1
|
Brenes O, Pusch M, Morales F. ClC-1 Chloride Channel: Inputs on the Structure-Function Relationship of Myotonia Congenita-Causing Mutations. Biomedicines 2023; 11:2622. [PMID: 37892996 PMCID: PMC10604815 DOI: 10.3390/biomedicines11102622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/11/2023] [Accepted: 08/24/2023] [Indexed: 10/29/2023] Open
Abstract
Myotonia congenita is a hereditary muscle disease mainly characterized by muscle hyperexcitability, which leads to a sustained burst of discharges that correlates with the magnitude and duration of involuntary aftercontractions, muscle stiffness, and hypertrophy. Mutations in the chloride voltage-gated channel 1 (CLCN1) gene that encodes the skeletal muscle chloride channel (ClC-1) are responsible for this disease, which is commonly known as myotonic chloride channelopathy. The biophysical properties of the mutated channel have been explored and analyzed through in vitro approaches, providing important clues to the general function/dysfunction of the wild-type and mutated channels. After an exhaustive search for CLCN1 mutations, we report in this review more than 350 different mutations identified in the literature. We start discussing the physiological role of the ClC-1 channel in skeletal muscle functioning. Then, using the reported functional effects of the naturally occurring mutations, we describe the biophysical and structural characteristics of the ClC-1 channel to update the knowledge of the function of each of the ClC-1 helices, and finally, we attempt to point out some patterns regarding the effects of mutations in the different helices and loops of the protein.
Collapse
Affiliation(s)
- Oscar Brenes
- Departamento de Fisiología, Escuela de Medicina, Universidad de Costa Rica, San José 11501-2060, Costa Rica;
- Centro de Investigación en Neurociencias (CIN), Universidad de Costa Rica, San José 11501-2060, Costa Rica
| | - Michael Pusch
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche (CNR), Via De Marini 6, 16149 Genova, Italy
| | - Fernando Morales
- Instituto de Investigaciones en Salud (INISA), Universidad de Costa Rica, San José 11501-2060, Costa Rica
| |
Collapse
|
2
|
Kolen B, Borghans B, Kortzak D, Lugo V, Hannack C, Guzman RE, Ullah G, Fahlke C. Vesicular glutamate transporters are H +-anion exchangers that operate at variable stoichiometry. Nat Commun 2023; 14:2723. [PMID: 37169755 PMCID: PMC10175566 DOI: 10.1038/s41467-023-38340-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 04/26/2023] [Indexed: 05/13/2023] Open
Abstract
Vesicular glutamate transporters accumulate glutamate in synaptic vesicles, where they also function as a major Cl- efflux pathway. Here we combine heterologous expression and cellular electrophysiology with mathematical modeling to understand the mechanisms underlying this dual function of rat VGLUT1. When glutamate is the main cytoplasmic anion, VGLUT1 functions as H+-glutamate exchanger, with a transport rate of around 600 s-1 at -160 mV. Transport of other large anions, including aspartate, is not stoichiometrically coupled to H+ transport, and Cl- permeates VGLUT1 through an aqueous anion channel with unitary transport rates of 1.5 × 105 s-1 at -160 mV. Mathematical modeling reveals that H+ coupling is sufficient for selective glutamate accumulation in model vesicles and that VGLUT Cl- channel function increases the transport efficiency by accelerating glutamate accumulation and reducing ATP-driven H+ transport. In summary, we provide evidence that VGLUT1 functions as H+-glutamate exchanger that is partially or fully uncoupled by other anions.
Collapse
Affiliation(s)
- Bettina Kolen
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Bart Borghans
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Daniel Kortzak
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Victor Lugo
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Cora Hannack
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Raul E Guzman
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL, 33620, USA
| | - Christoph Fahlke
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52428, Jülich, Germany.
| |
Collapse
|
3
|
Öz Tunçer G, Sanri A, Aydin S, Hergüner ÖM, Özgün N, Kömür M, İçağasioğlu DF, Toker RT, Yilmaz S, Arslan EA, Güngör M, Kutluk G, Erol İ, Mert GG, Polat BG, Aksoy A. Clinical and Genetic Spectrum of Myotonia Congenita in Turkish Children. J Neuromuscul Dis 2023; 10:915-924. [PMID: 37355912 PMCID: PMC10578252 DOI: 10.3233/jnd-230046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Myotonia congenita is the most common form of nondystrophic myotonia and is caused by Mendelian inherited mutations in the CLCN1 gene encoding the voltage-gated chloride channel of skeletal muscle. OBJECTIVE The study aimed to describe the clinical and genetic spectrum of Myotonia congenita in a large pediatric cohort. METHODS Demographic, genetic, and clinical data of the patients aged under 18 years at time of first clinical attendance from 11 centers in different geographical regions of Türkiye were retrospectively investigated. RESULTS Fifty-four patients (mean age:15.2 years (±5.5), 76% males, with 85% Becker, 15% Thomsen form) from 40 families were included. Consanguineous marriage rate was 67%. 70.5% of patients had a family member with Myotonia congenita. The mean age of disease onset was 5.7 (±4.9) years. Overall 23 different mutations (2/23 were novel) were detected in 52 patients, and large exon deletions were identified in two siblings. Thomsen and Becker forms were observed concomitantly in one family. Carbamazepine (46.3%), mexiletine (27.8%), phenytoin (9.3%) were preferred for treatment. CONCLUSIONS The clinical and genetic heterogeneity, as well as the limited response to current treatment options, constitutes an ongoing challenge. In our cohort, recessive Myotonia congenita was more frequent and novel mutations will contribute to the literature.
