1
|
Kosourov S, Böhm M, Senger M, Berggren G, Stensjö K, Mamedov F, Lindblad P, Allahverdiyeva Y. Photosynthetic hydrogen production: Novel protocols, promising engineering approaches and application of semi-synthetic hydrogenases. PHYSIOLOGIA PLANTARUM 2021; 173:555-567. [PMID: 33860946 DOI: 10.1111/ppl.13428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Photosynthetic production of molecular hydrogen (H2 ) by cyanobacteria and green algae is a potential source of renewable energy. These organisms are capable of water biophotolysis by taking advantage of photosynthetic apparatus that links water oxidation at Photosystem II and reduction of protons to H2 downstream of Photosystem I. Although the process has a theoretical potential to displace fossil fuels, photosynthetic H2 production in its current state is not yet efficient enough for industrial applications due to a number of physiological, biochemical, and engineering barriers. This article presents a short overview of the metabolic pathways and enzymes involved in H2 photoproduction in cyanobacteria and green algae and our present understanding of the mechanisms of this process. We also summarize recent advances in engineering photosynthetic cell factories capable of overcoming the major barriers to efficient and sustainable H2 production.
Collapse
Affiliation(s)
- Sergey Kosourov
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Maximilian Böhm
- Molecular Biomimetics, Department of Chemistry-Ångström, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Moritz Senger
- Molecular Biomimetics, Department of Chemistry-Ångström, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Gustav Berggren
- Molecular Biomimetics, Department of Chemistry-Ångström, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry-Ångström, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström, Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
2
|
Polerecky L, Masuda T, Eichner M, Rabouille S, Vancová M, Kienhuis MVM, Bernát G, Bonomi-Barufi J, Campbell DA, Claquin P, Červený J, Giordano M, Kotabová E, Kromkamp J, Lombardi AT, Lukeš M, Prášil O, Stephan S, Suggett D, Zavřel T, Halsey KH. Temporal Patterns and Intra- and Inter-Cellular Variability in Carbon and Nitrogen Assimilation by the Unicellular Cyanobacterium Cyanothece sp. ATCC 51142. Front Microbiol 2021; 12:620915. [PMID: 33613489 PMCID: PMC7890256 DOI: 10.3389/fmicb.2021.620915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/11/2021] [Indexed: 12/05/2022] Open
Abstract
Unicellular nitrogen fixing cyanobacteria (UCYN) are abundant members of phytoplankton communities in a wide range of marine environments, including those with rapidly changing nitrogen (N) concentrations. We hypothesized that differences in N availability (N2 vs. combined N) would cause UCYN to shift strategies of intracellular N and C allocation. We used transmission electron microscopy and nanoscale secondary ion mass spectrometry imaging to track assimilation and intracellular allocation of 13C-labeled CO2 and 15N-labeled N2 or NO3 at different periods across a diel cycle in Cyanothece sp. ATCC 51142. We present new ideas on interpreting these imaging data, including the influences of pre-incubation cellular C and N contents and turnover rates of inclusion bodies. Within cultures growing diazotrophically, distinct subpopulations were detected that fixed N2 at night or in the morning. Additional significant within-population heterogeneity was likely caused by differences in the relative amounts of N assimilated into cyanophycin from sources external and internal to the cells. Whether growing on N2 or NO3, cells prioritized cyanophycin synthesis when N assimilation rates were highest. N assimilation in cells growing on NO3 switched from cyanophycin synthesis to protein synthesis, suggesting that once a cyanophycin quota is met, it is bypassed in favor of protein synthesis. Growth on NO3 also revealed that at night, there is a very low level of CO2 assimilation into polysaccharides simultaneous with their catabolism for protein synthesis. This study revealed multiple, detailed mechanisms underlying C and N management in Cyanothece that facilitate its success in dynamic aquatic environments.
