1
|
Seessle J, Liebisch G, Staffer S, Tuma-Kellner S, Merle U, Herrmann T, Chamulitrat W. Enterocyte-specific FATP4 deficiency elevates blood lipids via a shift from polar to neutral lipids in distal intestine. Am J Physiol Gastrointest Liver Physiol 2024; 327:G202-G216. [PMID: 38915276 DOI: 10.1152/ajpgi.00109.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Fatty acid transport protein (FATP)4 was thought to mediate intestinal lipid absorption, which was disputed by a study using keratinocyte-Fatp4-rescued Fatp4-/- mice. These knockouts when fed with a Western diet showed elevated intestinal triglyceride (TG) and fatty acid levels. To investigate a possible role of FATP4 on intestinal lipid processing, ent-Fatp4 (KO) mice were generated by Villin-Cre-specific inactivation of the Fatp4 gene. We aimed to measure circulating and intestinal lipids in control and KO mice after acute or chronic fat intake or during aging. Remarkably, ent-Fatp4 mice displayed an approximately 30% decrease in ileal behenic, lignoceric, and nervonic acids, ceramides containing these FA, as well as, ileal sphingomyelin, phosphatidylcholine, and phosphatidylinositol levels. Such decreases were concomitant with an increase in jejunal cholesterol ester. After a 2-wk recovery from high lipid overload by tyloxapol and oral-lipid treatment, ent-Fatp4 mice showed an increase in plasma TG and chylomicrons. Upon overnight fasting followed by an oral fat meal, ent-Fatp4 mice showed an increase in plasma TG-rich lipoproteins and the particle number of chylomicrons and very low-density lipoproteins. During aging or after feeding with a high-fat high-cholesterol (HFHC) diet, ent-Fatp4 mice showed an increase in plasma TG, fatty acids, glycerol, and lipoproteins as well as intestinal lipids. HFHC-fed KO mice displayed an increase in body weight, the number of lipid droplets with larger sizes in the ileum, concomitant with a decrease in ileal ceramides and phosphatidylcholine. Thus, enterocyte FATP4 deficiency led to a metabolic shift from polar to neutral lipids in distal intestine rendering an increase in plasma lipids and lipoproteins.NEW & NOTEWORTHY Enterocyte-specific Fatp4 deficiency in mice increased intestinal lipid absorption with elevation of blood lipids during fasting and aging, as well as after an acute oral fat-loading or chronic HFHC feeding. Lipidomics revealed that knockout mice displayed a shift from very long-chain to long-chain fatty acids, and from polar to neutral lipids, predominantly in the ileum. Thus, FATP4 may have a physiological function in the control of blood lipids via metabolic shifts in distal intestine.
Collapse
Affiliation(s)
- Jessica Seessle
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Simone Staffer
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Sabine Tuma-Kellner
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Herrmann
- Department of Medical Clinic 1, Westkuesten Hospital, Heide, Germany
| | - Walee Chamulitrat
- Department of Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
2
|
Li H, Cui J, Hu C, Li H, Luo X, Hao Y. Identification and Analysis of ZIC-Related Genes in Cerebellum of Autism Spectrum Disorders. Neuropsychiatr Dis Treat 2024; 20:325-339. [PMID: 38410689 PMCID: PMC10895985 DOI: 10.2147/ndt.s444138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/09/2024] [Indexed: 02/28/2024] Open
Abstract
Objective Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with significant genetic heterogeneity. The ZIC gene family can regulate neurodevelopment, especially in the cerebellum, and has been implicated in ASD-like behaviors in mice. We performed bioinformatic analysis to identify the ZIC gene family in the ASD cerebellum. Methods We explored the roles of ZIC family genes in ASD by investigating (i) the association of ZIC genes with ASD risk genes from the Simons Foundation Autism Research Initiative (SFARI) database and ZIC genes in the brain regions of the Human Protein Atlas (HPA) database; (ii) co-expressed gene networks of genes positively and negatively correlated with ZIC1, ZIC2, and ZIC3, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and receiver operating characteristic (ROC) curve analysis of genes in these networks; and (iii) the relationship between ZIC1, ZIC2, ZIC3, and their related genes with cerebellar immune cells and stromal cells in ASD patients. Results (i) ZIC1, ZIC2, and ZIC3 were associated with neurodevelopmental disorders and risk genes related to ASD in the human cerebellum and (ii) ZIC1, ZIC2, and ZIC3 were highly expressed in the cerebellum, which may play a pathogenic role by affecting neuronal development and the cerebellar internal environment in patients with ASD, including immune cells, astrocytes, and endothelial cells. (iii) OLFM3, SLC27A4, GRB2, TMED1, NR2F1, and STRBP are closely related to ZIC1, ZIC2, and ZIC3 in ASD cerebellum and have good diagnostic accuracy. (iv) ASD mice in the maternal immune activation model demonstrated that Zic3 and Nr2f1 levels were decreased in the immune-activated cerebellum. Conclusion Our study supports the role of ZIC1, ZIC2, and ZIC3 in ASD pathogenesis and provides potential targets for early and accurate prediction of ASD.