Collapse
Affiliation(s)
- Gökçen Öz Tunçer
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Türkiye
| | - Aslıhan Sanri
- Department of Pediatric Genetics, University of Health Sciences, Samsun Training and Research Hospital, Samsun, Türkiye
| | - Seren Aydin
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Türkiye
| | - Özlem M. Hergüner
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Çukurova University, Adana, Türkiye
| | - Nezir Özgün
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Artuklu University, Mardin, Türkiye
| | - Mustafa Kömür
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Mersin University, Mersin, Türkiye
| | - Dilara F. İçağasioğlu
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Bezmialem Vakıf University, İstanbul, Türkiye
| | - Rabia Tütüncü Toker
- Department of Pediatric Neurology, University of Health Sciences, Bursa City Hospital, Bursa, Türkiye
| | - Sanem Yilmaz
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Ege University, İzmir, Türkiye
| | - Elif Acar Arslan
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| | - Mesut Güngör
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Kocaeli University, Kocaeli, Türkiye
| | - Gültekin Kutluk
- Department of Pediatric Neurolgy, University of Health Sciences, Antalya Training and Research Hospital, Antalya, Türkiye
| | - İlknur Erol
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Başkent University, Adana, Türkiye
| | - Gülen Gül Mert
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Çukurova University, Adana, Türkiye
| | - Burçin Gönüllü Polat
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Mersin University, Mersin, Türkiye
| | - Ayşe Aksoy
- Division of Pediatric Neurology, Department of Pediatrics, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Türkiye
| |
Collapse
|
4
|
Guzman RE, Sierra-Marquez J, Bungert-Plümke S, Franzen A, Fahlke C. Functional Characterization of CLCN4 Variants Associated With X-Linked Intellectual Disability and Epilepsy. Front Mol Neurosci 2022; 15:872407. [PMID: 35721313 PMCID: PMC9198718 DOI: 10.3389/fnmol.2022.872407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Early/late endosomes, recycling endosomes, and lysosomes together form the endo-lysosomal recycling pathway. This system plays a crucial role in cell differentiation and survival, and dysregulation of the endo-lysosomal system appears to be important in the pathogenesis of neurodevelopmental and neurodegenerative diseases. Each endo-lysosomal compartment fulfils a specific function, which is supported by ion transporters and channels that modify ion concentrations and electrical gradients across endo-lysosomal membranes. CLC-type Cl–/H+ exchangers are a group of endo-lysosomal transporters that are assumed to regulate luminal acidification and chloride concentration in multiple endosomal compartments. Heterodimers of ClC-3 and ClC-4 localize to various internal membranes, from the endoplasmic reticulum and Golgi to recycling endosomes and late endosomes/lysosomes. The importance of ClC-4-mediated ion transport is illustrated by the association of naturally occurring CLCN4 mutations with epileptic encephalopathy, intellectual disability, and behavioral disorders in human patients. However, how these mutations affect the expression, subcellular localization, and function of ClC-4 is insufficiently understood. We here studied 12 CLCN4 variants that were identified in patients with X-linked intellectual disability and epilepsy and were already characterized to some extent in earlier work. We analyzed the consequences of these mutations on ClC-4 ion transport, subcellular trafficking, and heterodimerization with ClC-3 using heterologous expression in mammalian cells, biochemistry, confocal imaging, and whole-cell patch-clamp recordings. The mutations led to a variety of changes in ClC-4 function, ranging from gain/loss of function and impaired heterodimerization with ClC-3 to subtle impairments in transport functions. Our results suggest that even slight functional changes to the endosomal Cl–/H+ exchangers can cause serious neurological symptoms.
Collapse
|
5
|
Kovermann P, Kolobkova Y, Franzen A, Fahlke C. Mutations associated with epileptic encephalopathy modify EAAT2 anion channel function. Epilepsia 2021; 63:388-401. [PMID: 34961934 DOI: 10.1111/epi.17154] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Mutations in the gene solute carrier family member 1A2 (SLC1A2) encoding the excitatory amino acid transporter 2 (EAAT2) are associated with severe forms of epileptic encephalopathy. EAAT2 is expressed in glial cells and presynaptic nerve terminals and represents the main l-glutamate uptake carrier in the mammalian brain. It does not only function as a secondary active glutamate transporter, but also as an anion channel. How naturally occurring mutations affect these two transport functions of EAAT2 and how such alterations cause epilepsy is insufficiently understood. METHODS Here we studied the functional consequences of three disease-associated mutations, which predict amino acid exchanges p.Gly82Arg (G82R), p.Leu85Pro (L85P), and p.Pro289Arg (P289R), by heterologous expression in mammalian cells, biochemistry, confocal imaging, and whole-cell patch-clamp recordings of EAAT2 l-glutamate transport and anion current. RESULTS G82R and L85P exchange amino acid residues contribute to the formation of the EAAT anion pore. They enlarge the pore diameter sufficiently to permit the passage of l-glutamate and thus function as l-glutamate efflux pathways. The mutation P289R decreases l-glutamate uptake, but increases anion currents despite a lower membrane expression. SIGNIFICANCE l-glutamate permeability of the EAAT anion pore is an unexpected functional consequence of naturally occurring single amino acid substitutions. l-glutamate efflux through mutant EAAT2 anion channels will cause glutamate excitotoxicity and neuronal hyperexcitability in affected patients. Antagonists that selectively suppress the EAAT anion channel function could serve as therapeutic agents in the future.
