1
|
Chen C, Wu X, Huang Q, Qin Y, Li C, Zhang X, Wang P, Tan X, Liu Y, Chen Y, Zhang D. Rhodopseudomonas palustris Atp2 Protein Exerts Antifungal Effects by Targeting the Ribosomal Protein MoRpl12 in Magnaporthe oryzae. PHYTOPATHOLOGY 2024; 114:2235-2243. [PMID: 39352788 DOI: 10.1094/phyto-05-24-0169-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Rice blast is one of the most hazardous diseases affecting rice production. Previously, we discovered that the Atp2 protein of Rhodopseudomonas palustris could significantly inhibit the appressorium formation and pathogenicity of Magnaporthe oryzae. However, the molecular mechanism of this fungus has remained unknown. This study revealed that Atp2 can enter the cell and interact with the ribosomal protein MoRpl12 of M. oryzae, directly affecting the expression of the MoRpl12 protein. Silencing the MoRPL12 gene can affect cell wall integrity, growth, conidiogenesis, and fungal pathogenicity. The quantitative reverse transcription PCR results showed significant changes in the expression of conidiation-related genes in the MoRPL12 gene-silenced mutants or in the Atp2 protein-treated plants. We further found that Atp2 treatment can influence the expression of ribosomal-related genes, such as RPL, in M. oryzae. Our study revealed a novel antifungal mechanism by which the Atp2 protein binds to the ribosomal protein MoRpl12 and inhibits the pathogenicity of rice blast fungus, providing a new potential target for rice blast prevention and control.
Collapse
Affiliation(s)
- Chunyan Chen
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xiyang Wu
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- LongPing Branch, College of Biology, Hunan University, Changsha, China
| | - Qiang Huang
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yingfei Qin
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- LongPing Branch, College of Biology, Hunan University, Changsha, China
| | - Chenggang Li
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xin Zhang
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Pei Wang
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xinqiu Tan
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- LongPing Branch, College of Biology, Hunan University, Changsha, China
| | - Yong Liu
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- LongPing Branch, College of Biology, Hunan University, Changsha, China
| | - Yue Chen
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- LongPing Branch, College of Biology, Hunan University, Changsha, China
| | - Deyong Zhang
- Yuelushan Laboratory and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- LongPing Branch, College of Biology, Hunan University, Changsha, China
| |
Collapse
|
2
|
Ning W, Luo X, Zhang Y, Tian P, Xiao Y, Li S, Yang X, Li F, Zhang D, Zhang S, Liu Y. Broad-spectrum nano-bactericide utilizing antimicrobial peptides and bimetallic Cu-Ag nanoparticles anchored onto multiwalled carbon nanotubes for sustained protection against persistent bacterial pathogens in crops. Int J Biol Macromol 2024; 265:131042. [PMID: 38521320 DOI: 10.1016/j.ijbiomac.2024.131042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Worldwide crop yields are threatened by persistent pathogenic bacteria that cause significant damage and jeopardize global food security. Chemical pesticides have shown limited effectiveness in protecting crops from severe yield loss. To address this obstacle, there is a growing need to develop environmentally friendly bactericides with broad-spectrum and sustained protection against persistent crop pathogens. Here, we present a method for preparing a nanocomposite that combines antimicrobial peptides (AMPs) and bimetallic Cu-Ag nanoparticles anchored onto multiwalled carbon nanotubes (MWCNTs). The nanocomposite exhibited dual antibacterial activity by disrupting bacterial cell membranes and splicing nucleic acids. By functionalizing MWCNTs with small AMPs (sAMPs), we achieved enhanced stability and penetration of the nanocomposite, and improved loading capacity of the Cu-Ag nanoparticles. The synthesized MWCNTs&CuNCs@AgNPs@P nanocomposites demonstrated broad-spectrum lethality against both Gram-positive and Gram-negative bacterial pathogens. Glasshouse pot trials confirmed the efficacy of the nanocomposites in protecting rice crops against bacterial leaf blight and tomato crops against bacterial wilt. These findings highlight the excellent antibacterial properties of the MWCNTs&CuNCs@AgNPs@P nanocomposite and its potential to replace chemical pesticides, offering significant advantages for agricultural applications.
