1
|
Huang JF, Darwell CT, Peng YQ. Enhanced and asymmetric signatures of hybridization at climatic margins: Evidence from closely related dioecious fig species. PLANT DIVERSITY 2024; 46:181-193. [PMID: 38807912 PMCID: PMC11128846 DOI: 10.1016/j.pld.2023.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 05/30/2024]
Abstract
Hybridization plays a significant role in biological evolution. However, it is not clear whether ecological contingency differentially influences likelihood of hybridization, particularly at ecological margins where parental species may exhibit reduced fitnesses. Moreover, it is unknown whether future ecosystem change will increase the prevalence of hybridization. Ficus heterostyla and F. squamosa are closely related species co-distributed from southern Thailand to southwest China where hybridization, yielding viable seeds, has been documented. As a robust test of ecological factors driving hybridization, we investigated spatial hybridization signatures based on nuclear microsatellites from extensive population sampling across a widespread contact range. Both species showed high population differentiation and strong patterns of isolation by distance. Admixture estimates exposed asymmetric interspecific gene flow. Signatures of hybridization increase significantly towards higher latitude zones, peaking at the northern climatic margins. Geographic variation in reproductive phenology combined with ecologically challenging marginal habitats may promote this phenomenon. Our work is a first systematic evaluation of such patterns in a comprehensive, latitudinally-based clinal context, and indicates that tendency to hybridize appears strongly influenced by environmental conditions. Moreover, that future climate change scenarios will likely alter and possibly augment cases of hybridization at ecosystem scales.
Collapse
Affiliation(s)
- Jian-Feng Huang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Clive T. Darwell
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Yan-Qiong Peng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| |
Collapse
|
2
|
Huang JF, Fungjanthuek J, Chen MB, Liu GX, Dong YY, Peng YQ, Wang B, Segar ST. Pollinator sharing and hybridization in a pair of dioecious figs sheds light on the pathways to speciation. Evol Lett 2023; 7:422-435. [PMID: 38045718 PMCID: PMC10693000 DOI: 10.1093/evlett/qrad045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 12/05/2023] Open
Abstract
The dynamics and processes underlying the codiversification of plant-pollinator interactions are of great interest to researchers of biodiversity and evolution. Cospeciation is generally considered a key process driving the diversity of figs and their pollinating wasps. Groups of closely related figs pollinated by separate wasps occur frequently and represent excellent opportunities to study ongoing diversification in this textbook mutualism. We study two closely related sympatric dioecious figs (Ficus heterostyla and Ficus squamosa) in Xishuangbanna, southwest China, and aim to document what is likely to be the final stages of speciation between these species using a combination of trait data and experimental manipulation. Volatile profiles at the receptive phase, crucial for attracting pollinators, were analyzed. In total, 37 and 29 volatile compounds were identified from receptive F. heterostyla and F. squamosa figs, respectively. Despite significant interspecific dissimilarity, 25 compounds were shared. Ovipositor lengths lie well within range required for access to heterospecific ovules, facilitating hybridization. Cross introduction of wasps into figs was conducted and hybrid seeds were generated for all donor/recipient combinations. F. heterostyla wasps produce adult offspring in F. squamosa figs. While F. squamosa wasps induce gall development in F. heterostyla figs and their offspring fail to mature in synchrony with their novel host. We record limited geographic barriers, minimal volatile dissimilarity, compatible morphology, complementary reproductive phenologies, and the production of hybrid seeds and wasp offspring. These findings suggest ongoing wasp specialization and reproductive isolation, potentially applicable to other related fig species.
Collapse
Affiliation(s)
- Jian-Feng Huang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Jenjira Fungjanthuek
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming-Bo Chen
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Yi-Yi Dong
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Yan-Qiong Peng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Bo Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Simon T Segar
- Agriculture and Environment Department, Harper Adams University, Newport, United Kingdom
| |
Collapse
|
3
|
Mo YX, Corlett RT, Wang G, Song L, Lu HZ, Wu Y, Hao GY, Ma RY, Men SZ, Li Y, Liu WY. Hemiepiphytic figs kill their host trees: acquiring phosphorus is a driving factor. THE NEW PHYTOLOGIST 2022; 236:714-728. [PMID: 35811425 DOI: 10.1111/nph.18367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Hemiepiphytic figs killing their host trees is an ecological process unique to the tropics. Yet the benefits and adaptive strategies of their special life history remain poorly understood. We compared leaf phosphorus (P) content data of figs and palms worldwide, and functional traits and substrate P content of hemiepiphytic figs (Ficus tinctoria), their host palm and nonhemiepiphytic conspecifics at different growth stages in a common garden. We found that leaf P content of hemiepiphytic figs and their host palms significantly decreased when they were competing for soil resources, but that of hemiepiphytic figs recovered after host death. P availability in the canopy humus and soil decreased significantly with the growth of hemiepiphytic figs. Functional trait trade-offs of hemiepiphytic figs enabled them to adapt to the P shortage while competing with their hosts. From the common garden to a global scale, the P competition caused by high P demand of figs may be a general phenomenon. Our results suggest that P competition is an important factor causing host death, except for mechanically damaging and shading hosts. Killing hosts benefits hemiepiphytic figs by reducing interspecific P competition and better acquiring P resources in the P-deficient tropics, thereby linking the life history strategy of hemiepiphytic figs to the widespread P shortage in tropical soils.
