Guo H, Zhang L, Wang H, Chen Z, Guo AY, Li Q. Microvesicles as Potential Biomarkers for the Identification of Senescence in Human Mesenchymal Stem Cells. Am J Cancer Res 2017; 7:2673-2689. [PMID: 28819455 PMCID: PMC5558561 DOI: 10.7150/thno.18915] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 04/12/2017] [Indexed: 12/13/2022] Open
Abstract
Senescence in human mesenchymal stem cells (MSCs) not only contributes to organism aging and the development of a variety of diseases but also severely impairs their therapeutic properties as a promising cell therapy. Studies searching for efficient biomarkers that represent cellular senescence have attracted much attention; however, no single marker currently provides an accurate cell-free representation of cellular senescence. Here, we studied characteristics of MSC-derived microvesicles (MSC-MVs) that may reflect the senescence in their parental MSCs. We found that senescent late passage (LP) MSCs secreted higher levels of MSC-MVs with smaller size than did early passage (EP) MSCs, and the level of CD105+ MSC-MVs decreased with senescence in the parental MSCs. Also, a substantially weaker ability to promote osteogenesis in MSCs was observed in LP than EP MSC-MVs. Comparative analysis of RNA sequencing showed the same trend of decreasing number of highly-expressed miRNAs with increasing number of passages in both MSCs and MSC-MVs. Most of the highly-expressed genes in LP MSCs and the corresponding MSC-MVs were involved in the regulation of senescence-related diseases, such as Alzheimer's disease. Furthermore, based on the miRNA profiling, transcription factors (TF) and genes regulatory networks of MSC senescence, and the datasets from GEO database, we confirmed that expression of miR-146a-5p in MSC-MVs resembled the senescent state of their parental MSCs. Our findings provide evidence that MSC-MVs are a key factor in the senescence-associated secretory phenotype of MSCs and demonstrate that their integrated characteristics can dynamically reflect the senescence state of MSCs representing a potential biomarker for monitoring MSC senescence.
Collapse
|
43
|
Lin XC, Liu XG, Zhang YM, Li N, Yang ZG, Fu WY, Lan LB, Zhang HT, Dai Y. Integrated analysis of microRNA and transcription factor reveals important regulators and regulatory motifs in adult B-cell acute lymphoblastic leukemia. Int J Oncol 2016; 50:671-683. [PMID: 28101583 DOI: 10.3892/ijo.2016.3832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/16/2016] [Indexed: 11/06/2022] Open
Abstract
B-cell acute lymphoblastic leukemia (B‑ALL) is an aggressive hematological malignancy and a leading cause of cancer-related mortality in children and young adults. The molecular mechanisms involved in the regulation of its gene expression has yet to be fully elucidated. In the present study, we performed large scale expression profiling of microRNA (miRNA) and transcription factor (TF) by Illumina deep‑sequencing and TF array technology, respectively, and identified 291 differentially expressed miRNAs and 201 differentially expressed TFs in adult B‑ALL samples relative to their controls. After integrating expression profile data with computational prediction of miRNA and TF targets from different databases, we construct a comprehensive miRNA‑TF regulatory network specifically for adult B‑ALL. Network function analysis revealed 25 significantly enriched pathways, four pathways are well‑known to be involved in B‑ALL, such as PI3K‑Akt signaling pathway, Jak‑STAT signaling pathway, Ras signaling pathway and cell cycle pathway. By analyzing the network topology, we identified 28 hub miRNAs and 19 hub TFs in the network, and found nine potential B‑ALL regulators among these hub nodes. We also constructed a Jak‑STAT signaling sub‑network for B‑ALL. Based on the sub‑network analysis and literature survey, we proposed a cellular model to discuss MYC/miR‑15a‑5p/FLT3 feed-forward loop (FFL) with Jak‑STAT signaling pathway in B‑ALL. These findings enhance our understanding of this disease at the molecular level, as well as provide putative therapeutic targets for B-ALL.
Collapse
Affiliation(s)
- Xiao-Cong Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Xin-Guang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Yu-Ming Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Ning Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Zhi-Gang Yang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Wei-Yu Fu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Liu-Bo Lan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Hai-Tao Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Yong Dai
- Clinical Medical Research Center, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
44
|
Yan W, Guo H, Suo F, Han C, Zheng H, Chen T. The effect of miR-146a on STAT1 expression and apoptosis in acute lymphoblastic leukemia Jurkat cells. Oncol Lett 2016; 13:151-154. [PMID: 28123535 PMCID: PMC5244898 DOI: 10.3892/ol.2016.5395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/02/2016] [Indexed: 12/30/2022] Open
Abstract
The effect of miR-146a-dependent regulation of STAT1 on apoptosis in acute lymphoblastic leukemia (ALL) Jurkat cells was investigated. The miR-146a mimic and miR-146a inhibitor vectors were constructed in vitro, and experimental grouping was as follows: Control group (untreated Jurkat cells), empty vector group (Jurkat cells transfected with empty vector), agonist group (Jurkat cells transfected with miR-146a mimic) and the inhibitor group (Jurkat cells transfected with miR-146a inhibitor). Western blot analysis was used to observe the expression, respectively, of STAT1, p-STAT1 and Bcl-xL, and flow cytometry was used to test apoptosis in Jurkat cells. STAT1 and p-STAT1 expression in the agonist group was higher than that in the control and empty vector groups, but lower in the inhibitor group, and differences were statistically significant (P<0.05). The rate of apoptosis in the agonist group was significantly higher than that of the control group and blank vector group, and it was significantly lower in the inhibitor group (P<0.05). As a tumor suppressor, miR-146a can regulate expression of apoptosis-promoting factor STAT1, and anti-apoptosis factor Bcl-xL, and is able to promote apoptosis of ALL Jurkat cells.