Collapse
Affiliation(s)
- Peter Kovermann
- Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Institute of Biological Information Processing, Jülich, Germany
| | - Yulia Kolobkova
- Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Institute of Biological Information Processing, Jülich, Germany
| | - Arne Franzen
- Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Institute of Biological Information Processing, Jülich, Germany
| | - Christoph Fahlke
- Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Institute of Biological Information Processing, Jülich, Germany
| |
Collapse
|
6
|
Jehasse K, Jacquerie K, de Froidmont A, Lemoine C, Grisar T, Stouffs K, Lakaye B, Seutin V. Functional analysis of the F337C mutation in the CLCN1 gene associated with dominant myotonia congenita reveals an alteration of the macroscopic conductance and voltage dependence. Mol Genet Genomic Med 2021; 9:e1588. [PMID: 33507632 PMCID: PMC8077071 DOI: 10.1002/mgg3.1588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 01/14/2023] Open
Abstract
Background Myotonia congenita (MC) is a common channelopathy affecting skeletal muscle and which is due to pathogenic variants within the CLCN1 gene. Various alterations in the function of the channel have been reported and we here illustrate a novel one. Methods A patient presenting the symptoms of myotonia congenita was shown to bear a new heterozygous missense variant in exon 9 of the CLCN1 gene (c.1010 T > G, p.(Phe337Cys)). Confocal imaging and patch clamp recordings of transiently transfected HEK293 cells were used to functionally analyze the effect of this variant on channel properties. Results Confocal imaging showed that the F337C mutant incorporated as well as the WT channel into the plasma membrane. However, in patch clamp, we observed a smaller conductance for F337C at −80 mV. We also found a marked reduction of the fast gating component in the mutant channels, as well as an overall reduced voltage dependence. Conclusion To our knowledge, this is the first report of a mixed alteration in the biophysical properties of hClC‐1 consisting of a reduced conductance at resting potential and an almost abolished voltage dependence.
Collapse
Affiliation(s)
- Kevin Jehasse
- Laboratory of NeurophysiologyGIGA InstituteLiegeBelgium
| | - Kathleen Jacquerie
- Department of Electrical Engineering and Computer ScienceLiège UniversityLiègeBelgium
| | | | | | - Thierry Grisar
- Laboratory of Molecular Regulation of NeurogenesisGIGA InstituteLiègeBelgium
| | - Katrien Stouffs
- Neurogenetics Research GroupVrije Universiteit Brussel (VUBUniversitair Ziekenhuis Brussel (UZ Brussel), Reproduction and GeneticsBrusselsBelgium
| | - Bernard Lakaye
- Laboratory of Molecular Regulation of NeurogenesisGIGA InstituteLiègeBelgium
| | | |
Collapse
|
7
|
Chivukula AS, Suslova M, Kortzak D, Kovermann P, Fahlke C. Functional consequences of SLC1A3 mutations associated with episodic ataxia 6. Hum Mutat 2020; 41:1892-1905. [PMID: 32741053 DOI: 10.1002/humu.24089] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 11/09/2022]
Abstract
The episodic ataxias (EA) are a group of inherited neurological diseases characterized by paroxysmal cerebellar incoordination. There exist nine forms of episodic ataxia with distinct neurological symptoms and genetic origins. Episodic ataxia type 6 (EA6) differs from other EA forms in long attack duration, epilepsy and absent myokymia, nystagmus, and tinnitus. It has been described in seven families, and mutations in SLC1A3, the gene encoding the glial glutamate transporter EAAT1, were reported in each family. How these mutations affect EAAT1 expression, subcellular localization, and function, and how such alterations result in the complex neurological phenotype of EA6 is insufficiently understood. We here compare the functional consequences of all currently known mutations by heterologous expression in mammalian cells, biochemistry, confocal imaging, and whole-cell patch clamp recordings of EAAT1 transport and anion currents. We observed impairments of multiple EAAT1 properties ranging from changes in transport function, impaired trafficking to increased protein expression. Many mutations caused only slight changes illustrating how sensitively the cerebellum reacts on impaired EAAT1 functions.
Collapse
Affiliation(s)
- Aparna S Chivukula
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Jülich, Germany
| | - Mariia Suslova
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Jülich, Germany
| | - Daniel Kortzak
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Jülich, Germany
| | - Peter Kovermann
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Jülich, Germany
| | - Christoph Fahlke
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1) Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
8
|
Altamura C, Ivanova EA, Imbrici P, Conte E, Camerino GM, Dadali EL, Polyakov AV, Kurbatov SA, Girolamo F, Carratù MR, Desaphy JF. Pathomechanisms of a CLCN1 Mutation Found in a Russian Family Suffering From Becker's Myotonia. Front Neurol 2020; 11:1019. [PMID: 33013670 PMCID: PMC7500137 DOI: 10.3389/fneur.2020.01019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/04/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: Myotonia congenita (MC) is a rare muscle disease characterized by sarcolemma over-excitability inducing skeletal muscle stiffness. It can be inherited either as an autosomal dominant (Thomsen's disease) or an autosomal recessive (Becker's disease) trait. Both types are caused by loss-of-function mutations in the CLCN1 gene, encoding for ClC-1 chloride channel. We found a ClC-1 mutation, p.G411C, identified in Russian patients who suffered from a severe form of Becker's disease. The purpose of this study was to provide a solid correlation between G411C dysfunction and clinical symptoms in the affected patient. Methods: We provide clinical and genetic information of the proband kindred. Functional studies include patch-clamp electrophysiology, biotinylation assay, western blot analysis, and confocal imaging of G411C and wild-type ClC-1 channels expressed in HEK293T cells. Results: The G411C mutation dramatically abolished chloride currents in transfected HEK cells. Biochemical experiments revealed that the majority of G411C mutant channels did not reach the plasma membrane but remained trapped in the cytoplasm. Treatment with the proteasome inhibitor MG132 reduced the degradation rate of G411C mutant channels, leading to their expression at the plasma membrane. However, despite an increase in cell surface expression, no significant chloride current was recorded in the G411C-transfected cell treated with MG132, suggesting that this mutation produces non-functional ClC-1 chloride channels. Conclusion: These results suggest that the molecular pathophysiology of G411C is linked to a reduced plasma membrane expression and biophysical dysfunction of mutant channels, likely due to a misfolding defect. Chloride current abolition confirms that the mutation is responsible for the clinical phenotype.