Collapse
Affiliation(s)
- Lubos Polerecky
- Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| | - Takako Masuda
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
| | - Meri Eichner
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sophie Rabouille
- Sorbonne Université, CNRS, Laboratoire d’Océanographie de Villefranche, Villefranche-sur-mer, France
- Sorbonne Université, CNRS, Laboratoire d’Océanographie Microbienne, Banyuls-sur-mer, France
| | - Marie Vancová
- Institute of Parasitology, Czech Academy of Sciences, Biology Centre, České Budějovice, Czechia
| | | | - Gabor Bernát
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
- Centre for Ecological Research, Balaton Limnological Institute, Tihany, Hungary
| | - Jose Bonomi-Barufi
- Botany Department, Federal University of Santa Catarina, Campus de Trindade, Florianópolis, Brazil
| | | | - Pascal Claquin
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques, FRE 2030, Muséum National d’Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Normandie Université, Esplanade de la Paix, France
| | - Jan Červený
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Mario Giordano
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
- STU-UNIVPM Joint Algal Research Center, Marine Biology Institute, College of Sciences, Shantou University, Shantou, China
| | - Eva Kotabová
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
| | - Jacco Kromkamp
- NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Den Burg, Netherlands
| | | | - Martin Lukeš
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
| | - Ondrej Prášil
- Institute of Microbiology, Czech Academy of Sciences, Centre Algatech, Třeboň, Czechia
| | - Susanne Stephan
- Department Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
- Department of Ecology, Berlin Institute of Technology, Berlin, Germany
| | - David Suggett
- University of Technology Sydney, Climate Change Cluster, Faculty of Science, Ultimo, NSW, Australia
| | - Tomas Zavřel
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czechia
| | - Kimberly H. Halsey
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
3
|
Walker LP, Buhler D. Catalyzing Holistic Agriculture Innovation Through Industrial Biotechnology. Ind Biotechnol (New Rochelle N Y) 2020. [DOI: 10.1089/ind.2020.29222.lpw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Larry P. Walker
- Biosystems and Agricultural Engineering Department, Michigan State University, East Lansing, Michigan, USA
- Somaiya Vidyavihar University, Mumbai, India
- Biological and Environmental Engineering Department, Cornell University, Ithaca, New York, USA
| | - Douglas Buhler
- Michigan State University AgBioResearch and Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
4
|
Engineering salt tolerance of photosynthetic cyanobacteria for seawater utilization. Biotechnol Adv 2020; 43:107578. [PMID: 32553809 DOI: 10.1016/j.biotechadv.2020.107578] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/17/2020] [Accepted: 06/05/2020] [Indexed: 02/04/2023]
Abstract
Photosynthetic cyanobacteria are capable of utilizing sunlight and CO2 as sole energy and carbon sources, respectively. With genetically modified cyanobacteria being used as a promising chassis to produce various biofuels and chemicals in recent years, future large-scale cultivation of cyanobacteria would have to be performed in seawater, since freshwater supplies of the earth are very limiting. However, high concentration of salt is known to inhibit the growth of cyanobacteria. This review aims at comparing the mechanisms that different cyanobacteria respond to salt stress, and then summarizing various strategies of developing salt-tolerant cyanobacteria for seawater cultivation, including the utilization of halotolerant cyanobacteria and the engineering of salt-tolerant freshwater cyanobacteria. In addition, the challenges and potential strategies related to further improving salt tolerance in cyanobacteria are also discussed.
Collapse
|
5
|
Battchikova N, Muth-Pawlak D, Aro EM. Proteomics of cyanobacteria: current horizons. Curr Opin Biotechnol 2018; 54:65-71. [DOI: 10.1016/j.copbio.2018.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/31/2018] [Accepted: 02/13/2018] [Indexed: 12/01/2022]
|
6
|
Effect of light wavelength on hot spring microbial mat biodiversity. PLoS One 2018; 13:e0191650. [PMID: 29381713 PMCID: PMC5790269 DOI: 10.1371/journal.pone.0191650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/09/2018] [Indexed: 11/19/2022] Open
Abstract
Hot spring associated phototrophic microbial mats are purely microbial communities, in which phototrophic bacteria function as primary producers and thus shape the community. The microbial mats at Nakabusa hot springs in Japan harbor diverse photosynthetic bacteria, mainly Thermosynechococcus, Chloroflexus, and Roseiflexus, which use light of different wavelength for energy conversion. The aim of this study was to investigate the effect of the phototrophs on biodiversity and community composition in hot spring microbial mats. For this, we specifically activated the different phototrophs by irradiating the mats with different wavelengths in situ. We used 625, 730, and 890 nm wavelength LEDs alone or in combination and confirmed the hypothesized increase in relative abundance of different phototrophs by 16S rRNA gene sequencing. In addition to the increase of the targeted phototrophs, we studied the effect of the different treatments on chemotrophic members. The specific activation of Thermosynechococcus led to increased abundance of several other bacteria, whereas wavelengths specific to Chloroflexus and Roseiflexus induced a decrease in >50% of the community members as compared to the dark conditions. This suggests that the growth of Thermosynechococcus at the surface layer benefits many community members, whereas less benefit is obtained from an increase in filamentous anoxygenic phototrophs Chloroflexus and Roseiflexus. The increases in relative abundance of chemotrophs under different light conditions suggest a relationship between the two groups. Aerobic chemoheterotrophs such as Thermus sp. and Meiothermus sp. are thought to benefit from aerobic conditions and organic carbon in the form of photosynthates by Thermosynechococcus, while the oxidation of sulfide and production of elemental sulfur by filamentous anoxygenic phototrophs benefit the sulfur-disproportionating Caldimicrobium thiodismutans. In this study, we used an experimental approach under controlled environmental conditions for the analysis of natural microbial communities, which proved to be a powerful tool to study interspecies relationships in the microbiome.