Collapse
Affiliation(s)
- Heli Li
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jinru Cui
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Cong Hu
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hao Li
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yan Hao
- Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| |
Collapse
|
3
|
Masi M, Biundo F, Fiou A, Racchi M, Pascale A, Buoso E. The Labyrinthine Landscape of APP Processing: State of the Art and Possible Novel Soluble APP-Related Molecular Players in Traumatic Brain Injury and Neurodegeneration. Int J Mol Sci 2023; 24:ijms24076639. [PMID: 37047617 PMCID: PMC10095589 DOI: 10.3390/ijms24076639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Amyloid Precursor Protein (APP) and its cleavage processes have been widely investigated in the past, in particular in the context of Alzheimer’s Disease (AD). Evidence of an increased expression of APP and its amyloidogenic-related cleavage enzymes, β-secretase 1 (BACE1) and γ-secretase, at the hit axon terminals following Traumatic Brain Injury (TBI), firstly suggested a correlation between TBI and AD. Indeed, mild and severe TBI have been recognised as influential risk factors for different neurodegenerative diseases, including AD. In the present work, we describe the state of the art of APP proteolytic processing, underlining the different roles of its cleavage fragments in both physiological and pathological contexts. Considering the neuroprotective role of the soluble APP alpha (sAPPα) fragment, we hypothesised that sAPPα could modulate the expression of genes of interest for AD and TBI. Hence, we present preliminary experiments addressing sAPPα-mediated regulation of BACE1, Isthmin 2 (ISM2), Tetraspanin-3 (TSPAN3) and the Vascular Endothelial Growth Factor (VEGFA), each discussed from a biological and pharmacological point of view in AD and TBI. We finally propose a neuroprotective interaction network, in which the Receptor for Activated C Kinase 1 (RACK1) and the signalling cascade of PKCβII/nELAV/VEGF play hub roles, suggesting that vasculogenic-targeting therapies could be a feasible approach for vascular-related brain injuries typical of AD and TBI.
Collapse
Affiliation(s)
- Mirco Masi
- Computational and Chemical Biology, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - André Fiou
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
| | - Erica Buoso
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Via Taramelli 12/14, 27100 Pavia, Italy
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
4
|
Weighted Gene Co-Expression Network Analysis and Support Vector Machine Learning in the Proteomic Profiling of Cerebrospinal Fluid from Extraventricular Drainage in Child Medulloblastoma. Metabolites 2022; 12:metabo12080724. [PMID: 36005596 PMCID: PMC9412589 DOI: 10.3390/metabo12080724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Medulloblastoma (MB) is the most common pediatric malignant central nervous system tumor. Overall survival in MB depends on treatment tuning. There is aneed for biomarkers of residual disease and recurrence. We analyzed the proteome of waste cerebrospinal fluid (CSF) from extraventricular drainage (EVD) from six children bearing various subtypes of MB and six controls needing EVD insertion for unrelated causes. Samples included total CSF, microvesicles, exosomes, and proteins captured by combinatorial peptide ligand library (CPLL). Liquid chromatography-coupled tandem mass spectrometry proteomics identified 3560 proteins in CSF from control and MB patients, 2412 (67.7%) of which were overlapping, and 346 (9.7%) and 805 (22.6%) were exclusive. Multidimensional scaling analysis discriminated samples. The weighted gene co-expression network analysis (WGCNA) identified those modules functionally associated with the samples. A ranked core of 192 proteins allowed distinguishing between control and MB samples. Machine learning highlighted long-chain fatty acid transport protein 4 (SLC27A4) and laminin B-type (LMNB1) as proteins that maximized the discrimination between control and MB samples. Machine learning WGCNA and support vector machine learning were able to distinguish between MB versus non-tumor/hemorrhagic controls. The two potential protein biomarkers for the discrimination between control and MB may guide therapy and predict recurrences, improving the MB patients' quality of life.