Collapse
Affiliation(s)
- Concetta Altamura
- Section of Pharmacology, Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Evgeniya A Ivanova
- N.P. Bochkov's Research Centre for Medical Genetics, Federal State Budgetary Scientific Institution, Moscow, Russia
| | - Paola Imbrici
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Elena Conte
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Giulia Maria Camerino
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Elena L Dadali
- N.P. Bochkov's Research Centre for Medical Genetics, Federal State Budgetary Scientific Institution, Moscow, Russia
| | - Alexander V Polyakov
- N.P. Bochkov's Research Centre for Medical Genetics, Federal State Budgetary Scientific Institution, Moscow, Russia
| | | | - Francesco Girolamo
- Unit of Human Anatomy and Histology, Department of Basic Medical Sciences, Neuroscience, and Sense Organs, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Maria Rosaria Carratù
- Section of Pharmacology, Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Jean-François Desaphy
- Section of Pharmacology, Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
9
|
Jeng CJ, Fu SJ, You CY, Peng YJ, Hsiao CT, Chen TY, Tang CY. Defective Gating and Proteostasis of Human ClC-1 Chloride Channel: Molecular Pathophysiology of Myotonia Congenita. Front Neurol 2020; 11:76. [PMID: 32117034 PMCID: PMC7026490 DOI: 10.3389/fneur.2020.00076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/22/2020] [Indexed: 01/17/2023] Open
Abstract
The voltage-dependent ClC-1 chloride channel, whose open probability increases with membrane potential depolarization, belongs to the superfamily of CLC channels/transporters. ClC-1 is almost exclusively expressed in skeletal muscles and is essential for stabilizing the excitability of muscle membranes. Elucidation of the molecular structures of human ClC-1 and several CLC homologs provides important insight to the gating and ion permeation mechanisms of this chloride channel. Mutations in the human CLCN1 gene, which encodes the ClC-1 channel, are associated with a hereditary skeletal muscle disease, myotonia congenita. Most disease-causing CLCN1 mutations lead to loss-of-function phenotypes in the ClC-1 channel and thus increase membrane excitability in skeletal muscles, consequently manifesting as delayed relaxations following voluntary muscle contractions in myotonic subjects. The inheritance pattern of myotonia congenita can be autosomal dominant (Thomsen type) or recessive (Becker type). To date over 200 myotonia-associated ClC-1 mutations have been identified, which are scattered throughout the entire protein sequence. The dominant inheritance pattern of some myotonia mutations may be explained by a dominant-negative effect on ClC-1 channel gating. For many other myotonia mutations, however, no clear relationship can be established between the inheritance pattern and the location of the mutation in the ClC-1 protein. Emerging evidence indicates that the effects of some mutations may entail impaired ClC-1 protein homeostasis (proteostasis). Proteostasis of membrane proteins comprises of biogenesis at the endoplasmic reticulum (ER), trafficking to the surface membrane, and protein turn-over at the plasma membrane. Maintenance of proteostasis requires the coordination of a wide variety of different molecular chaperones and protein quality control factors. A number of regulatory molecules have recently been shown to contribute to post-translational modifications of ClC-1 and play critical roles in the ER quality control, membrane trafficking, and peripheral quality control of this chloride channel. Further illumination of the mechanisms of ClC-1 proteostasis network will enhance our understanding of the molecular pathophysiology of myotonia congenita, and may also bring to light novel therapeutic targets for skeletal muscle dysfunction caused by myotonia and other pathological conditions.
