1
|
Hu Y, Du Y, Qiu Z, Mao P, Da M. Identification and validation VAT1 in gastric cancer through bioinformatics and experimental analysis. Int Immunopharmacol 2025; 148:114047. [PMID: 39832459 DOI: 10.1016/j.intimp.2025.114047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
This study investigated the expression pattern of Vesicular Amine Transporter 1 (VAT1) in gastric cancer (GC) and its impact on prognosis, alongside evaluating its potential as a biomarker for immunotherapy and chemotherapy. Analysis of transcriptomic data, supported by experimental validation, revealed that VAT1 is highly expressed in GC and is associated with poor prognosis. Kaplan-Meier and ROC analyses demonstrated VAT1's potential in GC diagnosis, while multivariate analysis confirmed its role as an independent risk factor. Gene set enrichment analysis indicated that VAT1 plays a role in regulating the MAPK signaling pathway and epithelial-mesenchymal transition (EMT) in GC. Immune infiltration analysis showed a positive correlation between VAT1 and immune cells, particularly macrophages, and a negative correlation with chemotherapy sensitivity. In vitro and in vivo experiments further confirmed VAT1's critical role in promoting GC cell proliferation and inhibiting apoptosis. Overall, VAT1 holds significant value not only in GC diagnosis and prognosis but also as a potential target for immunotherapy and overcoming drug resistance.
Collapse
Affiliation(s)
- Yongli Hu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, China; Department of Gastrointestinal Surgery, Affiliated Hospital of Guilin Medical University, Guilin 541001, China.
| | - Yan Du
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, China.
| | - Zhisheng Qiu
- Department of Oncology Surgery, Gansu Provincial Hospital, Lanzhou 730000, China.
| | - Pengxue Mao
- Department of General Surgery, Minle County People's Hospital, Gansu Province 734500, China.
| | - Mingxu Da
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou 730000, China; Department of Oncology Surgery, Gansu Provincial Hospital, Lanzhou 730000, China.
| |
Collapse
|
2
|
Ma D, Wei P, Liu H, Hao J, Chen Z, Chu Y, Li Z, Shi W, Yuan Z, Cheng Q, Gao J, Zhu J, Li Z. Multi-omics-driven discovery of invasive patterns and treatment strategies in CA19-9 positive intrahepatic cholangiocarcinoma. J Transl Med 2024; 22:1031. [PMID: 39548460 PMCID: PMC11568536 DOI: 10.1186/s12967-024-05854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is a malignant tumor with a poor prognosis, predominantly CA19-9 positive. High CA19-9 levels correlate with increased aggressiveness and worse outcomes. This study employs multi-omics analysis to reveal molecular features and identify therapeutic targets of CA19-9 positive ICC, aiming to support individualized treatment. METHODS Data from seven clinical cohorts, two whole-exome sequencing cohorts, six RNA sequencing/microarray cohorts, one proteomic cohort, 20 single-cell RNA sequencing samples, and one spatial transcriptome sample were analyzed. Key findings were validated on tissue microarrays from 52 ICC samples. RESULTS CA19-9 positive ICC exhibited poorer OS (median 24.1 v.s. 51.5 months) and RFS (median 11.7 v.s. 28.2 months) compared to negative group (all P < 0.05). Genomic analysis revealed a higher KRAS mutation frequency in the positive group and a greater prevalence of IDH1/2 mutations in the negative group (all P < 0.05). Transcriptomic analysis indicated upregulated glycolysis pathways in CA19-9 positive ICC. Single-cell analysis identified specific glycolysis-related cell subclusters associated with poor prognosis, including Epi_SLC2A1, CAF_VEGFA, and Mph_SPP1. Higher hypoxia in the CA19-9 positive group led to metabolic reprogramming and promoted these cells' formation. These cells formed interactive communities promoting epithelial-mesenchymal transition (EMT) and angiogenesis. Drug sensitivity analysis identified six potential therapeutic drugs. CONCLUSIONS This study systematically elucidated the clinical, genomic, transcriptomic, and immune features of CA19-9 positive ICC. It reveals glycolysis-associated cellular communities and their cancer-promoting mechanisms, enhancing our understanding of ICC and laying the groundwork for individualized therapeutic strategies.
Collapse
Affiliation(s)
- Delin Ma
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Pengcheng Wei
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Hengkang Liu
- Peking University-Yunnan Baiyao International Medical Research Center, Beijing, 100191, China
| | - Jialing Hao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Zhuomiaoyu Chen
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Yingming Chu
- Peking University First Hospital, Beijing, 100191, China
| | - Zuyin Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Wenzai Shi
- Department of Hepatobiliary Surgery, Peking University International Hospital, Life Park Road No.1 Life Science Park of Zhong Guancun, Chang Ping District, Beijing, 102206, China
| | - Zhigao Yuan
- Department of General Surgery, Civil Aviation General Hospital, Beijing, 100123, China
| | - Qian Cheng
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Jie Gao
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China
| | - Jiye Zhu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China.
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China.
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China.
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China.
| | - Zhao Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China.
- Beijing Key Laboratory of HCC and Liver Cirrhosis, Peking University People's Hospital, Beijing, China.
- Peking University Center of Liver Cancer Diagnosis and Treatment, Peking University People's Hospital, Beijing, China.
- Peking University Institute of Organ Transplantation, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
3
|
Zhang J, Wu Y, Li Y, Li S, Liu J, Yang X, Xia G, Wang G. Natural products and derivatives for breast cancer treatment: From drug discovery to molecular mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155600. [PMID: 38614043 DOI: 10.1016/j.phymed.2024.155600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/20/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Breast cancer stands as the most common malignancy among women globally and a leading cause of cancer-related mortality. Conventional treatments, such as surgery, hormone therapy, radiotherapy, chemotherapy, and small-molecule targeted therapy, often fall short of addressing the complexity and heterogeneity of certain breast cancer subtypes, leading to drug resistance and metastatic progression. Thus, the search for novel therapeutic targets and agents is imperative. Given their low toxicity and abundant variety, natural products and their derivatives are increasingly considered valuable sources for small-molecule anticancer drugs. PURPOSE This review aims to elucidate the pharmacological impacts and underlying mechanisms of active compounds found in select natural products and their derivatives, primarily focusing on breast cancer treatment. It intends to underscore the potential of these substances in combating breast cancer and guide future research directions for the development of natural product-based therapeutics. METHODS We conducted comprehensive searches in electronic databases such as PubMed, Web of Science, and Scopus until October 2023, using keywords such as 'breast cancer', 'natural products', 'derivatives', 'mechanism', 'signaling pathways', and various keyword combinations. RESULTS The review presents a spectrum of phytochemicals, including but not limited to flavonoids, polyphenols, and alkaloids, and examines their actions in various animal and cellular models of breast cancer. The anticancer effects of these natural products and derivatives are manifested through diverse mechanisms, including induction of cell death via apoptosis and autophagy, and suppression of tumor angiogenesis. CONCLUSION An increasing array of natural products and their derivatives are proving effective against breast cancer. Future therapeutic strategies can benefit from strategic enhancement of the anticancer properties of natural compounds, optimization for targeted action, improved bioavailability, and minimized side effects. The forthcoming research on natural products should prioritize these facets to maximize their therapeutic potential.