Collapse
Affiliation(s)
- Weihong Yan
- Department of Pediatrics, Dongying People's Hospital, Dongying, Shangdong 257091, P.R. China
| | - Hua Guo
- Department of Pediatrics, Dongying People's Hospital, Dongying, Shangdong 257091, P.R. China
| | - Feng Suo
- Department of Radiology, Dongying People's Hospital, Dongying, Shangdong 257091, P.R. China
| | - Chunling Han
- Department of Pediatrics, Dongying People's Hospital, Dongying, Shangdong 257091, P.R. China
| | - Hua Zheng
- Department of Pediatrics, Dongying People's Hospital, Dongying, Shangdong 257091, P.R. China
| | - Tong Chen
- Department of Pediatrics, Dongying People's Hospital, Dongying, Shangdong 257091, P.R. China
| |
Collapse
|
45
|
Ma Z, Liu T, Huang W, Liu H, Zhang HM, Li Q, Chen Z, Guo AY. MicroRNA regulatory pathway analysis identifies miR-142-5p as a negative regulator of TGF-β pathway via targeting SMAD3. Oncotarget 2016; 7:71504-71513. [PMID: 27683030 PMCID: PMC5342096 DOI: 10.18632/oncotarget.12229] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 09/12/2016] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs with functions of posttranscriptional regulation. The abnormally expressed miRNAs have been shown to be crucial contributors and may serve as biomarkers in many diseases. However, determining the biological function of miRNAs is an ongoing challenge. By combining miRNA targets prediction, miRNA and mRNA expression profiles in TCGA cancers, and pathway data, we performed a miRNA-pathway regulation inference by Fisher's exact test for enrichment analysis. Then we constructed a database to show the cancer related miRNA-pathway regulatory network (http://bioinfo.life.hust.edu.cn/miR_path). As one of the miRNAs targeting many cancer related pathways, miR-142-5p potentially regulates the maximum number of genes in TGF-β signaling pathway. We experimentally confirmed that miR-142-5p directly targeted and suppressed SMAD3, a key component in TGF-β signaling. Ectopic overexpression of miR-142-5p significantly promoted tumor cell proliferation and inhibited apoptosis, while silencing of miR-142-5p inhibited the tumor cell proliferation and promoted apoptosis in vitro. These findings indicate that miR-142-5p plays as a negative regulator in TGF-β pathway by targeting SMAD3 and suppresses TGF-β-induced growth inhibition in cancer cells. Our study proved the feasibility of miRNA regulatory pathway analysis and shed light on combining bioinformatics with experiments in the research of complex diseases.
Collapse
Affiliation(s)
- Zhaowu Ma
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,Laboratory of Neuronal Network and Brain Diseases Modulation, School of Medicine, Yangtze University, Jingzhou, Hubei, 434023, China
| | - Teng Liu
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wei Huang
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Liu
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hong-Mei Zhang
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiubai Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhichao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - An-Yuan Guo
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
46
|
Customizing the genome as therapy for the β-hemoglobinopathies. Blood 2016; 127:2536-45. [PMID: 27053533 DOI: 10.1182/blood-2016-01-678128] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/12/2016] [Indexed: 12/11/2022] Open
Abstract
Despite nearly complete understanding of the genetics of the β-hemoglobinopathies for several decades, definitive treatment options have lagged behind. Recent developments in technologies for facile manipulation of the genome (zinc finger nucleases, transcription activator-like effector nucleases, or clustered regularly interspaced short palindromic repeats-based nucleases) raise prospects for their clinical application. The use of genome-editing technologies in autologous CD34(+) hematopoietic stem and progenitor cells represents a promising therapeutic avenue for the β-globin disorders. Genetic correction strategies relying on the homology-directed repair pathway may repair genetic defects, whereas genetic disruption strategies relying on the nonhomologous end joining pathway may induce compensatory fetal hemoglobin expression. Harnessing the power of genome editing may usher in a second-generation form of gene therapy for the β-globin disorders.
Collapse
|