Collapse
|
5
|
Berton MP, de Lemos MVA, Stafuzza NB, Simielli Fonseca LF, Silva DBDS, Peripolli E, Pereira ASC, Magalhães AFB, Albuquerque LG, Baldi F. Integration analyses of structural variations and differential gene expression associated with beef fatty acid profile in Nellore cattle. Anim Genet 2022; 53:570-582. [PMID: 35811456 DOI: 10.1111/age.13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 06/06/2022] [Accepted: 06/22/2022] [Indexed: 11/26/2022]
Abstract
This study aimed to integrate analyses of structural variations and differentially expressed genes (DEGs) associated with the beef fatty acid (FA) profile in Nellore cattle. Copy numbers variation (CNV) detection was performed using the penncnv algorithm and CNVRuler software in 3794 genotyped animals through the High-Density Bovine BeadChip. In order to perform the genomic wide association study (GWAS), a total of 963 genotyped animals were selected to obtain the intramuscular lipid concentration and quantify the beef FA profile. A total of 48 animals belonging to the same farm and management lot were extracted from the 963 genotyped and phenotyped animals to carry out the transcriptomic and differentially expressed gene analyses. The GWAS with extreme groups of FA profiles was performed using a logistic model. A total of 43, 42, 66 and 35 significant CNV regions (p < 0.05) for saturated, monounsaturated, polyunsaturated and omega 3 and 6 fatty acids were identified respectively. The paired-end sequencing of 48 samples was performed using the Illumina HiSeq2500 platform. Real-time quantitative PCR was used to validate the DEGs identified by RNA-seq analysis. The results showed several DEGs associated with the FA profile of Longissimus thoracis, such as BSCL2 and SAMD8. Enriched terms as the cellular response to corticosteroid (GO:0071384) and glucocorticoid stimulus (GO:0071385) could be highlighted. The identification of structural variations harboring candidate genes for beef FA must contribute to the elucidation of the genetic basis that determines the beef FA composition of intramuscular fat in Nellore cattle. Our results will contribute to the identification of potential biomarkers for complex phenotypes, such as the FA profile, to improve the reliability of the genomic predictions including pre-selected variants using differentiated weighting in the genomic models.
Collapse
Affiliation(s)
- Mariana Piatto Berton
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Brazil
| | | | | | | | | | - Elisa Peripolli
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Brazil
| | - Angélica S C Pereira
- Departamento de Nutrição e Produção Animal, Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Pirassununga, Brazil
| | - Ana Fabricia Braga Magalhães
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Brazil
| | - Lucia G Albuquerque
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Brazil
| | - Fernando Baldi
- Departamento de Zootecnia, Universidade Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, Brazil
| |
Collapse
|
6
|
Di Miceli M, Martinat M, Rossitto M, Aubert A, Alashmali S, Bosch-Bouju C, Fioramonti X, Joffre C, Bazinet RP, Layé S. Dietary Long-Chain n-3 Polyunsaturated Fatty Acid Supplementation Alters Electrophysiological Properties in the Nucleus Accumbens and Emotional Behavior in Naïve and Chronically Stressed Mice. Int J Mol Sci 2022; 23:ijms23126650. [PMID: 35743093 PMCID: PMC9224532 DOI: 10.3390/ijms23126650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Long-chain (LC) n-3 polyunsaturated fatty acids (PUFAs) have drawn attention in the field of neuropsychiatric disorders, in particular depression. However, whether dietary supplementation with LC n-3 PUFA protects from the development of mood disorders is still a matter of debate. In the present study, we studied the effect of a two-month exposure to isocaloric diets containing n-3 PUFAs in the form of relatively