Collapse
Affiliation(s)
- Jing Zhang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Yanhong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China; Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Shutong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Jiaxi Liu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Xiao Yang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Guiyang Xia
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5, Ocean Warehouse, Dongcheng District, Beijing, 100700, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
4
|
Wang Y, Wang S, Mabrouk I, Zhou Y, Fu X, Song Y, Ma J, Hu X, Yang Z, Liu F, Hou J, Yu J, Sun Y. In ovo injection of AZD6244 suppresses feather follicle development by the inhibition of ERK and Wnt/β-catenin pathways in goose embryos ( Anser cygnoides). Br Poult Sci 2024; 65:307-314. [PMID: 38393940 DOI: 10.1080/00071668.2024.2309550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/05/2024] [Indexed: 02/25/2024]
Abstract
1. Feathers are an important product from poultry, and the state of feather growth and development plays an important role in their economic value.2. In total, 120 eggs were selected for immunoblotting and immunolocalisation experiments of ERK and β-catenin proteins in different developmental stages of goose embryos. The ERK protein was highly expressed in the early stage of goose embryo development, while β-catenin protein was highly expressed in the middle stage of embryo development.3. The 120 eggs were divided into four treatment groups, including an uninjected group (BLANK), a group injected with 100 µl of cosolvent (CK), a group injected with 100 µl of AZD6244 containing cosolvent in a dose of 5 mg/kg AZD6244 containing cosolvent (AZD5) and a group injected with 100 µl of AZD6244 containing cosolvent in a dose of 15 mg/kg AZD6244 containing cosolvent (AZD15). The eggs were injected on the ninth day of embryonic development (E9). Samples were collected at E21.5 to observe feather width, feather follicle diameter, ERK and Wnt/β-catenin pathway protein expression.4. The AZD5 and AZD15 doses were within the embryonic safety range compared to the BLANK and CK groups and had no significant effect on the survival rate and weight at the inflection point, but significantly reduced the feather width and feather follicle diameter (p < 0.05). The AZD6244 treatment inhibited ERK protein phosphorylation levels and blocked the Wnt/β-catenin pathway, which in turn significantly down-regulated the expression levels of FZD4, β-catenin, TCF4 and LEF1 (p < 0.05), with an inhibitory effect in the AZD15 group being more significant. The immunohistochemical results of β-catenin and p-ERK were consistent with Western blot results.5. The small molecule inhibitor AZD6244 regulated the growth and development of feather follicles in goose embryos by the ERK and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Y Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - S Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - I Mabrouk
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Y Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - X Fu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Y Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - J Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - X Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Z Yang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - F Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - J Hou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - J Yu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Y Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
5
|
Rezaul Islam M, Rauf A, Akash S, Kumer A, Hussain MS, Akter S, Gupta JK, Thameemul Ansari L, Mahfoj Islam Raj MM, Bin Emran T, Aljohani AS, Abdulmonem WA, Thiruvengadam R, Thiruvengadam M. Recent perspective on the potential role of phytocompounds in the prevention of gastric cancer. Process Biochem 2023; 135:83-101. [DOI: 10.1016/j.procbio.2023.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
|
6
|
Lee YT, Tan YJ, Oon CE. Benzimidazole and its derivatives as cancer therapeutics: The potential role from traditional to precision medicine. Acta Pharm Sin B 2023; 13:478-497. [PMID: 36873180 PMCID: PMC9978992 DOI: 10.1016/j.apsb.2022.09.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/11/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer is the second leading cause of mortality globally which remains a continuing threat to human health today. Drug insensitivity and resistance are critical hurdles in cancer treatment; therefore, the development of new entities targeting malignant cells is considered a high priority. Targeted therapy is the cornerstone of precision medicine. The synthesis of benzimidazole has garnered the attention of medicinal chemists and biologists due to its remarkable medicinal and pharmacological properties. Benzimidazole has a heterocyclic pharmacophore, which is an essential scaffold in drug and pharmaceutical development. Multiple studies have demonstrated the bioactivities of benzimidazole and its derivatives as potential anticancer therapeutics, either through targeting specific molecules or non-gene-specific strategies. This review provides an update on the mechanism of actions of various benzimidazole derivatives and the structure‒activity relationship from conventional anticancer to precision healthcare and from bench to clinics.
Collapse
Affiliation(s)
- Yeuan Ting Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Yi Jer Tan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| |
Collapse
|
7
|
Patrad E, Khalighfard S, Amiriani T, Khori V, Alizadeh AM. Molecular mechanisms underlying the action of carcinogens in gastric cancer with a glimpse into targeted therapy. Cell Oncol 2022; 45:1073-1117. [PMID: 36149600 DOI: 10.1007/s13402-022-00715-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer imposes a substantial global health burden despite its overall incidence decrease. A broad spectrum of inherited, environmental and infectious factors contributes to the development of gastric cancer. A profound understanding of the molecular underpinnings of gastric cancer has lagged compared to several other tumors with similar incidence and morbidity rates, owing to our limited knowledge of the role of carcinogens in this malignancy. The International Agency for Research on Cancer (IARC) has classified gastric carcinogenic agents into four groups based on scientific evidence from human and experimental animal studies. This review aims to explore the potential comprehensive molecular and biological impacts of carcinogens on gastric cancer development and their interactions and interferences with various cellular signaling pathways. CONCLUSIONS In this review, we highlight recent clinical trial data reported in the literature dealing with different ways to target various carcinogens in gastric cancer. Moreover, we touch upon other multidisciplinary therapeutic approaches such as surgery, adjuvant and neoadjuvant chemotherapy. Rational clinical trials focusing on identifying suitable patient populations are imperative to the success of single-agent therapeutics. Novel insights regarding signaling pathways that regulate gastric cancer can potentially improve treatment responses to targeted therapy alone or in combination with other/conventional treatments. Preventive strategies such as control of H. pylori infection through eradication or immunization as well as dietary habit and lifestyle changes may reduce the incidence of this multifactorial disease, especially in high prevalence areas. Further in-depth understanding of the molecular mechanisms involved in the role of carcinogenic agents in gastric cancer development may offer valuable information and update state-of-the-art resources for physicians and researchers to explore novel ways to combat this disease, from bench to bedside. A schematic outlining of the interaction between gastric carcinogenic agents and intracellular pathways in gastric cancer H. pylori stimulates multiple intracellular pathways, including PI3K/AKT, NF-κB, Wnt, Shh, Ras/Raf, c-MET, and JAK/STAT, leading to epithelial cell proliferation and differentiation, apoptosis, survival, motility, and inflammatory cytokine release. EBV can stimulate intracellular pathways such as the PI3K/Akt, RAS/RAF, JAK/STAT, Notch, TGF-β, and NF-κB, leading to cell survival and motility, proliferation, invasion, metastasis, and the transcription of anti-apoptotic genes and pro-inflammatory cytokines. Nicotine and alcohol can lead to angiogenesis, metastasis, survival, proliferation, pro-inflammatory, migration, and chemotactic by stimulating various intracellular signaling pathways such as PI3K/AKT, NF-κB, Ras/Raf, ROS, and JAK/STAT. Processed meat contains numerous carcinogenic compounds that affect multiple intracellular pathways such as sGC/cGMP, p38 MAPK, ERK, and PI3K/AKT, leading to anti-apoptosis, angiogenesis, metastasis, inflammatory responses, proliferation, and invasion. Lead compounds may interact with multiple signaling pathways such as PI3K/AKT, NF-κB, Ras/Raf, DNA methylation-dependent, and epigenetic-dependent, leading to tumorigenesis, carcinogenesis, malignancy, angiogenesis, DNA hypermethylation, cell survival, and cell proliferation. Stimulating signaling pathways such as PI3K/Akt, RAS/RAF, JAK/STAT, WNT, TGF-β, EGF, FGFR2, and E-cadherin through UV ionizing radiation leads to cell survival, proliferation, and immortalization in gastric cancer. The consequence of PI3K/AKT, NF-κB, Ras/Raf, ROS, JAK/STAT, and WNT signaling stimulation by the carcinogenic component of Pickled vegetables and salted fish is the Warburg effect, tumorigenesis, angiogenesis, proliferation, inflammatory response, and migration.