Collapse
Affiliation(s)
- Weimin Ning
- Longping branch, Biology College, Hunan University, Changsha 410125, China
| | - Xiangwen Luo
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Yu Zhang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Peijie Tian
- Plant Protection College, Yunnan Agricultural University, Kunming 650000, China
| | - Youlun Xiao
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Shijun Li
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Xiao Yang
- Longping branch, Biology College, Hunan University, Changsha 410125, China
| | - Fan Li
- Plant Protection College, Yunnan Agricultural University, Kunming 650000, China
| | - Deyong Zhang
- Longping branch, Biology College, Hunan University, Changsha 410125, China; Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Songbai Zhang
- Longping branch, Biology College, Hunan University, Changsha 410125, China; Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China.
| | - Yong Liu
- Longping branch, Biology College, Hunan University, Changsha 410125, China; Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Academy of Agricultural Science, Changsha 410125, China.
| |
Collapse
|
3
|
Huang Q, Chen C, Wu X, Qin Y, Tan X, Zhang D, Liu Y, Li W, Chen Y. Overexpression of ATP Synthase Subunit Beta (Atp2) Confers Enhanced Blast Disease Resistance in Transgenic Rice. J Fungi (Basel) 2023; 10:5. [PMID: 38276021 PMCID: PMC10820023 DOI: 10.3390/jof10010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Previous research has shown that the pathogenicity and appressorium development of Magnaporthe oryzae can be inhibited by the ATP synthase subunit beta (Atp2) present in the photosynthetic bacterium Rhodopseudomonas palustris. In the present study, transgenic plants overexpressing the ATP2 gene were generated via genetic transformation in the Zhonghua11 (ZH11) genetic background. We compared the blast resistance and immune response of ATP2-overexpressing lines and wild-type plants. The expression of the Atp2 protein and the physiology, biochemistry, and growth traits of the mutant plants were also examined. The results showed that, compared with the wild-type plant ZH11, transgenic rice plants heterologously expressing ATP2 had no significant defects in agronomic traits, but the disease lesions caused by the rice blast fungus were significantly reduced. When infected by the rice blast fungus, the transgenic rice plants exhibited stronger antioxidant enzyme activity and a greater ratio of chlorophyll a to chlorophyll b. Furthermore, the immune response was triggered stronger in transgenic rice, especially the increase in reactive oxygen species (ROS), was more strongly triggered in plants. In summary, the expression of ATP2 as an antifungal protein in rice could improve the ability of rice to resist rice blast.
Collapse
Affiliation(s)
- Qiang Huang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (Q.H.)
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China (D.Z.); (Y.L.)
| | - Chunyan Chen
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (Q.H.)
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China (D.Z.); (Y.L.)
| | - Xiyang Wu
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China (D.Z.); (Y.L.)
| | - Yingfei Qin
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China (D.Z.); (Y.L.)
| | - Xinqiu Tan
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China (D.Z.); (Y.L.)
| | - Deyong Zhang
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China (D.Z.); (Y.L.)
| | - Yong Liu
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China (D.Z.); (Y.L.)
| | - Wei Li
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (Q.H.)
| | - Yue Chen
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China; (Q.H.)
- State Key Laboratory of Hybrid Rice, Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China (D.Z.); (Y.L.)
| |
Collapse
|
4
|
Fulton RL, Downs DM. Modulators of a robust and efficient metabolism: Perspective and insights from the Rid superfamily of proteins. Adv Microb Physiol 2023; 83:117-179. [PMID: 37507158 PMCID: PMC10642521 DOI: 10.1016/bs.ampbs.2023.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Metabolism is an integrated network of biochemical pathways that assemble to generate the robust, responsive physiologies of microorganisms. Despite decades of fundamental studies on metabolic processes and pathways, our understanding of the nuance and complexity of metabolism remains incomplete. The ability to predict and model metabolic network structure, and its influence on cellular fitness, is complicated by the persistence of genes of unknown function, even in the best-studied model organisms. This review describes the definition and continuing study of the Rid superfamily of proteins. These studies are presented with a perspective that illustrates how metabolic complexity can complicate the assignment of function to uncharacterized genes. The Rid superfamily of proteins has been divided into eight subfamilies, including the well-studied RidA subfamily. Aside from the RidA proteins, which are present in all domains of life and prevent metabolic stress, most members of the Rid superfamily have no demonstrated physiological role. Recent progress on functional assignment supports the hypothesis that, overall, proteins in the Rid superfamily modulate metabolic processes to ensure optimal organismal fitness.