short-chain (SC) (6% of rapeseed oil, enriched in α-linolenic acid (ALA)) or LC (6% of tuna oil, enriched in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) PUFAs on behavior and synaptic plasticity of mice submitted or not to a chronic social defeat stress (CSDS), previously reported to alter emotional and social behavior, as well as synaptic plasticity in the nucleus accumbens (NAc). First, fatty acid content and lipid metabolism gene expression were measured in the NAc of mice fed a SC (control) or LC n-3 (supplemented) PUFA diet. Our results indicate that LC n-3 supplementation significantly increased some n-3 PUFAs, while decreasing some n-6 PUFAs. Then, in another cohort, control and n-3 PUFA-supplemented mice were subjected to CSDS, and social and emotional behaviors were assessed, together with long-term depression plasticity in accumbal medium spiny neurons. Overall, mice fed with n-3 PUFA supplementation displayed an emotional behavior profile and electrophysiological properties of medium spiny neurons which was distinct from the ones displayed by mice fed with the control diet, and this, independently of CSDS. Using the social interaction index to discriminate resilient and susceptible mice in the CSDS groups, n-3 supplementation promoted resiliency. Altogether, our results pinpoint that exposure to a diet rich in LC n-3 PUFA, as compared to a diet rich in SC n-3 PUFA, influences the NAc fatty acid profile. In addition, electrophysiological properties and emotional behavior were altered in LC n-3 PUFA mice, independently of CSDS. Our results bring new insights about the effect of LC n-3 PUFA on emotional behavior and synaptic plasticity.
Collapse
Affiliation(s)
- Mathieu Di Miceli
- Laboratoire NutriNeuro, UMR INRAE 1286, Bordeaux INP, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (M.D.M.); (M.M.); (M.R.); (A.A.); (C.B.-B.); (X.F.); (C.J.)
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester WR2 6AJ, UK
- International Research Network Food4BrainHealth;
| | - Maud Martinat
- Laboratoire NutriNeuro, UMR INRAE 1286, Bordeaux INP, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (M.D.M.); (M.M.); (M.R.); (A.A.); (C.B.-B.); (X.F.); (C.J.)
- International Research Network Food4BrainHealth;
| | - Moïra Rossitto
- Laboratoire NutriNeuro, UMR INRAE 1286, Bordeaux INP, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (M.D.M.); (M.M.); (M.R.); (A.A.); (C.B.-B.); (X.F.); (C.J.)
- International Research Network Food4BrainHealth;
| | - Agnès Aubert
- Laboratoire NutriNeuro, UMR INRAE 1286, Bordeaux INP, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (M.D.M.); (M.M.); (M.R.); (A.A.); (C.B.-B.); (X.F.); (C.J.)
- International Research Network Food4BrainHealth;
| | - Shoug Alashmali
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 22254, Saudi Arabia;
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Clémentine Bosch-Bouju
- Laboratoire NutriNeuro, UMR INRAE 1286, Bordeaux INP, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (M.D.M.); (M.M.); (M.R.); (A.A.); (C.B.-B.); (X.F.); (C.J.)
- International Research Network Food4BrainHealth;
| | - Xavier Fioramonti
- Laboratoire NutriNeuro, UMR INRAE 1286, Bordeaux INP, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (M.D.M.); (M.M.); (M.R.); (A.A.); (C.B.-B.); (X.F.); (C.J.)
- International Research Network Food4BrainHealth;
| | - Corinne Joffre
- Laboratoire NutriNeuro, UMR INRAE 1286, Bordeaux INP, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (M.D.M.); (M.M.); (M.R.); (A.A.); (C.B.-B.); (X.F.); (C.J.)
- International Research Network Food4BrainHealth;
| | - Richard P. Bazinet
- International Research Network Food4BrainHealth;
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Sophie Layé
- Laboratoire NutriNeuro, UMR INRAE 1286, Bordeaux INP, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France; (M.D.M.); (M.M.); (M.R.); (A.A.); (C.B.-B.); (X.F.); (C.J.)