Collapse
Affiliation(s)
- Elham Patrad
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Khalighfard
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Taghi Amiriani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Vahid Khori
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Breast Disease Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
The Role of Bioactive Compounds in Natural Products Extracted from Plants in Cancer Treatment and Their Mechanisms Related to Anticancer Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1429869. [PMID: 35211240 PMCID: PMC8863487 DOI: 10.1155/2022/1429869] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/13/2021] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
Cancer is one of the greatest causes of death worldwide. With the development of surgery, radiotherapy, and medical agents, the outcomes of cancer patients have greatly improved. However, the underlying mechanisms of cancer are not yet fully understood. Recently, natural products have been proven to be beneficial for various conditions and have played important roles in the development of novel therapies. A substantial amount of evidence indicates that bioactive compounds could improve the outcomes of cancer patients via various pathways, such as endoplasmic reticulum stress, epigenetic modification, and modulation of oxidative stress. Here, we review the current evidence of bioactive compounds in natural products for the treatment of cancer and summarize the underlying mechanisms in this pathological process.
Collapse
|
9
|
Wehbe Z, Hammoud SH, Yassine HM, Fardoun M, El-Yazbi AF, Eid AH. Molecular and Biological Mechanisms Underlying Gender Differences in COVID-19 Severity and Mortality. Front Immunol 2021; 12:659339. [PMID: 34025658 PMCID: PMC8138433 DOI: 10.3389/fimmu.2021.659339] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022] Open
Abstract
Globally, over two million people have perished due to the recent pandemic caused by SARS-CoV-2. The available epidemiological global data for SARS-CoV-2 portrays a higher rate of severity and mortality in males. Analyzing gender differences in the host mechanisms involved in SARS-CoV-2 infection and progression may offer insight into the more detrimental disease prognosis and clinical outcome in males. Therefore, we outline sexual dimorphisms which exist in particular host factors and elaborate on how they may contribute to the pronounced severity in male COVID-19 patients. This includes disparities detected in comorbidities, the ACE2 receptor, renin-angiotensin system (RAS), signaling molecules involved in SARS-CoV-2 replication, proteases which prime viral S protein, the immune response, and behavioral considerations. Moreover, we discuss sexual disparities associated with other viruses and a possible gender-dependent response to SARS-CoV-2 vaccines. By specifically highlighting these immune-endocrine processes as well as behavioral factors that differentially exist between the genders, we aim to offer a better understanding in the variations of SARS-CoV-2 pathogenicity.
Collapse
Affiliation(s)
- Zena Wehbe
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Safaa Hisham Hammoud
- Department of Pharmacology and Therapeutics, Beirut Arab University, Beirut, Lebanon
| | | | - Manal Fardoun
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Ahmed F. El-Yazbi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, Qatar University Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, Qatar University Health, Qatar University, Doha, Qatar
| |
Collapse
|
10
|
Tyczyńska M, Kędzierawski P, Karakuła K, Januszewski J, Kozak K, Sitarz M, Forma A. Treatment Strategies of Gastric Cancer-Molecular Targets for Anti-angiogenic Therapy: a State-of-the-art Review. J Gastrointest Cancer 2021; 52:476-488. [PMID: 33761051 PMCID: PMC8131337 DOI: 10.1007/s12029-021-00629-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2021] [Indexed: 12/19/2022]
Abstract
Purpose Recent studies have suggested that molecular targets for the anti-angiogenic therapy might constitute a basis for additional therapy in gastric cancer treatment. A vast number of molecules, receptors, pathways, specific interactions, and thus strategies that target gastric cancer angiogenesis specifically have been reported in numerous research articles and clinical trials. Methods We conducted a systematic literature review of molecularly targeted treatment strategies in gastric cancer on the following databases—PubMed, Google Scholar, and Scopus—on September 20, 2020. Multiple articles and evaluations were searched for studies reporting newly found and promising molecular anti-angiogenic therapy pathways. Eventually, 39 articles regarding the anti-angiogenic therapy in gastric cancer were included in the final analysis. Results As a consequence of the release of the pro-angiogenic molecules from the tumour cells, gastric cancer presents high angiogenic capability. Therefore, potential schemes for future treatment strategies include the decrease of the process ligands as well as the expression of their receptors. Moreover, the increase in the angiogenic inhibitor levels and direct aim for the inner walls of the endothelial cells appear as a promising therapeutic strategy. Beyond that, angiogenesis process inhibition seems to indirectly exaggerate the effects of chemotherapy in the considered patients. Conclusions The anti-angiogenic treatment in gastric cancer patients evaluates its significance especially in the early stages of the malignancy. The studies conducted so far show that most of the meaningful angiogenic factors and receptors with the potential molecular pathways should be further evaluated since they could potentially play a substantial role in future therapies.
Collapse
Affiliation(s)
- Magdalena Tyczyńska
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Paweł Kędzierawski
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland
| | - Kaja Karakuła
- Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland
| | - Jacek Januszewski
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland
| | - Krzysztof Kozak
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Monika Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-090 Lublin, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
11
|
Du Y, Wang X, Li L, Hao W, Zhang H, Li Y, Qin Y, Nie S, Christopher TA, Lopez BL, Lau WB, Wang Y, Ma XL, Wei Y. miRNA-Mediated Suppression of a Cardioprotective Cardiokine as a Novel Mechanism Exacerbating Post-MI Remodeling by Sleep Breathing Disorders. Circ Res 2020; 126:212-228. [DOI: 10.1161/circresaha.119.315067] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Rationale:
Obstructive sleep apnea-hypopnea syndrome, a sleep breathing disorder in which chronic intermittent hypoxia (CIH) is the primary pathology, is associated with multiple cardiovascular diseases. However, whether and how CIH may affect cardiac remodeling following myocardial infarction (MI) remains unknown.
Objective:
To determine whether CIH exposure at different periods of MI may exacerbate post-MI heart failure and to identify the mechanisms underlying CIH-exacerbated post-MI remodeling.