Collapse
Affiliation(s)
- Chung-Jiuan Jeng
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Ssu-Ju Fu
- Institute of Anatomy and Cell Biology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Ying You
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Jheng Peng
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Tsung Hsiao
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tsung-Yu Chen
- Center for Neuroscience, University of California, Davis, Davis, CA, United States
| | - Chih-Yung Tang
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,College of Medicine, Graduate Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
10
|
Morales F, Pusch M. An Up-to-Date Overview of the Complexity of Genotype-Phenotype Relationships in Myotonic Channelopathies. Front Neurol 2020; 10:1404. [PMID: 32010054 PMCID: PMC6978732 DOI: 10.3389/fneur.2019.01404] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022] Open
Abstract
Myotonic disorders are inherited neuromuscular diseases divided into dystrophic myotonias and non-dystrophic myotonias (NDM). The latter is a group of dominant or recessive diseases caused by mutations in genes encoding ion channels that participate in the generation and control of the skeletal muscle action potential. Their altered function causes hyperexcitability of the muscle membrane, thereby triggering myotonia, the main sign in NDM. Mutations in the genes encoding voltage-gated Cl− and Na+ channels (respectively, CLCN1 and SCN4A) produce a wide spectrum of phenotypes, which differ in age of onset, affected muscles, severity of myotonia, degree of hypertrophy, and muscle weakness, disease progression, among others. More than 200 CLCN1 and 65 SCN4A mutations have been identified and described, but just about half of them have been functionally characterized, an approach that is likely extremely helpful to contribute to improving the so-far rather poor clinical correlations present in NDM. The observed poor correlations may be due to: (1) the wide spectrum of symptoms and overlapping phenotypes present in both groups (Cl− and Na+ myotonic channelopathies) and (2) both genes present high genotypic variability. On the one hand, several mutations cause a unique and reproducible phenotype in most patients. On the other hand, some mutations can have different inheritance pattern and clinical phenotypes in different families. Conversely, different mutations can be translated into very similar phenotypes. For these reasons, the genotype-phenotype relationships in myotonic channelopathies are considered complex. Although the molecular bases for the clinical variability present in myotonic channelopathies remain obscure, several hypotheses have been put forward to explain the variability, which include: (a) differential allelic expression; (b) trans-acting genetic modifiers; (c) epigenetic, hormonal, or environmental factors; and (d) dominance with low penetrance. Improvements in clinical tests, the recognition of the different phenotypes that result from particular mutations and the understanding of how a mutation affects the structure and function of the ion channel, together with genetic screening, is expected to improve clinical correlation in NDMs.
Collapse
Affiliation(s)
- Fernando Morales
- Instituto de Investigaciones en Salud, Universidad de Costa, San José, Costa Rica
| | | |
Collapse
|
11
|
Wei Z, Huaxing M, Xiaomei W, Juan W, Xueli C, Jing Z, Junhong G. Identification of two novel compound heterozygous CLCN1 mutations associated with autosomal recessive myotonia congenita. Neurol Res 2019; 41:1069-1074. [PMID: 31566103 DOI: 10.1080/01616412.2019.1672392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Objectives: Myotonia congenita (MC) is a rare genetic muscular disorder caused by CLCN1 mutations, which codes for skeletal muscle chloride channel CLC1. MC is characterized by impaired muscle relaxation after contraction resulting in muscle stiffness. This study aimed to identify the genetic etiology of a Chinese family affected with recessive MC. Methods: Whole exome sequencing was performed to identify the disease-associated variants. The candidate causal genes discovered by WES were then confirmed by Sanger sequencing and co-segregation analyses were also conducted. Results: Two novel compound heterozygous mutations in CLCN1 gene, p.D94Y (paternal allele) and p.Y206* (maternal allele), were successfully identified as the pathogenic mutations by whole-exome sequencing (WES). The mutations were confirmed with Sanger sequencing in the family members and cosegregated with the MC phenotype. The two mutations have not been reported in the HGMD, dbSNP, 1000 Genomes project, ClinVar database, ExAC, and gnomAD previously. Mutation p.D94Y is predicted to be deleterious by using in silico tools and p.Y206* is a nonsense mutation, causing protein synthesis termination. Conclusions: Molecular genetics analysis offers an accurate method for diagnosing MC. Our results expand the mutational spectrum of recessive MC.
Collapse
Affiliation(s)
- Zhang Wei
- Department of Neurology, First Hospital, Shanxi Medical University , Taiyuan , China
| | - Meng Huaxing
- Department of Neurology, First Hospital, Shanxi Medical University , Taiyuan , China
| | - Wang Xiaomei
- Department of Geological Engineering, Shanxi Institute of Enegy , Taiyuan , China
| | - Wang Juan
- Department of Neurology, First Hospital, Shanxi Medical University , Taiyuan , China
| | - Chang Xueli
- Department of Neurology, First Hospital, Shanxi Medical University , Taiyuan , China
| | - Zhang Jing
- Department of Neurology, First Hospital, Shanxi Medical University , Taiyuan , China
| | - Guo Junhong
- Department of Neurology, First Hospital, Shanxi Medical University , Taiyuan , China
| |
Collapse
|
12
|
FKBP8 Enhances Protein Stability of the CLC-1 Chloride Channel at the Plasma Membrane. Int J Mol Sci 2018; 19:ijms19123783. [PMID: 30487393 PMCID: PMC6320802 DOI: 10.3390/ijms19123783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/18/2018] [Accepted: 11/26/2018] [Indexed: 01/23/2023] Open
Abstract
Mutations in the skeletal muscle-specific CLC-1 chloride channel are associated with the human hereditary disease myotonia congenita. The molecular pathophysiology underlying some of the disease-causing mutations can be ascribed to defective human CLC-1 protein biosynthesis. CLC-1 protein folding is assisted by several molecular chaperones and co-chaperones, including FK506-binding protein 8 (FKBP8). FKBP8 is generally considered an endoplasmic reticulum- and mitochondrion-resident membrane protein, but is not thought to contribute to protein quality control at the cell surface. Herein, we aim to test the hypothesis that FKBP8 may regulate CLC-1 protein at the plasma membrane. Surface biotinylation and subcellular fractionation analyses reveal that a portion of FKBP8 is present at the plasma membrane, and that co-expression with CLC-1 enhances surface localization of FKBP8. Immunoblotting analyses of plasma membrane proteins purified from skeletal muscle further confirm surface localization of FKBP8. Importantly, FKBP8 promotes CLC-1 protein stability at the plasma membrane. Together, our data underscore the importance of FKBP8 in the peripheral quality control of CLC-1 channel.