Collapse
|
7
|
Indirect Interspecies Regulation: Transcriptional and Physiological Responses of a Cyanobacterium to Heterotrophic Partnership. mSystems 2017; 2:mSystems00181-16. [PMID: 28289730 PMCID: PMC5340862 DOI: 10.1128/msystems.00181-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/30/2017] [Indexed: 02/06/2023] Open
Abstract
This study elucidates how a cyanobacterial primary producer acclimates to heterotrophic partnership by modulating the expression levels of key metabolic genes. Heterotrophic bacteria can indirectly regulate the physiology of the photoautotrophic primary producers, resulting in physiological changes identified here, such as increased intracellular ROS. Some of the interactions inferred from this model system represent putative principles of metabolic coupling in phototrophic-heterotrophic partnerships. The mechanisms by which microbes interact in communities remain poorly understood. Here, we interrogated specific interactions between photoautotrophic and heterotrophic members of a model consortium to infer mechanisms that mediate metabolic coupling and acclimation to partnership. This binary consortium was composed of a cyanobacterium, Thermosynechococcus elongatus BP-1, which supported growth of an obligate aerobic heterotroph, Meiothermus ruber strain A, by providing organic carbon, O2, and reduced nitrogen. Species-resolved transcriptomic analyses were used in combination with growth and photosynthesis kinetics to infer interactions and the environmental context under which they occur. We found that the efficiency of biomass production and resistance to stress induced by high levels of dissolved O2 increased, beyond axenic performance, as a result of heterotrophic partnership. Coordinated transcriptional responses transcending both species were observed and used to infer specific interactions resulting from the synthesis and exchange of resources. The cyanobacterium responded to heterotrophic partnership by altering expression of core genes involved with photosynthesis, carbon uptake/fixation, vitamin synthesis, and scavenging of reactive oxygen species (ROS). IMPORTANCE This study elucidates how a cyanobacterial primary producer acclimates to heterotrophic partnership by modulating the expression levels of key metabolic genes. Heterotrophic bacteria can indirectly regulate the physiology of the photoautotrophic primary producers, resulting in physiological changes identified here, such as increased intracellular ROS. Some of the interactions inferred from this model system represent putative principles of metabolic coupling in phototrophic-heterotrophic partnerships.
Collapse
|
8
|
Hill EA, Chrisler WB, Beliaev AS, Bernstein HC. A flexible microbial co-culture platform for simultaneous utilization of methane and carbon dioxide from gas feedstocks. BIORESOURCE TECHNOLOGY 2017; 228:250-256. [PMID: 28092828 DOI: 10.1016/j.biortech.2016.12.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/30/2016] [Accepted: 12/31/2016] [Indexed: 06/06/2023]
Abstract
A new co-cultivation technology is presented that converts greenhouse gasses, CH4 and CO2, into microbial biomass. The methanotrophic bacterium, Methylomicrobium alcaliphilum 20z, was coupled to a cyanobacterium, Synechococcus PCC 7002 via oxygenic photosynthesis. The system exhibited robust growth on diverse gas mixtures ranging from biogas to those representative of a natural gas feedstock. A continuous processes was developed on a synthetic natural gas feed that achieved steady-state by imposing coupled light and O2 limitations on the cyanobacterium and methanotroph, respectively. Continuous co-cultivation resulted in an O2 depleted reactor and does not require CH4/O2 mixtures to be fed into the system, thereby enhancing process safety considerations over traditional methanotroph mono-culture platforms. This co-culture technology is scalable with respect to its ability to utilize different gas streams and its biological components constructed from model bacteria that can be metabolically customized to produce a range of biofuels and bioproducts.