Methods and Results:
Adult male mice were subjected to MI (4 weeks) with and without CIH (4 or 8 weeks). CIH before MI (CIH+MI) had no significant effect on post-MI remodeling. However, double CIH exposure (CIH+MI+CIH) or CIH only during the MI period (MI+CIH) significantly exacerbated pathological remodeling and reduced survival rate. Mechanistically, CIH activated TGF-β (tumor growth factor-β)/Smad (homologs of both the Drosophila protein MAD and the C. elegans protein SMA) signaling and enhanced cardiac epithelial to mesenchymal transition, markedly increasing post-MI cardiac fibrosis. Transcriptome analysis revealed that, among 15 genes significantly downregulated (MI+CIH versus MI),
Ctrp9
(a novel cardioprotective cardiokine) was one of the most significantly inhibited genes. Real-time polymerase chain reaction/Western analysis confirmed that cardiomyocyte CTRP9 expression was significantly reduced in MI+CIH mice. RNA-sequencing, real-time polymerase chain reaction, and dual-luciferase reporter assays identified that microRNA-214-3p is a novel
Ctrp9
targeting miRNA. Its upregulation is responsible for
Ctrp9
gene suppression in MI+CIH. Finally, AAV9 (adeno-associated virus 9)-mediated cardiac-specific CTRP9 overexpression or rCTRP9 (recombinated CTRP9) administration inhibited TGF-β/Smad and Wnt/β-catenin pathways, attenuated interstitial fibrosis, improved cardiac function, and enhanced survival rate in MI+CIH animals.
Conclusions:
This study provides the first evidence that MI+CIH upregulates miR-214-3p, suppresses cardiac CTRP9 (C1q tumor necrosis factor-related protein-9) expression, and exacerbates cardiac remodeling, suggesting that CTRP9 may be a novel therapeutic target against pathological remodeling in MI patients with obstructive sleep apnea-hypopnea syndrome.
Collapse
Affiliation(s)
- Yunhui Du
- From the Beijing Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, China (Y.D., X.W., L.L., W.H., H.Z., Y.L., Y.Q., S.N., Y.W.)
- Department of Emergency Medicine, Thomas Jefferson University, PA (Y.D., T.A.C., B.L.L., W.B.L., Y.W., X.-L.M.)
| | - Xiao Wang
- From the Beijing Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, China (Y.D., X.W., L.L., W.H., H.Z., Y.L., Y.Q., S.N., Y.W.)
| | - Linyi Li
- From the Beijing Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, China (Y.D., X.W., L.L., W.H., H.Z., Y.L., Y.Q., S.N., Y.W.)
| | - Wenjing Hao
- From the Beijing Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, China (Y.D., X.W., L.L., W.H., H.Z., Y.L., Y.Q., S.N., Y.W.)
| | - Huina Zhang
- From the Beijing Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, China (Y.D., X.W., L.L., W.H., H.Z., Y.L., Y.Q., S.N., Y.W.)
| | - Yu Li
- From the Beijing Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, China (Y.D., X.W., L.L., W.H., H.Z., Y.L., Y.Q., S.N., Y.W.)
| | - Yanwen Qin
- From the Beijing Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, China (Y.D., X.W., L.L., W.H., H.Z., Y.L., Y.Q., S.N., Y.W.)
| | - Shaoping Nie
- From the Beijing Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, China (Y.D., X.W., L.L., W.H., H.Z., Y.L., Y.Q., S.N., Y.W.)
| | - Theodore A. Christopher
- Department of Emergency Medicine, Thomas Jefferson University, PA (Y.D., T.A.C., B.L.L., W.B.L., Y.W., X.-L.M.)
| | - Bernard L. Lopez
- Department of Emergency Medicine, Thomas Jefferson University, PA (Y.D., T.A.C., B.L.L., W.B.L., Y.W., X.-L.M.)
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, PA (Y.D., T.A.C., B.L.L., W.B.L., Y.W., X.-L.M.)
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, PA (Y.D., T.A.C., B.L.L., W.B.L., Y.W., X.-L.M.)
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, PA (Y.D., T.A.C., B.L.L., W.B.L., Y.W., X.-L.M.)
| | - Yongxiang Wei
- From the Beijing Key Laboratory of Upper Airway Dysfunction-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, China (Y.D., X.W., L.L., W.H., H.Z., Y.L., Y.Q., S.N., Y.W.)
| |
Collapse
|
12
|
Mao QQ, Xu XY, Shang A, Gan RY, Wu DT, Atanasov AG, Li HB. Phytochemicals for the Prevention and Treatment of Gastric Cancer: Effects and Mechanisms. Int J Mol Sci 2020; 21:E570. [PMID: 31963129 PMCID: PMC7014214 DOI: 10.3390/ijms21020570] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Gastric cancer is the fifth most common cancer, and the third most prevalent cause of cancer-related deaths in the world. Voluminous evidence has demonstrated that phytochemicals play a critical role in the prevention and management of gastric cancer. Most epidemiological investigations indicate that the increased intake of phytochemicals could reduce the risk of gastric cancer. Experimental studies have elucidated the mechanisms of action, including inhibiting cancer cell proliferation, inducing apoptosis and autophagy, and suppressing angiogenesis as well as cancer cell metastasis. These mechanisms have also been related to the inhibition of Helicobacter pylori and the modulation of gut microbiota. In addition, the intake of phytochemicals could enhance the efficacy of anticancer chemotherapeutics. Moreover, clinical studies have illustrated that phytochemicals have the potential for the prevention and the management of gastric cancer in humans. To provide an updated understanding of relationships between phytochemicals and gastric cancer, this review summarizes the effects of phytochemicals on gastric cancer, highlighting the underlying mechanisms. This review could be helpful for guiding the public in preventing gastric cancer through phytochemicals, as well as in developing functional food and drugs for the prevention and treatment of gastric cancer.
Collapse
Affiliation(s)
- Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Q.-Q.M.); (X.-Y.X.); (A.S.)
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Q.-Q.M.); (X.-Y.X.); (A.S.)
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Q.-Q.M.); (X.-Y.X.); (A.S.)
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya’an 625014, China;
| | - Atanas G. Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland;
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; (Q.-Q.M.); (X.-Y.X.); (A.S.)