Collapse
Affiliation(s)
- Ronnie L Fulton
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, GA, United States.
| |
Collapse
|
5
|
Wu X, Chen Y, Chen C, Huang Q, Qin Y, Zhang X, Li C, Tan X, Liu Y, Zhang D. Combining the microbial agent Rhodopseudomonas palustris strain PSB-06 with fungicides for controlling rice blast. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1072156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rice blast disease caused by Magnaporthe oryzae threatens global rice production yields. Tricyclazole and isoprothiolane are widely used fungicides with high activity against rice blast, and our previous study indicated the photosynthetic bacterium Rhodopseudomonas palustris PSB-06 significantly antagonizes rice blast. However the effect of combining these two chemical fungicides with PSB-06 on rice blast control is unclear. Here we test the control effect of photosynthetic bacteria PSB-06 combined with isoprothiolane and tricyclazole on rice blast. The growth of PSB-06 was unaffected by up to 1.25 mg/L of tricyclazole and 0.3 mg/L of isoprothiolane in the photosynthetic medium, indicated the two fungicides have no inhibition on PSB-06. The control efficiency in the field test reached 76.06% when PSB-06 was combined with isoprothiolane. This value was significantly higher than the individual efficiency of PSB-06 (67.99%) and tricyclazole (65.46%) and the combined control efficiency (72.20%) of those two antifungal agents. Our current findings highlighted the potential of combining R. palustris strain PSB-06 with isoprothiolane to control rice blast, providing environmental protection and reducing the use of fungicides.
Collapse
|
6
|
Li M, Ning P, Sun Y, Luo J, Yang J. Characteristics and Application of Rhodopseudomonas palustris as a Microbial Cell Factory. Front Bioeng Biotechnol 2022; 10:897003. [PMID: 35646843 PMCID: PMC9133744 DOI: 10.3389/fbioe.2022.897003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/27/2022] [Indexed: 01/20/2023] Open
Abstract
Rhodopseudomonas palustris, a purple nonsulfur bacterium, is a bacterium with the properties of extraordinary metabolic versatility, carbon source diversity and metabolite diversity. Due to its biodetoxification and biodegradation properties, R. palustris has been traditionally applied in wastewater treatment and bioremediation. R. palustris is rich in various metabolites, contributing to its application in agriculture, aquaculture and livestock breeding as additives. In recent years, R. palustris has been engineered as a microbial cell factory to produce valuable chemicals, especially photofermentation of hydrogen. The outstanding property of R. palustris as a microbial cell factory is its ability to use a diversity of carbon sources. R. palustris is capable of CO2 fixation, contributing to photoautotrophic conversion of CO2 into valuable chemicals. R. palustris can assimilate short-chain organic acids and crude glycerol from industrial and agricultural wastewater. Lignocellulosic biomass hydrolysates can also be degraded by R. palustris. Utilization of these feedstocks can reduce the industry cost and is beneficial for environment. Applications of R. palustris for biopolymers and their building blocks production, and biofuels production are discussed. Afterward, some novel applications in microbial fuel cells, microbial electrosynthesis and photocatalytic synthesis are summarized. The challenges of the application of R. palustris are analyzed, and possible solutions are suggested.