Collapse
Affiliation(s)
- Yu-Xuan Mo
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Richard T Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, 666303, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Gang Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Liang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Hua-Zheng Lu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yi Wu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110010, China
| | - Ren-Yi Ma
- Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountains, Yunnan Academy of Forestry and Grassland, Kunming, 650201, China
| | - Shi-Zheng Men
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yuan Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Wen-Yao Liu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| |
Collapse
|
4
|
Phytoremediation Potential of Selected Ornamental Woody Species to Heavy Metal Accumulation in Response to Long-Term Irrigation with Treated Wastewater. WATER 2022. [DOI: 10.3390/w14132086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Arid and semiarid environments of Mediterranean countries suffer from scarcity of water resources, which limits their agriculture productivity. Using treated wastewater (TWW) is considered an alternative strategy for irrigation purposes in such areas. However, TWW contains substantial levels of heavy metals (HMs) and contaminants that pollute the environment and soil. The aim of this study is to evaluate the phytoremediation potential of six selected woody tree species under long-term irrigation with TWW. The concentration, bioaccumulation factor (BFC), translocation factor (TF), and comprehensive bioconcentration index (CBCI) of HMs were measured in the various parts (roots, bark, and leaves) of the studied tree species. The results show a general pattern of mineral accumulation in the roots and low translocation to the areal parts of various species. Cupressus sempervirens, which is a native species in Mediterranean environments, had higher TF values for Fe, Mn, Cu, Cr, Cd, and Pb metals in its areal parts compared to other tree species. The study shows that Ficus nitida has the potential to be a hyperaccumulator for Cd in its bark, with a TF value that exceeds 12. Deciduous trees species (Populus nigra and Robinia pseudoacacia) were found to have high TF values for Ni and Cd toward their areal parts, whereas a higher TF for Cr (1.21) was only found in P. nigra bark. Cupressus sempervirens had, significantly, the highest bark and leaf CBCI values (0.83 and 0.82, respectively), whereas Ficus nitida had the second-highest values in the bark and leaves (0.56 and 0.51, respectively). Therefore, Cupressus sempervirens and Ficus nitida are considered good hyperaccumulators for various HMs, and can be used for phytoremediation activities in polluted areas.
Collapse
|
5
|
Borges RM. Interactions Between Figs and Gall-Inducing Fig Wasps: Adaptations, Constraints, and Unanswered Questions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.685542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ancient interaction between figs (Ficus, Moraceae) and their pollinating fig wasps is an unusual example of a mutualism between plants and gall-inducing insects. This review intends to offer fresh perspectives into the relationship between figs and the diversity of gall-inducing sycophiles which inhabit their enclosed globular inflorescences that function as microcosms. Besides gall-inducing pollinators, fig inflorescences are also inhabited by other gall-inducing wasps. This review evaluates the state of current knowledge on gall-induction by fig wasps and exposes the many lacunae in this area. This review makes connections between fig and gall-inducing wasp traits, and suggests relatively unexplored research avenues. This manuscript calls for an integrated approach that incorporates such diverse fields as life-history theory, plant mate choice, wasp sexual selection and local mate competition, plant embryology as well as seed and fruit dispersal. It calls for collaboration between researchers such as plant developmental biologists, insect physiologists, chemical ecologists and sensory biologists to jointly solve the many valuable questions that can be addressed in community ecology, co-evolution and species interaction biology using the fig inflorescence microcosm, that is inhabited by gall-inducing mutualistic and parasitic wasps, as a model system.