| |
Collapse
|
13
|
Tai Y, Zhang LH, Gao JH, Zhao C, Tong H, Ye C, Huang ZY, Liu R, Tang CW. Suppressing growth and invasion of human hepatocellular carcinoma cells by celecoxib through inhibition of cyclooxygenase-2. Cancer Manag Res 2019; 11:2831-2848. [PMID: 31114336 PMCID: PMC6497485 DOI: 10.2147/cmar.s183376] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/23/2019] [Indexed: 02/05/2023] Open
Abstract
Purpose: Biomarkers are lacking in hepatocellular carcinoma (HCC). Cyclooxygenase-2 (COX-2) and its metabolites play crucial roles in the process of inflammation-tumor transformation. This study was aimed to detect COX-2 expression in HCC tissues and evaluate the effects of a COX-2 inhibitor, celecoxib, on biological behaviors of HCC cell lines in vitro. Methods: COX-2 expression was detected by immunohistochemistry on a human HCC tissue microarray. The correlations of COX-2 expression with tumor clinicopathological variables and overall survival were analyzed. The proliferation, apoptosis, cell cycle distribution, invasion capacity, and related signaling molecules of HCC cells after incubated with COX-2 inhibitor celecoxib were evaluated in vitro. Results: Expression levels of COX-2 in HCC tissues were significantly higher than those in paracancerous tissues. The TNM stage III-IV, tumor size >5 cm, lymphovascular invasion and distant metastasis was higher in high COX-2 expression group compared with that in low COX-2 expression group. Patients with low COX-2 expression achieved better 5-year overall survival than those with high COX-2 expression. Treatment with celecoxib was sufficient to inhibit cell proliferation, promote apoptosis, and induce G0/G1 cell cycle arrest in HCC cells with concentration- and time-dependent manners. Celecoxib up-regulated E-cadherin protein through inhibiting COX-2-prostaglandin E2 (PGE2)-PGE2 receptor 2 (EP2)-p-Akt/p-ERK signaling pathway to suppress HCC cells migration and invasion. Conclusion: High COX-2 expression was associated with advanced TNM stage, larger tumor size, increased lymphovascular invasion and short survival. Targeting inhibition of COX-2 by celecoxib exhibited anti-tumor activities by suppressing proliferation, promoting apoptosis, and inhibiting the aggressive properties of HCC cells.
Collapse
Affiliation(s)
- Yang Tai
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Lin-Hao Zhang
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Jin-Hang Gao
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Chong Zhao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Huan Tong
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Cheng Ye
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Zhi-Yin Huang
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Rui Liu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| | - Cheng-Wei Tang
- Laboratory of Gastroenterology & Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, People's Republic of China
| |
Collapse
|
14
|
Huang ZY, Zhang LH, Zhao C, Liu R, Tong H, Gan C, Lan T, Tang CW, Gao JH. High HIF-1α expression predicts poor prognosis of patients with colon adenocarcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:5635-5646. [PMID: 31949650 PMCID: PMC6963075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/25/2018] [Indexed: 06/10/2023]
Abstract
Hypoxia inducible factor 1 alpha subunit (HIF-1α) is induced in hypoxic conditions and plays a crucial role in the neoangiogenesis and metastasis of cancer. In this study, we aimed to evaluate the expression of HIF-1α in colon adenocarcinoma and to explore its clinicopathological characteristics and prognosis. A tissue microarray involving colon adenocarcinoma tissues and their corresponding paracancerous tissues from 92 patients was utilized to detect HIF-1α. The expression of HIF-1α in colon adenocarcinoma tissues was significantly higher than it was in the corresponding paracancerous tissues (P < 0.001). Furthermore, similar results were observed in HCT116 and RKO human colon adenocarcinoma xenografts in node mice (P < 0.05). Additionally, augmented HIF-1α expression was positively associated with TNM stage III-IV (P = 0.025), the presence of distant metastasis and vascular invasion (P = 0.048), and the presence of positive lymph nodes (P = 0.041). A Kaplan-Meier survival analysis showed that up-regulation of HIF-1α was associated with poor 5-year or 10-year survival (P < 0.05). A multivariable Cox regression analysis also found HIF-1α was an independent risk factor for poor prognosis in colon adenocarcinoma. Thus, targeting HIF-1α might be a viable strategy to treat patients with colon adenocarcinoma.
Collapse
Affiliation(s)
- Zhi-Yin Huang
- Division of Peptides Related with Human Diseases, West China Hospital, Sichuan UniversityChengdu, PR China
- Department of Gastroenterology, West China Hospital, Sichuan UniversityChengdu, PR China
| | - Lin-Hao Zhang
- Department of Gastroenterology, West China Hospital, Sichuan UniversityChengdu, PR China
| | - Chong Zhao
- Division of Peptides Related with Human Diseases, West China Hospital, Sichuan UniversityChengdu, PR China
- Division of Digestive Diseases, West China Hospital, Sichuan UniversityChengdu, PR China
| | - Rui Liu
- Division of Peptides Related with Human Diseases, West China Hospital, Sichuan UniversityChengdu, PR China
- Department of Gastroenterology, West China Hospital, Sichuan UniversityChengdu, PR China
- Division of Digestive Diseases, West China Hospital, Sichuan UniversityChengdu, PR China
| | - Huan Tong
- Department of Gastroenterology, West China Hospital, Sichuan UniversityChengdu, PR China
| | - Can Gan
- Department of Gastroenterology, West China Hospital, Sichuan UniversityChengdu, PR China
| | - Tian Lan
- Department of Gastroenterology, West China Hospital, Sichuan UniversityChengdu, PR China
| | - Cheng-Wei Tang
- Division of Peptides Related with Human Diseases, West China Hospital, Sichuan UniversityChengdu, PR China
- Department of Gastroenterology, West China Hospital, Sichuan UniversityChengdu, PR China
- Division of Digestive Diseases, West China Hospital, Sichuan UniversityChengdu, PR China
| | - Jin-Hang Gao
- Division of Peptides Related with Human Diseases, West China Hospital, Sichuan UniversityChengdu, PR China
- Department of Gastroenterology, West China Hospital, Sichuan UniversityChengdu, PR China
- Division of Digestive Diseases, West China Hospital, Sichuan UniversityChengdu, PR China
| |
Collapse
|
15
|
High-Density Infiltration of V-domain Immunoglobulin Suppressor of T-cell Activation Up-regulated Immune Cells in Human Pancreatic Cancer. Pancreas 2018; 47:725-731. [PMID: 29771768 DOI: 10.1097/mpa.0000000000001059] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED V-domain immunoglobulin suppressor of T-cell activation (VISTA) is constitutively expressed in hematopoietic lineage and is highly up-regulated in tumor infiltrated myeloid cells and regulatory T-cells in animal models. However, its expression in human pancreatic tumor microenvironment remains unknown. In this research, we aimed at the expression of VISTA in human pancreatic cancer samples. METHODS We performed immunohistochemistry to determine VISTA expression in human pancreatic cancer samples. RESULTS We found that 88.46% of the patients showed high-density infiltration of polymorphonuclear neutrophils and mononuclear immune cells with up-regulated expression of VISTA in cancer tissues, especially in the necrotic foci. Interestingly, it was minimally expressed in pancreatic cancerous cells and was not detectable in either normal ducts or islet cells in cancerous or normal pancreatic tissues. CONCLUSIONS We conclude that VISTA is predominantly expressed and up-regulated in the high-density infiltrated immune cells but minimal in human pancreatic cancerous cells. Our results for the first time highlight pancreatic immunosuppressive tumor microenvironment contributed by VISTA and its potential as a prominent target for pancreatic cancer immunotherapy.