- International Research Network Food4BrainHealth;
- Correspondence:
| |
Collapse
|
7
|
Smith SM, Elliott LT, Alfaro-Almagro F, McCarthy P, Nichols TE, Douaud G, Miller KL. Brain aging comprises many modes of structural and functional change with distinct genetic and biophysical associations. eLife 2020; 9:e52677. [PMID: 32134384 PMCID: PMC7162660 DOI: 10.7554/elife.52677] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/02/2020] [Indexed: 12/27/2022] Open
Abstract
Brain imaging can be used to study how individuals' brains are aging, compared against population norms. This can inform on aspects of brain health; for example, smoking and blood pressure can be seen to accelerate brain aging. Typically, a single 'brain age' is estimated per subject, whereas here we identified 62 modes of subject variability, from 21,407 subjects' multimodal brain imaging data in UK Biobank. The modes represent different aspects of brain aging, showing distinct patterns of functional and structural brain change, and distinct patterns of association with genetics, lifestyle, cognition, physical measures and disease. While conventional brain-age modelling found no genetic associations, 34 modes had genetic associations. We suggest that it is important not to treat brain aging as a single homogeneous process, and that modelling of distinct patterns of structural and functional change will reveal more biologically meaningful markers of brain aging in health and disease.
Collapse
Affiliation(s)
- Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of OxfordOxfordUnited Kingdom
| | - Lloyd T Elliott
- Department of Statistics and Actuarial Science, Simon Fraser UniversityVancouverCanada
| | - Fidel Alfaro-Almagro
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of OxfordOxfordUnited Kingdom
| | - Paul McCarthy
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of OxfordOxfordUnited Kingdom
| | - Thomas E Nichols
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of OxfordOxfordUnited Kingdom
- Big Data Institute, University of OxfordOxfordUnited Kingdom
| | - Gwenaëlle Douaud
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of OxfordOxfordUnited Kingdom
| | - Karla L Miller
- Wellcome Centre for Integrative Neuroimaging (WIN FMRIB), University of OxfordOxfordUnited Kingdom
| |
Collapse
|
8
|
The solute carrier transporters and the brain: Physiological and pharmacological implications. Asian J Pharm Sci 2019; 15:131-144. [PMID: 32373195 PMCID: PMC7193445 DOI: 10.1016/j.ajps.2019.09.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/17/2019] [Accepted: 09/27/2019] [Indexed: 02/05/2023] Open
Abstract
Solute carriers (SLCs) are the largest family of transmembrane transporters that determine the exchange of various substances, including nutrients, ions, metabolites, and drugs across biological membranes. To date, the presence of about 287 SLC genes have been identified in the brain, among which mutations or the resultant dysfunctions of 71 SLC genes have been reported to be correlated with human brain disorders. Although increasing interest in SLCs have focused on drug development, SLCs are currently still under-explored as drug targets, especially in the brain. We summarize the main substrates and functions of SLCs that are expressed in the brain, with an emphasis on selected SLCs that are important physiologically, pathologically, and pharmacologically in the blood-brain barrier, astrocytes, and neurons. Evidence suggests that a fraction of SLCs are regulated along with the occurrences of brain disorders, among which epilepsy, neurodegenerative diseases, and autism are representative. Given the review of SLCs involved in the onset and procession of brain disorders, we hope these SLCs will be screened as promising drug targets to improve drug delivery to the brain.
Collapse
|
9
|
Trubnykova M, Bazalar Montoya J, La Serna-Infantes J, Vásquez Sotomayor F, Castro Mujica MDC, Abarca Barriga HH. GATAD2B Gene Microdeletion Causing Intellectual Disability Autosomal Dominant Type 18: Case Report and Review of the Literature. Mol Syndromol 2019; 10:186-194. [PMID: 31602190 DOI: 10.1159/000499209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2019] [Indexed: 12/15/2022] Open
Abstract
Pathogenic variants of the GATAD2B gene (1q21.3) are linked to intellectual disability autosomal dominant type 18 (MRD18; MIM 615074), characterized by dysmorphic features, psychomotor and language delay. We present an 11-year-old female patient with intellectual disability and typical clinical characteristics of MRD18. Chromosomal microarray analysis (CMA) revealed a novel CNV, approximately 200 kb in size and showed that the INTS3 and SLC27A3 genes are completely deleted along with the first 10 exons of the GATAD2B gene. INTS3 encodes the integrator complex subunit 3 and is part of the complex that maintains genome stability; SLC27A3 encodes a fatty acid transporter and has been associated with autism spectrum disorder. GATAD2B haploinsufficiency is associated with the phenotype. Furthermore, the girl had other clinical characteristics not previously described, such as emotional instability, calf hypotrophy, hypoplastic digit pads, tapered thumbs, and anterior earlobe crease. This study highlights the importance of the phenotype-genotype correlation using molecular diagnostic techniques, such as CMA, and its impact on precise diagnosis, treatment, prognosis, and genetic counseling for patients and their families.