Collapse
Affiliation(s)
- Meijie Li
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, Qingdao, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Peng Ning
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, Qingdao, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yi Sun
- Haiyang Comprehensive Administrative Law Enforcement Bureau (Agriculture), Haiyang, China
| | - Jie Luo
- Qingdao Garden Forestry Technology School, Qingdao, China
- *Correspondence: Jie Luo, ; Jianming Yang,
| | - Jianming Yang
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, Qingdao Agricultural University, Qingdao, China
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Jie Luo, ; Jianming Yang,
| |
Collapse
|
7
|
Wu X, Chen Y, Li C, Zhang X, Tan X, Lv L, Liu Y, Zhang D. GroEL protein from the potential biocontrol agent Rhodopseudomonas palustris enhances resistance to rice blast disease. PEST MANAGEMENT SCIENCE 2021; 77:5445-5453. [PMID: 34331498 DOI: 10.1002/ps.6584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/24/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND GroEL, which is a chaperone, plays a key role in maintaining protein homeostasis and, among other functions, serves to prevent protein misfolding and aggregation. In addition, the GroEL protein also has a significant effect on enhancing plant resistance and inhibiting plant diseases. However, the function of the GroEL protein in the inhibition of rice blast remains unknown. RESULTS Field experiment results show that photosynthetic bacteria PSB-06 have a good control effect on Magnaporthe oryzae. PSB-06 also can promote rice growth and enhance stress resistance. A GroEL protein which was separated and purified from photosynthetic bacteria had a significant antagonistic effect on appressorial formation and pathogenicity of Magnaporthe oryzae, meanwhile transcriptional analysis demonstrated that the GroEL protein could improve the expression of defense gene of rice. CONCLUSION Our results show that the photosynthetic bacteria Rhodopseudomonas palustris significantly controls rice blast disease. Its action involves an extracellular GroEL protein, which inhibits appressoria formation, antagonizes the pathogenicity of Magnaporthe oryzae and promotes a host defense response. The research results provide evidence of the potential of this photosynthetic bacterium as a biocontrol agent at least for rice blast control. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiyang Wu
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Long Ping Branch, Graduate School of Hunan University, Changsha, China
| | - Yue Chen
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Long Ping Branch, Graduate School of Hunan University, Changsha, China
| | - Chenggang Li
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xin Zhang
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xinqiu Tan
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Long Ping Branch, Graduate School of Hunan University, Changsha, China
| | - Liang Lv
- Key Laboratory of Integrated Pest Management on Crops in Central China, Ministry of Agriculture, and Hubei Province Key Laboratory for Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection & Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yong Liu
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Long Ping Branch, Graduate School of Hunan University, Changsha, China
| | - Deyong Zhang
- State Key Laboratory of Hybrid Rice and Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha, China
- Long Ping Branch, Graduate School of Hunan University, Changsha, China
| |
Collapse
|
8
|
Li Y, Jiao Y, Shi J, Xie J, Yin J, Zhao X, Chen H. BLB8, an antiviral protein from Brevibacillus laterosporus strain B8, inhibits Tobacco mosaic virus infection by triggering immune response in tobacco. PEST MANAGEMENT SCIENCE 2021; 77:4383-4392. [PMID: 33969944 DOI: 10.1002/ps.6472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Tobacco mosaic virus (TMV) is one of destructive plant viruses, causing serious economic losses in the world. Using antiviral proteins or elicitors to inhibit viral infection or promote plant immunity is one of the efficient strategies against TMV. Our previous study identified that the fermentation broth of Brevibacillus laterosporus strain B8 showed strong antiviral activity against TMV. However, the active antiviral ingredient is still unclear. RESULTS Here, BLB8 (B. laterosporus strain B8 protein, BLB8), an antiviral protein from B. laterosporus strain B8 was isolated and characterized. BLB8 showed protective, inactive and curative effects against TMV, and the inhibition rate reached up to 63%, 83% and 55%, respectively. BLB8 infiltrated around the infection site of the recombinant virus TMV-GFP inhibited the systemic extend and movement of TMV. Pretreatment of the bottom leaves with BLB8 inhibited the spread and accumulation of TMV in upper systemic leaves. Furthermore, BLB8 caused hypersensitive response (HR) in a dose-dependent way, promoted H2 O2 accumulation, and induced the expression of defense-relative genes in Nicotiana benthamiana. CONCLUSION The antiviral protein BLB8 from B. laterosporus strain B8 effectively inhibits TMV infection in inactivation, protective and curative effects through triggering plant immunity in tobacco. Therefore, the present study provides a new antiviral agent for prevention and control of viral disease. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanfang Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yubing Jiao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Jia Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingjing Xie
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Jing Yin
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xiuxiang Zhao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Huamin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Joseph TP, Zhao Q, Chanda W, Kanwal S, Fang Y, Zhong M, Huang M. Expression and in vitro anticancer activity of Lp16-PSP, a member of the YjgF/YER057c/UK114 protein family from the mushroom Lentinula edodes C 91-3. Arch Microbiol 2021; 203:1047-1060. [PMID: 33136174 DOI: 10.1007/s00203-020-02099-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 02/05/2023]