Collapse
Affiliation(s)
- Eric A Hill
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - William B Chrisler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Alex S Beliaev
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Hans C Bernstein
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA; The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA.
| |
Collapse
|
9
|
Dinitrogenase-Driven Photobiological Hydrogen Production Combats Oxidative Stress in Cyanothece sp. Strain ATCC 51142. Appl Environ Microbiol 2016; 82:7227-7235. [PMID: 27742679 DOI: 10.1128/aem.02098-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/30/2016] [Indexed: 01/21/2023] Open
Abstract
Photobiologically synthesized hydrogen (H2) gas is carbon neutral to produce and clean to combust, making it an ideal biofuel. Cyanothece sp. strain ATCC 51142 is a cyanobacterium capable of performing simultaneous oxygenic photosynthesis and H2 production, a highly perplexing phenomenon because H2 evolving enzymes are O2 sensitive. We employed a system-level in vivo chemoproteomic profiling approach to explore the cellular dynamics of protein thiol redox and how thiol redox mediates the function of the dinitrogenase NifHDK, an enzyme complex capable of aerobic hydrogenase activity. We found that NifHDK responds to intracellular redox conditions and may act as an emergency electron valve to prevent harmful reactive oxygen species formation in concert with other cell strategies for maintaining redox homeostasis. These results provide new insight into cellular redox dynamics useful for advancing photolytic bioenergy technology and reveal a new understanding for the biological function of NifHDK. IMPORTANCE Here, we demonstrate that high levels of hydrogen synthesis can be induced as a protection mechanism against oxidative stress via the dinitrogenase enzyme complex in Cyanothece sp. strain ATCC 51142. This is a previously unknown feature of cyanobacterial dinitrogenase, and we anticipate that it may represent a strategy to exploit cyanobacteria for efficient and scalable hydrogen production. We utilized a chemoproteomic approach to capture the in situ dynamics of reductant partitioning within the cell, revealing proteins and reactive thiols that may be involved in redox sensing and signaling. Additionally, this method is widely applicable across biological systems to achieve a greater understanding of how cells navigate their environment and how redox chemistry can be utilized to alter metabolism and achieve homeostasis.
Collapse
|
10
|
Melnicki MR, Leverenz RL, Sutter M, López-Igual R, Wilson A, Pawlowski EG, Perreau F, Kirilovsky D, Kerfeld CA. Structure, Diversity, and Evolution of a New Family of Soluble Carotenoid-Binding Proteins in Cyanobacteria. MOLECULAR PLANT 2016; 9:1379-1394. [PMID: 27392608 DOI: 10.1016/j.molp.2016.06.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/25/2016] [Accepted: 06/20/2016] [Indexed: 05/15/2023]
Abstract
Using a phylogenomic approach, we have identified and subclassified a new family of carotenoid-binding proteins. These proteins have sequence homology to the N-terminal domain (NTD) of the Orange Carotenoid Protein (OCP), and are referred to as Helical Carotenoid Proteins (HCPs). These proteins comprise at least nine distinct clades and are found in diverse organisms, frequently as multiple paralogs representing the distinct clades. These seem to be out-paralogs maintained from ancient duplications associated with subfunctionalization. All of the HCPs share conservation of the residues for carotenoid binding, and we confirm that carotenoid binding is a fundamental property of HCPs. We solved two crystal structures of the Nostoc sp. PCC 7120 HCP1 protein, each binding a different carotenoid, suggesting that the proteins flexibly bind a range of carotenoids. Based on a comprehensive phylogenetic analysis, we propose that one of the HCP subtypes is likely the evolutionary ancestor of the NTD of the OCP, which arose following a domain fusion event. However, we predict that the majority of HCPs have functions distinct from the NTD of the OCP. Our results demonstrate that the HCPs are a new family of functionally diverse carotenoid-binding proteins found among ecophysiologically diverse cyanobacteria.
Collapse
Affiliation(s)
- Matthew R Melnicki
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ryan L Leverenz
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Markus Sutter
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Rocío López-Igual
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; Commissariat à l'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTec-S), 91191 Gif-sur-Yvette, France
| | - Adjélé Wilson
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; Commissariat à l'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTec-S), 91191 Gif-sur-Yvette, France
| | - Emily G Pawlowski
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - François Perreau
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; Commissariat à l'Energie Atomique (CEA), Institut de Biologie et Technologies de Saclay (iBiTec-S), 91191 Gif-sur-Yvette, France
| | - Cheryl A Kerfeld
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|