Collapse
|
16
|
Banerjee A, Jakacki RI, Onar-Thomas A, Wu S, Nicolaides T, Young Poussaint T, Fangusaro J, Phillips J, Perry A, Turner D, Prados M, Packer RJ, Qaddoumi I, Gururangan S, Pollack IF, Goldman S, Doyle LA, Stewart CF, Boyett JM, Kun LE, Fouladi M. A phase I trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory low-grade glioma: a Pediatric Brain Tumor Consortium (PBTC) study. Neuro Oncol 2018; 19:1135-1144. [PMID: 28339824 DOI: 10.1093/neuonc/now282] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Activation of the mitogen-activated protein kinase pathway is important for growth of pediatric low-grade gliomas (LGGs). The aim of this study was to determine the recommended phase II dose (RP2D) and the dose-limiting toxicities (DLTs) of the MEK inhibitor selumetinib in children with progressive LGG. Methods Selumetinib was administered orally starting at 33 mg/m2/dose b.i.d., using the modified continual reassessment method. Pharmacokinetic analysis was performed during the first course. BRAF aberrations in tumor tissue were determined by real-time polymerase chain reaction and fluorescence in situ hybridization. Results Thirty-eight eligible subjects were enrolled. Dose levels 1 and 2 (33 and 43 mg/m2/dose b.i.d.) were excessively toxic. DLTs included grade 3 elevated amylase/lipase (n = 1), headache (n = 1), mucositis (n = 2), and grades 2-3 rash (n = 6). At dose level 0 (25 mg/m2/dose b.i.d, the RP2D), only 3 of 24 subjects experienced DLTs (elevated amylase/lipase, rash, and mucositis). At the R2PD, the median (range) area under the curve (AUC0-∞) and apparent oral clearance of selumetinib were 3855 ng*h/mL (1780 to 7250 ng × h/mL) and 6.5 L × h-1 × m-2 (3.4 to 14.0 L × h-1 × m-2), respectively. Thirteen of 19 tumors had BRAF abnormalities. Among the 5 (20%) of 25 subjects with sustained partial responses, all at the RP2D, 4 had BRAF aberrations, 1 had insufficient tissue. Subjects received a median of 13 cycles (range: 1-26). Fourteen (37%) completed all protocol treatment (26 cycles [n = 13], 13 cycles [n = 1]) with at least stable disease; 2-year progression-free survival at the RP2D was 69 ± SE 9.8%. Conclusion Selumetinib has promising antitumor activity in children with LGG. Rash and mucositis were the most common DLTs.
Collapse
Affiliation(s)
- Anuradha Banerjee
- University of California San Francisco, San Francisco, California; Boston Children's Hospital, Boston, Massachusetts; Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; St Jude Children's Research Hospital, Memphis, Tennessee; Lurie Children's Hospital, Chicago, Illinois; Children's National Medical Center, Washington, DC; Duke University Medical Center, Durham, North Carolina; Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Regina I Jakacki
- University of California San Francisco, San Francisco, California; Boston Children's Hospital, Boston, Massachusetts; Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; St Jude Children's Research Hospital, Memphis, Tennessee; Lurie Children's Hospital, Chicago, Illinois; Children's National Medical Center, Washington, DC; Duke University Medical Center, Durham, North Carolina; Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Arzu Onar-Thomas
- University of California San Francisco, San Francisco, California; Boston Children's Hospital, Boston, Massachusetts; Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; St Jude Children's Research Hospital, Memphis, Tennessee; Lurie Children's Hospital, Chicago, Illinois; Children's National Medical Center, Washington, DC; Duke University Medical Center, Durham, North Carolina; Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Shengjie Wu
- University of California San Francisco, San Francisco, California; Boston Children's Hospital, Boston, Massachusetts; Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; St Jude Children's Research Hospital, Memphis, Tennessee; Lurie Children's Hospital, Chicago, Illinois; Children's National Medical Center, Washington, DC; Duke University Medical Center, Durham, North Carolina; Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Theodore Nicolaides
- University of California San Francisco, San Francisco, California; Boston Children's Hospital, Boston, Massachusetts; Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; St Jude Children's Research Hospital, Memphis, Tennessee; Lurie Children's Hospital, Chicago, Illinois; Children's National Medical Center, Washington, DC; Duke University Medical Center, Durham, North Carolina; Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Tina Young Poussaint
- University of California San Francisco, San Francisco, California; Boston Children's Hospital, Boston, Massachusetts; Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; St Jude Children's Research Hospital, Memphis, Tennessee; Lurie Children's Hospital, Chicago, Illinois; Children's National Medical Center, Washington, DC; Duke University Medical Center, Durham, North Carolina; Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jason Fangusaro
- University of California San Francisco, San Francisco, California; Boston Children's Hospital, Boston, Massachusetts; Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; St Jude Children's Research Hospital, Memphis, Tennessee; Lurie Children's Hospital, Chicago, Illinois; Children's National Medical Center, Washington, DC; Duke University Medical Center, Durham, North Carolina; Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Joanna Phillips
- University of California San Francisco, San Francisco, California; Boston Children's Hospital, Boston, Massachusetts; Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; St Jude Children's Research Hospital, Memphis, Tennessee; Lurie Children's Hospital, Chicago, Illinois; Children's National Medical Center, Washington, DC; Duke University Medical Center, Durham, North Carolina; Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Arie Perry
- University of California San Francisco, San Francisco, California; Boston Children's Hospital, Boston, Massachusetts; Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; St Jude Children's Research Hospital, Memphis, Tennessee; Lurie Children's Hospital, Chicago, Illinois; Children's National Medical Center, Washington, DC; Duke University Medical Center, Durham, North Carolina; Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - David Turner
- University of California San Francisco, San Francisco, California; Boston Children's Hospital, Boston, Massachusetts; Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; St Jude Children's Research Hospital, Memphis, Tennessee; Lurie Children's Hospital, Chicago, Illinois; Children's National Medical Center, Washington, DC; Duke University Medical Center, Durham, North Carolina; Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Michael Prados
- University of California San Francisco, San Francisco, California; Boston Children's Hospital, Boston, Massachusetts; Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; St Jude Children's Research Hospital, Memphis, Tennessee; Lurie Children's Hospital, Chicago, Illinois; Children's National Medical Center, Washington, DC; Duke University Medical Center, Durham, North Carolina; Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Roger J Packer
- University of California San Francisco, San Francisco, California; Boston Children's Hospital, Boston, Massachusetts; Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; St Jude Children's Research Hospital, Memphis, Tennessee; Lurie Children's Hospital, Chicago, Illinois; Children's National Medical Center, Washington, DC; Duke University Medical Center, Durham, North Carolina; Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ibrahim Qaddoumi