Abstract
Latcripin-16 (Lp16-PSP) is a gene that was extracted as a result of de novo characterization of the Lentinula edodes strain C91-3 transcriptome. The aim of the present study was to clone, express, and investigate the selective in vitro anticancer potential of Lp16-PSP in human cell lines. Lp16-PSP was analyzed using bioinformatics tools, cloned in a prokaryotic expression vector pET32a (+) and transformed into E. coli Rosetta gami. It was expressed and solubilized under optimized conditions. The differential scanning fluorometry (DSF)-guided refolding method was used with modifications to identify the proper refolding conditions for the Lp16-PSP protein. To determine the selective anticancer potential of Lp16-PSP, a panel of human cancerous and non-cancerous cell lines was used. Lp16-PSP protein was identified as endoribonuclease L-PSP protein and a member of the highly conserved YjgF/YER057c/UK114 protein superfamily. Lp16-PSP was expressed under optimized conditions (37 °C for 4 h following induction with 0.5 mM isopropyl β-D-1-thiogalactopyranoside). Solubilization was achieved with mild solubilization buffer containing 2 M urea using the freeze-thaw method. The DSF guided refolding method identified the proper refolding conditions (50 mM Tris-HCl, 100 mM NaCl, 1 mM EDTA, 400 mM Arginine, 0.2 mM GSH and 2 mM GSSG; pH 8.0) for Lp16-PSP, with a melting transition of ~ 58 °C. A final yield of ~ 16 mg of purified Lp16-PSP from 1 L of culture was obtained following dialysis and concentration by PEG 20,000. A Cell Counting Kit-8 assay revealed the selective cytotoxic effect of Lp16-PSP. The HL-60 cell line was demonstrated to be most sensitive to Lp16-PSP, with an IC50 value of 74.4 ± 1.07 µg/ml. The results of the present study suggest that Lp16-PSP may serve as a potential anticancer agent; however, further investigation is required to characterize this anticancer effect and to elucidate the molecular mechanism underlying the action of Lp16-PSP.
Collapse
Affiliation(s)
- Thomson Patrick Joseph
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Luvshoukon District, Dalian, 116044, Liaoning, People's Republic of China
- Center for Neuroscience, Shantou University Medical College, Shantou, People's Republic of China
| | - Qianqian Zhao
- Computational System Biology Laboratory, Department of Bioinformatics, Shantou University Medical College, Shantou, People's Republic of China
| | - Warren Chanda
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Luvshoukon District, Dalian, 116044, Liaoning, People's Republic of China
| | - Sadia Kanwal
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Yukun Fang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Luvshoukon District, Dalian, 116044, Liaoning, People's Republic of China
| | - MinTao Zhong
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Luvshoukon District, Dalian, 116044, Liaoning, People's Republic of China
| | - Min Huang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, 9 West Section, Lvshun South Road, Luvshoukon District, Dalian, 116044, Liaoning, People's Republic of China.
| |
Collapse
|
10
|
Irons JL, Hodge-Hanson K, Downs DM. RidA Proteins Protect against Metabolic Damage by Reactive Intermediates. Microbiol Mol Biol Rev 2020; 84:e00024-20. [PMID: 32669283 PMCID: PMC7373157 DOI: 10.1128/mmbr.00024-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Rid (YjgF/YER057c/UK114) protein superfamily was first defined by sequence homology with available protein sequences from bacteria, archaea, and eukaryotes (L. Parsons, N. Bonander, E. Eisenstein, M. Gilson, et al., Biochemistry 42:80-89, 2003, https://doi.org/10.1021/bi020541w). The archetypal subfamily, RidA (reactive intermediate deaminase A), is found in all domains of life, with the vast majority of free-living organisms carrying at least one RidA homolog. In over 2 decades, close to 100 reports have implicated Rid family members in cellular processes in prokaryotes, yeast, plants, and mammals. Functional roles have been proposed for Rid enzymes in amino acid biosynthesis, plant root development and nutrient acquisition, cellular respiration, and carcinogenesis. Despite the wealth of literature and over a dozen high-resolution structures of different RidA enzymes, their biochemical function remained elusive for decades. The function of the RidA protein was elucidated in a bacterial model system despite (i) a minimal phenotype of ridA mutants, (ii) the enzyme catalyzing a reaction believed to occur spontaneously, and (iii) confusing literature on the pleiotropic effects of RidA homologs in prokaryotes and eukaryotes. Subsequent work provided the physiological framework to support the RidA paradigm in Salmonella enterica by linking the phenotypes of mutants lacking ridA to the accumulation of the reactive metabolite 2-aminoacrylate (2AA), which damaged metabolic enzymes. Conservation of enamine/imine deaminase activity of RidA enzymes from all domains raises the likelihood that, despite the diverse phenotypes, the consequences when RidA is absent are due to accumulated 2AA (or a similar reactive enamine) and the diversity of metabolic phenotypes can be attributed to differences in metabolic network architecture. The discovery of the RidA paradigm in S. enterica laid a foundation for assessing the role of Rid enzymes in diverse organisms and contributed fundamental lessons on metabolic network evolution and diversity in microbes. This review describes the studies that defined the conserved function of RidA, the paradigm of enamine stress in S. enterica, and emerging studies that explore how this paradigm differs in other organisms. We focus primarily on the RidA subfamily, while remarking on our current understanding of the other Rid subfamilies. Finally, we describe the current status of the field and pose questions that will drive future studies on this widely conserved protein family to provide fundamental new metabolic information.