Collapse
Affiliation(s)
- Milana Trubnykova
- Servicio de Genética & Errores Innatos del Metabolismo (EIM), Instituto Nacional de Salud del Niño-Breña
| | - Jeny Bazalar Montoya
- Unidad de Genética & Biología Molecular, Instituto Nacional de Enfermedades Neoplásicas
| | | | - Flor Vásquez Sotomayor
- Servicio de Genética & Errores Innatos del Metabolismo (EIM), Instituto Nacional de Salud del Niño-Breña
| | | | - Hugo Hernán Abarca Barriga
- Servicio de Genética & Errores Innatos del Metabolismo (EIM), Instituto Nacional de Salud del Niño-Breña.,Facultad de Medicina Humana, Universidad Ricardo Palma.,Facultad de Odontología, Universidad Científica del Sur, Lima, Peru
| |
Collapse
|
10
|
Elshani B, Kotori V, Daci A. Role of omega-3 polyunsaturated fatty acids in gestational diabetes, maternal and fetal insights: current use and future directions. J Matern Fetal Neonatal Med 2019; 34:124-136. [PMID: 30857450 DOI: 10.1080/14767058.2019.1593361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
ω-3-Polyunsaturated fatty acids (ω-3 PUFAs) are widely used during pregnancy and gestational diabetes mellitus (GDM). ω-3 PUFAs are beneficial in the regulation of maternal and fetal metabolic function, inflammation, immunity, macrosomia (MAC), oxidative stress, preeclampsia, intrauterine growth, preterm birth, offspring metabolic function, and neurodevelopment. Dietary counseling is vital for improving therapeutic outcomes in patients with GDM. In maternal circulation, ω-3 PUFAs are transported via transporters, synthesis enzymes, and intracellular proteins, which activate nuclear receptors and play central roles in the cellular metabolic processes of placental trophoblasts. In patients with GDM, this process is compromised due to abnormal functioning of the placenta, which disrupts the normal mother to fetus transport. This results in reduced fetal levels of ω-3 PUFAs, which contributes negatively to fetal growth, metabolic function, and development. Dietary counseling and nutritional assessment remain challenging in the prevention and alleviation of GDM. Therefore, personalized approaches, including measurement of the ω-3 index, pharmacogenetic implementation strategies, and appropriate supplementation with ω-3 PUFAs are used to achieve sufficient distribution in the maternal and fetal fluids during the entire pregnancy period. Developing new dosing guidelines and personalized approaches, determining the mechanisms of ω-3 PUFAs in the placenta, and examining the pharmacodynamic and pharmacokinetics interactions involving ω-3 PUFAs will lead to better management and increase the quality of life of patients with GDM and their offspring. Moreover, different strategies for supplementing with ω-3 PUFAs, improving their placental transport, and pharmacological exploration of the maternal-fetal interactions will help to further elucidate the role of ω-3 PUFAs in women with GDM. In this review, we summarize the current information on the potential therapeutic benefits and clinical applicability of ω-3 PUFAs in patients with GDM and their offspring, highlighting recent progress and future perspectives in this field. Studies investigating the mechanisms of ω-3 PUFA transport to targeted tissues have spurred an interest in personalized treatment strategies for patients with GDM and their offspring. To implement such therapies, we need to clarify the index/ratio of ω-3 PUFAs in maternal and fetal fluids, delineate the ω-3 PUFA transport pathways, and establish the guidelines for FA profiling prepregnancy and during pregnancy-associated weight gain. Such therapies also need to take into account the gender of the fetus, and whether the patient is obese.
Collapse
Affiliation(s)
- Brikene Elshani
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Vjosa Kotori
- Department of Endocrinology, Pediatric Clinic, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Armond Daci
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| |
Collapse
|