- University of California San Francisco, San Francisco, California; Boston Children's Hospital, Boston, Massachusetts; Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; St Jude Children's Research Hospital, Memphis, Tennessee; Lurie Children's Hospital, Chicago, Illinois; Children's National Medical Center, Washington, DC; Duke University Medical Center, Durham, North Carolina; Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sridharan Gururangan
- University of California San Francisco, San Francisco, California; Boston Children's Hospital, Boston, Massachusetts; Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; St Jude Children's Research Hospital, Memphis, Tennessee; Lurie Children's Hospital, Chicago, Illinois; Children's National Medical Center, Washington, DC; Duke University Medical Center, Durham, North Carolina; Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ian F Pollack
- University of California San Francisco, San Francisco, California; Boston Children's Hospital, Boston, Massachusetts; Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; St Jude Children's Research Hospital, Memphis, Tennessee; Lurie Children's Hospital, Chicago, Illinois; Children's National Medical Center, Washington, DC; Duke University Medical Center, Durham, North Carolina; Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Stewart Goldman
- University of California San Francisco, San Francisco, California; Boston Children's Hospital, Boston, Massachusetts; Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; St Jude Children's Research Hospital, Memphis, Tennessee; Lurie Children's Hospital, Chicago, Illinois; Children's National Medical Center, Washington, DC; Duke University Medical Center, Durham, North Carolina; Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lawrence A Doyle
- University of California San Francisco, San Francisco, California; Boston Children's Hospital, Boston, Massachusetts; Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; St Jude Children's Research Hospital, Memphis, Tennessee; Lurie Children's Hospital, Chicago, Illinois; Children's National Medical Center, Washington, DC; Duke University Medical Center, Durham, North Carolina; Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Clinton F Stewart
- University of California San Francisco, San Francisco, California; Boston Children's Hospital, Boston, Massachusetts; Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; St Jude Children's Research Hospital, Memphis, Tennessee; Lurie Children's Hospital, Chicago, Illinois; Children's National Medical Center, Washington, DC; Duke University Medical Center, Durham, North Carolina; Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - James M Boyett
- University of California San Francisco, San Francisco, California; Boston Children's Hospital, Boston, Massachusetts; Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; St Jude Children's Research Hospital, Memphis, Tennessee; Lurie Children's Hospital, Chicago, Illinois; Children's National Medical Center, Washington, DC; Duke University Medical Center, Durham, North Carolina; Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Larry E Kun
- University of California San Francisco, San Francisco, California; Boston Children's Hospital, Boston, Massachusetts; Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; St Jude Children's Research Hospital, Memphis, Tennessee; Lurie Children's Hospital, Chicago, Illinois; Children's National Medical Center, Washington, DC; Duke University Medical Center, Durham, North Carolina; Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Maryam Fouladi
- University of California San Francisco, San Francisco, California; Boston Children's Hospital, Boston, Massachusetts; Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania; St Jude Children's Research Hospital, Memphis, Tennessee; Lurie Children's Hospital, Chicago, Illinois; Children's National Medical Center, Washington, DC; Duke University Medical Center, Durham, North Carolina; Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland; Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
17
|
Zou Y, Wang J, Leng X, Huang J, Xue W, Zhang J, Huang Y. The selective MEK1 inhibitor Selumetinib enhances the antitumor activity of everolimus against renal cell carcinoma in vitro and in vivo. Oncotarget 2017; 8:20825-20833. [PMID: 28212559 PMCID: PMC5400548 DOI: 10.18632/oncotarget.15346] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 01/27/2017] [Indexed: 02/07/2023] Open
Abstract
Renal cell carcinoma (RCC) is a urologic malignant cancer and often diagnosed at an advanced stage, which results in high mortality. Targeted therapy may improve the quality of life and survival of patients who are not suitable for nephrectomy. Everolimus, an mTOR inhibitor, is currently used as sequential or second-line therapy for RCC refractory to Sunitinib or sorafenib. However, its efficiency is palliative. In this study, we evaluated whether the antitumor activity of everolimus against RCC is enhanced by Selumetinib, a selective MEK1 inhibitor. We discovered that everolimus in combination with Selumetinib synergistically inhibited the proliferation of Caki-1, 786-O and 769-P cells in vitro. Mechanistically, this combination decreased p-RPS6 and p-4E-BP1 dramatically, which causes G1 cell cycle arrest and prevents reactivation of AKT and ERK. In vivo, the antitumor efficacy and pharmacodynamic biomarkers of the combination therapy were recapitulated in Caki-1 xenograft model. In addition, this combination treatment potently inhibited angiogenesis in xenograft models by impairing VEGF secretion from tumor cells. Our findings provide a sound evidence that combination of everolimus and Selumetinib is a potential dual-targeted strategy for renal cell carcinoma.
Collapse
Affiliation(s)
- Yun Zou
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianfeng Wang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuejiao Leng
- Department of Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiwei Huang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiran Huang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Li S, Hsu CW, Sakamuru S, Zou C, Huang R, Xia M. Identification of Angiogenesis Inhibitors Using a Co-culture Cell Model in a High-Content and High-Throughput Screening Platform. SLAS Technol 2017; 23:217-225. [PMID: 28922619 PMCID: PMC6032403 DOI: 10.1177/2472630317729792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Angiogenesis is an important hallmark of cancer, contributing to tumor formation
and metastasis. In vitro angiogenesis models for analyzing tube formation serve
as useful tools to study these processes. However, current in vitro co-culture
models using primary cells have limitations in usefulness and consistency.
Therefore, in the present study, an in vitro co-culture assay system was
optimized in a 1536-well format for high-throughput screening using human
telomerase reverse transcriptase (hTERT)–immortalized mesenchymal stem cells and
aortic endothelial cells. The National Center for Advancing Translational
Sciences (NCATS) Pharmaceutical Collection (NPC) library containing 2816 drugs
was evaluated using the in vitro co-culture assay. From the screen, 35 potent
inhibitors (IC50 ≤1 µM) were identified, followed by 15 weaker
inhibitors (IC50 1–50 µM). Moreover, many known angiogenesis
inhibitors were identified, such as topotecan, docetaxel, and bortezomib.
Several potential novel angiogenesis inhibitors were also identified from this
study, including thimerosal and podofilox. Among the inhibitors, some compounds
were proved to be involved in the hypoxia-inducible factor-1α (HIF-1α) and the
nuclear factor-kappa B (NF-κB) pathways. The co-culture model developed by using
hTERT-immortalized cell lines described in this report provides a consistent and
robust in vitro system for antiangiogenic drug screening.