Collapse
Affiliation(s)
- Jessica L Irons
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | | | - Diana M Downs
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
11
|
Hong LTT, Hachiya T, Hase S, Shiwa Y, Yoshikawa H, Sakakibara Y, Nguyen SLT, Kimura K. Poly-γ-glutamic acid production of Bacillus subtilis (natto) in the absence of DegQ: A gain-of-function mutation in yabJ gene. J Biosci Bioeng 2019; 128:690-696. [PMID: 31272833 DOI: 10.1016/j.jbiosc.2019.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 02/06/2023]
Abstract
Poly-γ-glutamic acid (γPGA) production by Bacillus subtilis is regulated by the quorum sensing system where DegQ transmits the cell density signal to a DNA-binding protein DegU. A mutation suppressing the γPGA-negative phenotype of degQ gene knock-out mutant (ΔdegQ) was identified through whole genome sequencing. The mutation conferred an amino acid substitution of Ser103 to phenylalanine (S103F) in yabJ that belongs to the highly conserved YjgF/YER057c/UK114 family. Genetic experiments including LacZ-fusion assay of γPGA synthetic operon confirmed that the suppressor mutation (yabJS103F) was responsible for the recovery of γPGA production. The yabJ itself was not essential for the γPGA production and the mutant allele enabled γPGA production of the ΔdegQ strain even in the presence of wild type yabJ. Thus, yabJS103F was a dominant positive allele. degU-lacZ fusion gene was hyper-expressed in cells carrying the yabJS103F, but disruption of yabJ did not affect the transcription level of the degU-lacZ. These observations suggested that YabJ acquired a function to stimulate expression of degU by the S103F mutation which is involved in the regulation of γPGA synthesis.
Collapse
Affiliation(s)
- Le Thi Thu Hong
- Food Research Institute, National Agriculture and Food Research Organization (NFRI/NARO), Tsukuba, Ibaraki 305-8642, Japan
| | - Tsuyoshi Hachiya
- Department of Bioscience and Informatics, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Sumitaka Hase
- Department of Bioscience and Informatics, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Yuh Shiwa
- Department of Molecular Microbiology, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Hirofumi Yoshikawa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan; Department of Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo 156-8502, Japan
| | - Yasubumi Sakakibara
- Department of Bioscience and Informatics, Keio University, Yokohama, Kanagawa 223-8522, Japan
| | - Sy Le Thanh Nguyen
- Food Research Institute, National Agriculture and Food Research Organization (NFRI/NARO), Tsukuba, Ibaraki 305-8642, Japan
| | - Keitarou Kimura
- Food Research Institute, National Agriculture and Food Research Organization (NFRI/NARO), Tsukuba, Ibaraki 305-8642, Japan.