Collapse
|
13
|
Wojciechowski D, Kovalchuk E, Yu L, Tan H, Fahlke C, Stölting G, Alekov AK. Barttin Regulates the Subcellular Localization and Posttranslational Modification of Human Cl -/H + Antiporter ClC-5. Front Physiol 2018; 9:1490. [PMID: 30405442 PMCID: PMC6206076 DOI: 10.3389/fphys.2018.01490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/02/2018] [Indexed: 01/17/2023] Open
Abstract
Dent disease 1 (DD1) is a renal salt-wasting tubulopathy associated with mutations in the Cl-/H+ antiporter ClC-5. The disease typically manifests with proteinuria, hypercalciuria, nephrocalcinosis, and nephrolithiasis but is characterized by large phenotypic variability of no clear origin. Several DD1 cases have been reported lately with additional atypical hypokalemic metabolic alkalosis and hyperaldosteronism, symptoms usually associated with another renal disease termed Bartter syndrome (BS). Expression of the Bartter-like DD1 mutant ClC-5 G261E in HEK293T cells showed that it is retained in the ER and lacks the complex glycosylation typical for ClC-5 WT. Accordingly, the mutant abolished CLC ionic transport. Such phenotype is not unusual and is often observed also in DD1 ClC-5 mutants not associated with Bartter like phenotype. We noticed, therefore, that one type of BS is associated with mutations in the protein barttin that serves as an accessory subunit regulating the function and subcellular localization of ClC-K channels. The overlapping symptomatology of DD1 and BS, together with the homology between the proteins of the CLC family, led us to investigate whether barttin might also regulate ClC-5 transport. In HEK293T cells, we found that barttin cotransfection impairs the complex glycosylation and arrests ClC-5 in the endoplasmic reticulum. As barttin and ClC-5 are both expressed in the thin and thick ascending limbs of the Henle's loop and the collecting duct, interactions between the two proteins could potentially contribute to the phenotypic variability of DD1. Pathologic barttin mutants differentially regulated trafficking and processing of ClC-5, suggesting that the interaction between the two proteins might be relevant also for the pathophysiology of BS. Our findings show that barttin regulates the subcellular localization not only of kidney ClC-K channels but also of the ClC-5 transporter, and suggest that ClC-5 might potentially play a role not only in kidney proximal tubules but also in tubular kidney segments expressing barttin. In addition, they demonstrate that the spectrum of clinical, genetic and molecular pathophysiology investigation of DD1 should be extended.
Collapse
Affiliation(s)
| | - Elena Kovalchuk
- Institute for Neurophysiology, Hannover Medical School, Hanover, Germany
| | - Lan Yu
- Institute for Neurophysiology, Hannover Medical School, Hanover, Germany
| | - Hua Tan
- Institute of Complex Systems 4 (ICS-4) – Zelluläre Biophysik, Forschungszentrum Jülich, Jülich, Germany
| | - Christoph Fahlke
- Institute of Complex Systems 4 (ICS-4) – Zelluläre Biophysik, Forschungszentrum Jülich, Jülich, Germany
| | - Gabriel Stölting
- Institute of Complex Systems 4 (ICS-4) – Zelluläre Biophysik, Forschungszentrum Jülich, Jülich, Germany
| | - Alexi K. Alekov
- Institute for Neurophysiology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
14
|
Loss-of-function of Nav1.8/D1639N linked to human pain can be rescued by lidocaine. Pflugers Arch 2018; 470:1787-1801. [PMID: 30099632 DOI: 10.1007/s00424-018-2189-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/31/2023]
Abstract
Mutations in voltage-gated sodium channels are associated with altered pain perception in humans. Most of these mutations studied to date present with a direct and intuitive link between the altered electrophysiological function of the channel and the phenotype of the patient. In this study, we characterize a variant of Nav1.8, D1639N, which has been previously identified in a patient suffering from the chronic pain syndrome "small fiber neuropathy". Using a heterologous expression system and patch-clamp analysis, we show that Nav1.8/D1639N reduces current density without altering biophysical gating properties of Nav1.8. Therefore, the D1639N variant causes a loss-of-function of the Nav1.8 sodium channel in a patient suffering from chronic pain. Using immunocytochemistry and biochemical approaches, we show that Nav1.8/D1639N impairs trafficking of the channel to the cell membrane. Neither co-expression of β1 or β3 subunit, nor overnight incubation at 27 °C rescued current density of the D1639N variant. On the other hand, overnight incubation with lidocaine fully restored current density of Nav1.8/D1639N most likely by overcoming the trafficking defect, whereas phenytoin failed to do so. Since lidocaine rescues the loss-of-function of Nav1.8/D1639N, it may offer a future therapeutic option for the patient carrying this variant. These results demonstrate that the D1639N variant, identified in a patient suffering from chronic pain, causes loss-of-function of the channel due to impaired cell surface trafficking and that this trafficking defect can be rescued by lidocaine.