Collapse
Affiliation(s)
- Shuaizhang Li
- 1 Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Chia-Wen Hsu
- 1 Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Srilatha Sakamuru
- 1 Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Chaozhong Zou
- 2 American Type Culture Collection, Gaithersburg, MD, USA
| | - Ruili Huang
- 1 Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Menghang Xia
- 1 Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Zhang J, Su H, Li Q, Li J, Zhao Q. Genistein decreases A549 cell viability via inhibition of the PI3K/AKT/HIF‑1α/VEGF and NF‑κB/COX‑2 signaling pathways. Mol Med Rep 2017; 15:2296-2302. [PMID: 28259980 DOI: 10.3892/mmr.2017.6260] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 11/24/2016] [Indexed: 11/06/2022] Open
Abstract
Genistein is an important chemopreventive agent against atherosclerosis and cancer. However, whether genistein is effective in the treatment of lung cancer, and its underlying mechanism, remains to be determined. The present study demonstrated that genistein treatment of A549 lung cancer cells decreased viability in a dose‑ and time‑dependent manner, and induced apoptosis. Additionally, A549 cells exhibited significantly increased reactive oxygen species formation and cytochrome‑c leakage, and activated caspase‑3, B‑cell lymphoma 2‑associated X protein and apoptosis inducing factor expression levels, which are involved in the mitochondrial apoptosis pathway. Furthermore, the phosphatidylinositol‑4,5‑biphosphate 3‑kinase (PI3K)/protein kinase B (AKT)/hypoxia‑inducible factor‑1α (HIF‑1α) and nuclear factor‑κB (NF‑κB)/cyclooxygenase‑2 (COX‑2) signaling pathways were significantly downregulated by genistein treatment. In conclusion, reduced proliferation and increased apoptosis in A549 lung cancer cells was associated with inhibition of the PI3K/AKT/HIF‑1α/ and NF‑κB/COX‑2 signaling pathways, which implicates genistein as a potential chemotherapeutic agent for the treatment of lung cancer.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Oncology, Xiangyang Central Hospital, The Affiliated Hospital of Hubei College of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Hongzheng Su
- Department of Infectious Disease, Zaoyang First People's Hospital, Zaoyang, Hubei 441200, P.R. China
| | - Qingfeng Li
- Department of Oncology, Xiangyang Central Hospital, The Affiliated Hospital of Hubei College of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Jing Li
- Department of Oncology, Xiangyang Central Hospital, The Affiliated Hospital of Hubei College of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| | - Qianfeng Zhao
- Department of Oncology, Xiangyang Central Hospital, The Affiliated Hospital of Hubei College of Arts and Science, Xiangyang, Hubei 441021, P.R. China
| |
Collapse
|
20
|
Muhammad N, Bhattacharya S, Steele R, Phillips N, Ray RB. Involvement of c-Fos in the Promotion of Cancer Stem-like Cell Properties in Head and Neck Squamous Cell Carcinoma. Clin Cancer Res 2016; 23:3120-3128. [PMID: 27965308 DOI: 10.1158/1078-0432.ccr-16-2811] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022]
Abstract
Purpose: Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. Although improvements in surgical techniques, chemotherapy and radiation delivery, and supportive care have improved quality of life for patients with HNSCC, regional and distant recurrence remain common. Recent evidence suggests that cancer stem-like cells (CSC) play a significant role in recurrence and chemoresistance. We previously observed that c-Fos was highly upregulated in the HNSCC sphere-forming cells. Consequences of c-Fos upregulation for the biology of HNSCC-CSCs are poorly understood. In this study, we investigated the role of c-Fos in renewal of stemness of HNSCC and tumor growth.Experimental Design and Results: We generated stable HNSCC cell lines ectopically expressing the c-Fos gene. Exogenous expression of c-Fos in nontumorigenic MDA1386Tu cells makes these cells tumorigenic in nude mice. Furthermore, subcutaneous transplantation of c-Fos-overexpressing Cal27 cells (tumorigenic) into immunocompromised mice enhanced tumor growth as compared with parental cells. Mechanistic investigations demonstrated that c-Fos overexpression enhanced the epithelial-mesenchymal transition (EMT) state and expression of CSC markers (Nanog, c-Myc, Sox2, and Notch1). Ectopic expression of c-Fos in HNSCC cells also displays increased sphere formation. We further observed that overexpression of c-Fos increased the expression of pERK and cyclin D1 in HNSCC cells.Conclusions: Together, our results strongly suggest a novel role of c-Fos as a regulator of EMT and cancer stem cell reprogramming in HNSCC cells, which may hold potential as a CSC-directed therapeutic approach to improve HNSCC treatment. Clin Cancer Res; 23(12); 3120-8. ©2016 AACR.
Collapse
Affiliation(s)
- Naoshad Muhammad
- Department of Pathology, Saint Louis University, St. Louis, Missouri
| | | | - Robert Steele
- Department of Pathology, Saint Louis University, St. Louis, Missouri
| | - Nancy Phillips
- Department of Pathology, Saint Louis University, St. Louis, Missouri
| | - Ratna B Ray
- Department of Pathology, Saint Louis University, St. Louis, Missouri. .,Cancer Center, Saint Louis University, St. Louis, Missouri
| |
Collapse
|
21
|
Cao Z, Tong X, Xia W, Chen L, Zhang X, Yu B, Yang Z, Tao J. CXCR7/p-ERK-Signaling Is a Novel Target for Therapeutic Vasculogenesis in Patients with Coronary Artery Disease. PLoS One 2016; 11:e0161255. [PMID: 27612090 PMCID: PMC5017667 DOI: 10.1371/journal.pone.0161255] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022] Open
Abstract
Coronary artery disease (CAD) is characterized by insufficient vasculogenic response to ischemia, which is typically accompanied by dysfunction of endothelial outgrowth cells (EOCs). CXC chemokine receptor 7 (CXCR7) is a key modulator of the neovascularization of EOCs to perfusion defect area. However, the mechanism underlying the role of EOCs in CAD-related abnormal vasculogenesis is still not clear. Here, we investigated the alteration of EOCs-related vasculogenic capacity in patients with CAD and its potential mechanism. Compared with EOCs isolated from healthy subjects, EOCs from CAD patients showed an impaired vasculogenic function in vitro. CXCR7 expression of EOCs from CAD patients was downregulated. Meanwhile, the phosphorylation of extracellular signal-regulated kinase (ERK), downstream of CXCR7 signaling, was also reduced. CXCR7 expression introduced by adenovirus increased the phosphorylation of ERK, which was parallel to improved function of EOCs. The enhanced adhesion and vasculogenesis of EOCs can be blocked by short interfering RNA (siRNA) against CXCR7 and ERK inhibitor PD098059. Therefore, our study demonstrates that the upregulation of CXCR7 signaling contributes to increased vasculogenic capacity of EOCs from CAD patients, indicating that CXCR7 signaling may be a novel therapeutic vasculogenic target for CAD.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Xinzhu Tong
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Hubei, China
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenhao Xia
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Long Chen
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyu Zhang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bingbo Yu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhen Yang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- * E-mail: (JT); (ZY)
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- * E-mail: (JT); (ZY)
| |
Collapse
|
22
|
The anti-angiogenic effect and novel mechanisms of action of Combretastatin A-4. Sci Rep 2016; 6:28139. [PMID: 27338725 PMCID: PMC4919637 DOI: 10.1038/srep28139] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/24/2016] [Indexed: 12/16/2022] Open
Abstract
Combretastatin A-4 (CA4) is the lead compound of a relatively new class of vascular disrupting agents that target existing tumor blood vessels. Recent studies showed the CA4 might inhibit angiogenesis. However, the underlying molecular mechanisms by which CA4 exerts its anti-angiogenic effects are not fully understood. In this study, we revealed that CA4 inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration and capillary-like tube formation of human umbilical vascular endothelial cells (HUVECs). In in vivo assay, CA4 suppressed neovascularization in chicken chorioallantoic membrane (CAM) model and decreased the microvessel density in tumor tissues of a breast cancer MCF-7 xenograft mouse model. In addition, CA4 decreased the expression level and secretion of VEGF both in MCF-7 cells and HUVECs under hypoxia, as well as the activation of VEGFR-2 and its downstream signaling mediators following VEGF stimulation in HUVECs. Moreover, VEGF and VEGFR-2 expression in tumor tissues of the mouse xenograft model were down-regulated following CA4 treatment. Taken together, results from the current work provide clear evidence that CA4 functions in endothelial cell system to inhibit angiogenesis, at least in part, by attenuating VEGF/VEGFR-2 signaling pathway.
Collapse
|