| |
Collapse
|
12
|
Qin Y, Wang J, Wang F, Shen L, Zhou H, Sun H, Hao K, Song L, Zhou Z, Zhang C, Wu Y, Yang J. Purification and Characterization of a Secretory Alkaline Metalloprotease with Highly Potent Antiviral Activity from Serratia marcescens Strain S3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:3168-3178. [PMID: 30799619 DOI: 10.1021/acs.jafc.8b06909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In this study we report a secretory protein that was purified from Serratia marcescens strain S3 isolated from soil from the tobacco rhizosphere. Subsequent mass spectrometry and annotation characterized the protein as secretory alkaline metalloprotease (SAMP). SAMP plays a crucial role in inhibiting Tobacco mosaic virus (TMV). Transmission electron microscopy (TEM), dynamic light scattering (DLS), confocal microscopy, and microscale thermophoresis (MST) were employed to investigate the anti-TMV mechanism of SAMP. Our results demonstrated that SAMP, as a hydrolytic metal protease, combined and hydrolyzed TMV coat proteins to destroy the virus particles. This study is the first to investigate the antiviral effects of a S. marcescens metalloprotease, and our finding suggests that S. marcescens-S3 may be agronomically useful as a disease-controlling factor active against Tobacco mosaic virus.
Collapse
Affiliation(s)
- Yuanxia Qin
- College of Plant Protection , Shenyang Agricultural University , Shenyang 110866 , P. R. China
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao 266101 , P. R. China
| | - Jie Wang
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao 266101 , P. R. China
| | - Fenglong Wang
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao 266101 , P. R. China
| | - Lili Shen
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao 266101 , P. R. China
| | - Haixiang Zhou
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao 266101 , P. R. China
| | - Hangjun Sun
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao 266101 , P. R. China
| | - Kaiqiang Hao
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao 266101 , P. R. China
| | - Liyun Song
- College of Plant Protection , Shenyang Agricultural University , Shenyang 110866 , P. R. China
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao 266101 , P. R. China
| | - Zhicheng Zhou
- Hunan Tobacco Science Institute , Changsha 410004 , P. R. China
| | - Chaoqun Zhang
- Jiangxi Institute of Tobacco Leaf Science , Nanchang 330025 , P. R. China
| | - Yuanhua Wu
- College of Plant Protection , Shenyang Agricultural University , Shenyang 110866 , P. R. China
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring Controlling & Integrated Management , Tobacco Research Institute of Chinese Academy of Agricultural Sciences , Qingdao 266101 , P. R. China
| |
Collapse
|
13
|
Identification of a perchloric acid-soluble protein (PSP)-like ribonuclease from Trichomonas vaginalis. Parasitol Res 2018; 117:3639-3652. [PMID: 30191309 DOI: 10.1007/s00436-018-6065-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/23/2018] [Indexed: 01/08/2023]
Abstract
A perchloric acid-soluble protein (PSP), named here tv-psp1, was identified in Trichomonas vaginalis. It is expressed under normal culture conditions according to expressed sequence tag (EST) analysis. On the other hand, Tv-PSP1 protein was identified by mass spectrometry with a 40% of identity to human PSP (p14.1). Polyclonal antibodies against recombinant Tv-PSP1 (rTv-PSP1) recognized a single band at 13.5 kDa in total protein parasite extract by SDS-PAGE and a high molecular weight band analyzed by native PAGE. Structural analysis of Tv-PSP1, using dynamic light scattering, size exclusion chromatography, and circular dichroism spectroscopy, showed a trimeric structure stable at 7 M urea with 38% α-helix and 14% β-sheet in solution and a molecular weight of 40.5 kD. Tv-PSP1 models were used to perform dynamic simulations over 100 ns suggesting a stable homotrimeric structure. Tv-PSP1 was located in the nucleus, cytoplasm, and hydrogenosomes of T. vaginalis, and the in silico analysis by Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) showed interactions with RNA binding proteins. The preliminary results of RNA degradation analysis with the recombinant Tv-PSP1 showed RNA partial deterioration suggesting a possible putative ribonuclease function.