Collapse
|
6
|
Salehi B, Prakash Mishra A, Nigam M, Karazhan N, Shukla I, Kiełtyka-Dadasiewicz A, Sawicka B, Głowacka A, Abu-Darwish MS, Hussein Tarawneh A, Gadetskaya AV, Cabral C, Salgueiro L, Victoriano M, Martorell M, Docea AO, Abdolshahi A, Calina D, Sharifi-Rad J. Ficus plants: State of the art from a phytochemical, pharmacological, and toxicological perspective. Phytother Res 2020; 35:1187-1217. [PMID: 33025667 DOI: 10.1002/ptr.6884] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/02/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
Ficus genus is typically tropical plants and is among the earliest fruit trees cultivated by humans. Ficus carica L. is the common fig, Ficus benjamina L. is the weeping fig, and Ficus pumila L. is the creeping fig. These species are commonly used in traditional medicine for a wide range of diseases and contain rich secondary metabolites that have shown diverse applications. This comprehensive review describes for Ficus genus the phytochemical compounds, traditional uses and contemporary pharmacological activities such as antioxidant, cytotoxic, antimicrobial, anti-inflammatory, antidiabetic, antiulcer, and anticonvulsant. An extended survey of the current literature (Science Direct, Scopus, PubMed) has been carried out as part of the current work. The trends in the phytochemistry, pharmacological mechanisms and activities of Ficus genus are overviewed in this manuscript: antimicrobial, antidiabetic, anti-inflammatory and analgesic activity, antiseizure and anti-Parkinson's diseases, cytotoxic and antioxidant. Health-promoting effects, recent human clinical studies, safety and adverse effects of Ficus plants also are covered. The medical potential and long-term pharmacotherapeutic use of the genus Ficus along with no serious reported adverse events, suggests that it can be considered as being safe.
Collapse
Affiliation(s)
- Bahare Salehi
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.,Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal University, Garhwal, India
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal University, Garhwal, India
| | - Natallia Karazhan
- Department of Pharmacognosy, Pharmaceutical Faculty of the EE VSMU, Vitebsk, Belarus
| | - Ila Shukla
- Pharmacognosy and Ethnopharmacology Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Anna Kiełtyka-Dadasiewicz
- University of Life Sciences in Lublin, Department of Plant Production Technology and Commodity Science, Lublin, Poland
| | - Barbara Sawicka
- University of Life Sciences in Lublin, Department of Plant Production Technology and Commodity Science, Lublin, Poland
| | - Aleksandra Głowacka
- University of Life Sciences in Lublin, Department of Plant Production Technology and Commodity Science, Lublin, Poland
| | - Mohammad Sanad Abu-Darwish
- Faculty of Pharmacy, Aqaba University of Technology, Aqaba, Jordan.,Departments of Basic and Applied Sciences, Al-Balqa Applied University, Al-Salt, Jordan
| | - Amer Hussein Tarawneh
- Department of Chemistry and Chemical Technology, Tafila Technical University, Tafila, Jordan
| | - Anastassiya V Gadetskaya
- School of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Célia Cabral
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine; CNC.IBILI Consortium & CIBB Consortium, University of Coimbra, Coimbra, Portugal.,Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.,Chemical Process Engineering and Forest Products Research Centre and Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Montserrat Victoriano
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile.,Unidad de Desarrollo Tecnológico, Universidad de Concepción UDT, Concepcion, Chile
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Anna Abdolshahi
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan, Iran
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| |
Collapse
|
7
|
Chen H, Liu Q, Tang L. The plastid genome of winter cropping plants Ficus tinctoria (Moraceae). MITOCHONDRIAL DNA PART B-RESOURCES 2020; 5:2703-2704. [PMID: 33457912 PMCID: PMC7782934 DOI: 10.1080/23802359.2020.1787270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ficus tinctoria subsp. gibbosa (Blume) Corner is a hemiepiphytic dioecious fig species of the genus Ficus in the family Moraceae. To better determine its phylogenetic location with respect to the other Ficus species, the complete plastid genome of F. tinctoria was sequenced. The whole plastome is 160,342 bp in length, consisting of a pair of inverted repeat (IR) regions of 25,859 bp, one large single-copy (LSC) region of 88,526 bp, and one small single-copy (SSC) region of 20,098 bp. The overall GC content of the whole plastome is 35.9%. Further, maximum likelihood (ML) phylogenetic analyze was conducted using 23 complete fig plastomes, which support close relationships among F. tinctoria, F. heteropleura, F. obscura, and F. deltoidea.
Collapse
Affiliation(s)
- Huanhuan Chen
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, PR China.,Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing, PR China
| | - Qing Liu
- School of Resources and Environment, Baoshan University, Baoshan, PR China
| | - Lizhou Tang
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, PR China.,Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing, PR China
| |
Collapse
|
8
|
Abstract
The interaction between pollinating wasps and figs is an obligate plant-insect mutualism, and the ca. 750 Ficus species are mainly tropical. Climatic constraints may limit species distributions through their phenology and this seems particularly likely for figs, where phenological mismatches can cause local extinction of the short-lived pollinators. We therefore compared the phenologies of Ficus altissima, F. racemosa and F. semicordata in tropical Xishuangbanna (21°55′N) and subtropical Liuku (25°50′N), SW China, to understand what factors limit fig distributions near their northern limits. All species produced synchronous crops of syconia in Xishuangbanna but production in Liuku was continuous, which may help maintain pollinator populations. However, in general, we found decreased fitness at the northern site: slower syconium development, so fewer crops each year; fewer seeds per syconium (two species); and fewer pollinators and more non-pollinators per syconium, so less pollen is dispersed. This is most easily explained by colder winters, although low humidities may also contribute, and suggests the northern limit is set by temperature constraints on reproductive phenology. If so, the warming predicted for future decades is expected to enhance the fitness of northern populations of figs and, in the longer term, allow them to shift their range limits northwards.