Collapse
|
15
|
Altamura C, Lucchiari S, Sahbani D, Ulzi G, Comi GP, D'Ambrosio P, Petillo R, Politano L, Vercelli L, Mongini T, Dotti MT, Cardani R, Meola G, Lo Monaco M, Matthews E, Hanna MG, Carratù MR, Conte D, Imbrici P, Desaphy JF. The analysis of myotonia congenita mutations discloses functional clusters of amino acids within the CBS2 domain and the C-terminal peptide of the ClC-1 channel. Hum Mutat 2018; 39:1273-1283. [PMID: 29935101 DOI: 10.1002/humu.23581] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 11/10/2022]
Abstract
Myotonia congenita (MC) is a skeletal-muscle hyperexcitability disorder caused by loss-of-function mutations in the ClC-1 chloride channel. Mutations are scattered over the entire sequence of the channel protein, with more than 30 mutations located in the poorly characterized cytosolic C-terminal domain. In this study, we characterized, through patch clamp, seven ClC-1 mutations identified in patients affected by MC of various severities and located in the C-terminal region. The p.Val829Met, p.Thr832Ile, p.Val851Met, p.Gly859Val, and p.Leu861Pro mutations reside in the CBS2 domain, while p.Pro883Thr and p.Val947Glu are in the C-terminal peptide. We showed that the functional properties of mutant channels correlated with the clinical phenotypes of affected individuals. In addition, we defined clusters of ClC-1 mutations within CBS2 and C-terminal peptide subdomains that share the same functional defect: mutations between 829 and 835 residues and in residue 883 induced an alteration of voltage dependence, mutations between 851 and 859 residues, and in residue 947 induced a reduction of chloride currents, whereas mutations on 861 residue showed no obvious change in ClC-1 function. This study improves our understanding of the mechanisms underlying MC, sheds light on the role of the C-terminal region in ClC-1 function, and provides information to develop new antimyotonic drugs.
Collapse
Affiliation(s)
- Concetta Altamura
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Sabrina Lucchiari
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Neurology Unit, IRCCS Fondazione Ca' Grande Ospedale Maggiore Policlinico, Milan, Italy
| | - Dalila Sahbani
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Gianna Ulzi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Neurology Unit, IRCCS Fondazione Ca' Grande Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo P Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy.,Neurology Unit, IRCCS Fondazione Ca' Grande Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola D'Ambrosio
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania, Naples, Italy
| | - Roberta Petillo
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania, Naples, Italy
| | - Luisa Politano
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, University of Campania, Naples, Italy
| | - Liliana Vercelli
- Neuromuscular Unit, Department of Neurosciences, Hospital Città della Salute e della Scienza of Torino, University of Torino, Turin, Italy
| | - Tiziana Mongini
- Neuromuscular Unit, Department of Neurosciences, Hospital Città della Salute e della Scienza of Torino, University of Torino, Turin, Italy
| | - Maria Teresa Dotti
- Unit of Neurology and Neurometabolic Disorders, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Rosanna Cardani
- Laboratory of Muscle Histopathology and Molecular Biology, IRCCS Policlinico San Donato, Milan, Italy
| | - Giovanni Meola
- Department of Biomedical Sciences for Health, University of Milan, IRCCS Policlinico San Donato, Milan, Italy
| | - Mauro Lo Monaco
- Institute of Neurology, Catholic University of Sacred Heart, Polyclinic Gemelli, Rome, Italy.,MiA Onlus ("Miotonici in Associazione"), Portici, Italy
| | - Emma Matthews
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Michael G Hanna
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| | - Maria Rosaria Carratù
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Polyclinic, Bari, Italy
| | - Diana Conte
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Jean-François Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Polyclinic, Bari, Italy
| |
Collapse
|
16
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
17
|
Abstract
Mutations in the cereblon (CRBN) gene cause human intellectual disability, one of the most common cognitive disorders. However, the molecular mechanisms of CRBN-related intellectual disability remain poorly understood. We investigated the role of CRBN in synaptic function and animal behavior using male mouse and Drosophila models. Crbn knock-out (KO) mice showed normal brain and spine morphology as well as intact synaptic plasticity; however, they also exhibited decreases in synaptic transmission and presynaptic release probability exclusively in excitatory synapses. Presynaptic function was impaired not only by loss of CRBN expression, but also by expression of pathogenic CRBN mutants (human R419X mutant and Drosophila G552X mutant). We found that the BK channel blockers paxilline and iberiotoxin reversed this decrease in presynaptic release probability in Crbn KO mice. In addition, paxilline treatment also restored normal cognitive behavior in Crbn KO mice. These results strongly suggest that increased BK channel activity is the pathological mechanism of intellectual disability in CRBN mutations.SIGNIFICANCE STATEMENTCereblon (CRBN), a well known target of the immunomodulatory drug thalidomide, was originally identified as a gene that causes human intellectual disability when mutated. However, the molecular mechanisms of CRBN-related intellectual disability remain poorly understood. Based on the idea that synaptic abnormalities are the most common factor in cognitive dysfunction, we monitored the synaptic structure and function of Crbn knock-out (KO) animals to identify the molecular mechanisms of intellectual disability. Here, we found that Crbn KO animals showed cognitive deficits caused by enhanced BK channel activity and reduced presynaptic glutamate release. Our findings suggest a physiological pathomechanism of the intellectual disability-related gene CRBN and will contribute to the development of therapeutic strategies for CRBN-related intellectual disability.