Collapse
|
14
|
Lp16-PSP, a Member of YjgF/YER057c/UK114 Protein Family Induces Apoptosis and p21WAF1/CIP1 Mediated G1 Cell Cycle Arrest in Human Acute Promyelocytic Leukemia (APL) HL-60 Cells. Int J Mol Sci 2017. [PMCID: PMC5713375 DOI: 10.3390/ijms18112407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lp16-PSP (Latcripin 16-Perchloric acid Soluble Protein) from Lentinula edodes strain C91-3 has been reported previously in our laboratory to have selective cytotoxic activity against a panel of human cell lines. Herein, we have used several parameters in order to characterize the Lp16-PSP-induced cell death using human acute promyeloid leukemia (HL-60) as a model cancer. The results of phase contrast microscopy, nuclear examination, DNA fragmentation detection and flow cytometry revealed that high doses of Lp16-PSP resulted in the induction of apoptosis in HL-60 cells. The colorimetric assay showed the activation of caspase-8, -9, and -3 cascade highlighting the involvement of Fas/FasL-related pathway. Whereas, Western blot revealed the cleavage of caspase-3, increased expression of Bax, the release of cytochrome c and decreased expression of Bcl-2 in a dose-dependent manner, suggesting the intrinsic pathway might be involved in Lp16-PSP-induced apoptosis as well. Low doses of Lp16-PSP resulted in the anchorage-independent growth inhibition, induction of G1 phase arrest, accompanied by the increased expression of p21WAF1/CIP1, along with the decreased expression of cyclin D, E, and cdk6. In addition, Lp16-PSP resulted in constitutive translocation inhibition of transcription factor nuclear factor kappa B (NF-κB) into the nucleus by decreasing the phosphorylation of IκBα. All these findings suggested Lp16-PSP as a potential agent against acute promyeloid leukemia; however, further investigations are ultimately needed.
Collapse
|
15
|
Su P, Tan X, Li C, Zhang D, Cheng J, Zhang S, Zhou X, Yan Q, Peng J, Zhang Z, Liu Y, Lu X. Photosynthetic bacterium Rhodopseudomonas palustris GJ-22 induces systemic resistance against viruses. Microb Biotechnol 2017; 10:612-624. [PMID: 28296178 PMCID: PMC5404195 DOI: 10.1111/1751-7915.12704] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 02/05/2017] [Accepted: 02/20/2017] [Indexed: 01/09/2023] Open
Abstract
Photosynthetic bacteria (PSB) have been extensively used in agriculture to promote plant growth and to improve crop quality. Their potential application in plant disease management, however, is largely overlooked. In this study, the PSB strain Rhodopseudomonas palustris GJ-22 was investigated for its ability to induce resistance against a plant virus while promoting plant growth. In the field, a foliar spray of GJ-22 suspension protected tobacco plants against tobacco mosaic virus (TMV). Under axenic conditions, GJ-22 colonized the plant phyllosphere and induced resistance against TMV. Additionally, GJ-22 produced two phytohormones, indole-3-acetic acid and 5-aminolevulinic acid, which promote growth and germination in tobacco. Furthermore, GJ-22-inoculated plants elevated their immune response under subsequent TMV infection. This research may give rise to a novel biological agent with a dual function in disease management while promoting plant growth.
Collapse
Affiliation(s)
- Pin Su
- Hunan Academy of Agricultural SciencesHunan Plant Protection InstituteChangsha410125China
| | - Xinqiu Tan
- Hunan Academy of Agricultural SciencesHunan Plant Protection InstituteChangsha410125China
| | - Chenggang Li
- Hunan Academy of Agricultural SciencesHunan Plant Protection InstituteChangsha410125China
| | - Deyong Zhang
- Hunan Academy of Agricultural SciencesHunan Plant Protection InstituteChangsha410125China
| | - Ju'e Cheng
- Hunan Academy of Agricultural SciencesHunan Plant Protection InstituteChangsha410125China
| | - Songbai Zhang
- Hunan Academy of Agricultural SciencesHunan Plant Protection InstituteChangsha410125China
| | - Xuguo Zhou
- Department of EntomologyUniversity of KentuckyLexingtonKY40546USA
| | - Qingpin Yan
- Hunan Academy of Agricultural SciencesHunan Plant Protection InstituteChangsha410125China
| | - Jing Peng
- Hunan Academy of Agricultural SciencesHunan Plant Protection InstituteChangsha410125China
| | - Zhuo Zhang
- Hunan Academy of Agricultural SciencesHunan Plant Protection InstituteChangsha410125China
| | - Yong Liu
- Hunan Academy of Agricultural SciencesHunan Plant Protection InstituteChangsha410125China
| | - Xiangyang Lu
- College of Bioscience and BiotechnologyHunan Agricultural UniversityChangsha410128China
| |
Collapse
|