Collapse
|
18
|
Guzman RE, Bungert-Plümke S, Franzen A, Fahlke C. Preferential association with ClC-3 permits sorting of ClC-4 into endosomal compartments. J Biol Chem 2017; 292:19055-19065. [PMID: 28972156 DOI: 10.1074/jbc.m117.801951] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/15/2017] [Indexed: 11/06/2022] Open
Abstract
ClC-4 is an intracellular Cl-/H+ exchanger that is highly expressed in the brain and whose dysfunction has been linked to intellectual disability and epilepsy. Here we studied the subcellular localization of human ClC-4 in heterologous expression systems. ClC-4 is retained in the endoplasmic reticulum (ER) upon overexpression in HEK293T cells. Co-expression with distinct ClC-3 splice variants targets ClC-4 to late endosome/lysosomes (ClC-3a and ClC-3b) or recycling endosome (ClC-3c). When expressed in cultured astrocytes, ClC-4 sorted to endocytic compartments in WT cells but was retained in the ER in Clcn3-/- cells. To understand the virtual absence of ER-localized ClC-4 in WT astrocytes, we performed association studies by high-resolution clear native gel electrophoresis. Although other CLC channels and transporters form stable dimers, ClC-4 was mostly observed as monomer, with ClC-3-ClC-4 heterodimers being more stable than ClC-4 homodimers. We conclude that unique oligomerization properties of ClC-4 permit regulated targeting of ClC-4 to various endosomal compartment systems via expression of different ClC-3 splice variants.
Collapse
Affiliation(s)
- Raul E Guzman
- From the Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425 Jülich, Germany
| | | | | | - Christoph Fahlke
- From the Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
19
|
Tan H, Bungert-Plümke S, Fahlke C, Stölting G. Reduced Membrane Insertion of CLC-K by V33L Barttin Results in Loss of Hearing, but Leaves Kidney Function Intact. Front Physiol 2017; 8:269. [PMID: 28555110 PMCID: PMC5430073 DOI: 10.3389/fphys.2017.00269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/12/2017] [Indexed: 12/18/2022] Open
Abstract
In the mammalian ear, transduction of sound stimuli is initiated by K+ entry through mechano-sensitive channels into inner hair cells. K+ entry is driven by a positive endocochlear potential that is maintained by the marginal cell layer of the stria vascularis. This process requires basolateral K+ import by NKCC1 Na+−2Cl−−K+ co-transporters as well as Cl− efflux through ClC-Ka/barttin or ClC-Kb/barttin channels. Multiple mutations in the gene encoding the obligatory CLC-K subunit barttin, BSND, have been identified in patients with Bartter syndrome type IV. These mutations reduce the endocochlear potential and cause deafness. As CLC-K/barttin channels are also expressed in the kidney, patients with Bartter syndrome IV typically also suffer from salt-wasting hyperuria and electrolyte imbalances. However, there was a single report on a BSND mutation that resulted only in deafness, but not kidney disease. We herein studied the functional consequences of another recently discovered BSND mutation that predicts exchange of valine at position 33 by leucine. We combined whole-cell patch clamp, confocal microscopy and protein biochemistry to analyze how V33L affects distinct functions of barttin. We found that V33L reduced membrane insertion of CLC-K/barttin complexes without altering unitary CLC-K channel function. Our findings support the hypothesis of a common pathophysiology for the selective loss of hearing due to an attenuation of the total chloride conductance in the stria vascularis while providing enough residual function to maintain normal kidney function.
Collapse
Affiliation(s)
- Hua Tan
- Institute of Complex Systems - Zelluläre Biophysik (ICS-4), Forschungszentrum JülichJülich, Germany
| | - Stefanie Bungert-Plümke
- Institute of Complex Systems - Zelluläre Biophysik (ICS-4), Forschungszentrum JülichJülich, Germany
| | - Christoph Fahlke
- Institute of Complex Systems - Zelluläre Biophysik (ICS-4), Forschungszentrum JülichJülich, Germany
| | - Gabriel Stölting
- Institute of Complex Systems - Zelluläre Biophysik (ICS-4), Forschungszentrum JülichJülich, Germany
| |
Collapse
|
20
|
Peng YJ, Huang JJ, Wu HH, Hsieh HY, Wu CY, Chen SC, Chen TY, Tang CY. Regulation of CLC-1 chloride channel biosynthesis by FKBP8 and Hsp90β. Sci Rep 2016; 6:32444. [PMID: 27580824 PMCID: PMC5007535 DOI: 10.1038/srep32444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/10/2016] [Indexed: 01/23/2023] Open
Abstract
Mutations in human CLC-1 chloride channel are associated with the skeletal muscle disorder myotonia congenita. The disease-causing mutant A531V manifests enhanced proteasomal degradation of CLC-1. We recently found that CLC-1 degradation is mediated by cullin 4 ubiquitin ligase complex. It is currently unclear how quality control and protein degradation systems coordinate with each other to process the biosynthesis of CLC-1. Herein we aim to ascertain the molecular nature of the protein quality control system for CLC-1. We identified three CLC-1-interacting proteins that are well-known heat shock protein 90 (Hsp90)-associated co-chaperones: FK506-binding protein 8 (FKBP8), activator of Hsp90 ATPase homolog 1 (Aha1), and Hsp70/Hsp90 organizing protein (HOP). These co-chaperones promote both the protein level and the functional expression of CLC-1 wild-type and A531V mutant. CLC-1 biosynthesis is also facilitated by the molecular chaperones Hsc70 and Hsp90β. The protein stability of CLC-1 is notably increased by FKBP8 and the Hsp90β inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) that substantially suppresses cullin 4 expression. We further confirmed that cullin 4 may interact with Hsp90β and FKBP8. Our data are consistent with the idea that FKBP8 and Hsp90β play an essential role in the late phase of CLC-1 quality control by dynamically coordinating protein folding and degradation.
Collapse
Affiliation(s)
- Yi-Jheng Peng
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jing-Jia Huang
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hao-Han Wu
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Ying Hsieh
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Ying Wu
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Ching Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Tsung-Yu Chen
- Neuroscience Center, University of California, Davis, USA
| | - Chih-Yung Tang
- Department of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|