Collapse
Affiliation(s)
- Huanhuan Chen
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, China.,Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Yuan Zhang
- Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming, 650224, China
| | - Yanqiong Peng
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Richard T Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China.
| |
Collapse
|
9
|
Topographic effect on the phenology of Ficus pedunculosa var. mearnsii (Mearns fig) in its northern boundary distribution, Taiwan. Sci Rep 2017; 7:14699. [PMID: 29116109 PMCID: PMC5676713 DOI: 10.1038/s41598-017-14402-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/09/2017] [Indexed: 11/24/2022] Open
Abstract
Mearns fig grows at the edge of coastal vegetation on uplifted coral reefs, its population and mutualistic-pollinators are susceptible to the influence of extreme weather. To determine the phenology of Mearns fig and the effects of various weather events under small-scale topographic differences, phenology was conducted for 3 years and 7 months. Results showed that Mearns figs had multiple leaf and fig productions year-round. Topographic effects caused population in Frog Rock Trail and Jialeshuei, which are less than 10 km away from each other, to exhibit different phenological patterns after experiencing severe weather events. Northeast monsoons led the Jialeshuei population to show low amounts of leaves and figs in winter and the phenological production was also susceptible to disturbances by typhoons in summer. Fig reproduction in such environment was disadvantageous to maintain pollinators. Besides, topographic complex in microhabitat of Frog Rock Trail protected some individuals from these same events thus safeguard population’s survival. The phenology of Mearns fig would respond to the weather events sensitively, which serve as references for estimating the mutualism system, and as indicators of climate change.
Collapse
|
10
|
Chiu YT, Bain A, Deng SL, Ho YC, Chen WH, Tzeng HY. Effects of climate change on a mutualistic coastal species: Recovery from typhoon damages and risks of population erosion. PLoS One 2017; 12:e0186763. [PMID: 29073190 PMCID: PMC5658060 DOI: 10.1371/journal.pone.0186763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/07/2017] [Indexed: 12/04/2022] Open
Abstract
Presently, climate change has increased the frequency of extreme meteorological events such as tropical cyclones. In the western Pacific basin, these cyclones are called typhoons, and in this area, around Taiwan Island, their frequency has almost doubled since 2000. When approaching landmasses, typhoons have devastating effects on coastal vegetation. The increased frequency of these events has challenged the survival of coastal plant species and their posttyphoon recovery. In this study, a population of coastal gynodioecious Ficus pedunculosa var. mearnsii (Mearns fig) was surveyed for two years to investigate its recovery after Typhoon Morakot, which occurred in August 2009. Similar to all the Ficus species, the Mearns fig has an obligate mutualistic association with pollinating fig wasp species, which requires syconia (the closed Ficus inflorescence) to complete its life cycle. Moreover, male gynodioecious fig species produces both pollen and pollen vectors, whereas the female counterpart produces only seeds. The recovery of the Mearns fig was observed to be rapid, with the production of both leaves and syconia. The syconium:leaf ratio was greater for male trees than for female trees, indicating the importance of syconium production for the wasp survival. Pollinating wasps live for approximately 1 day; therefore, receptive syconia are crucial. Every typhoon season, few typhoons pass by the coasts where the Mearns fig grows, destroying all the leaves and syconia. In this paper, we highlight the potential diminution of the fig population that can lead to the extinction of the mutualistic pair of species. The effects of climate change on coastal species warrant wider surveys.
Collapse
Affiliation(s)
- Yu-Ting Chiu
- Department of Forestry, National Chung- Hsing University, Taichung, Taiwan
| | - Anthony Bain
- Department of Forestry, National Chung- Hsing University, Taichung, Taiwan
- Institute of Ecology and Evolutionary Biology, College of Life Sciences, National Taiwan University, Taipei, Taiwan
| | - Shu-Lin Deng
- Chungpu Research Center, Forestry Research Institute, Chiayi, Taiwan
| | - Yi-Chiao Ho
- Department of Forestry, National Chung- Hsing University, Taichung, Taiwan
| | - Wen-Hsuan Chen
- Department of Forestry, National Chung- Hsing University, Taichung, Taiwan
| | - Hsy-Yu Tzeng
- Department of Forestry, National Chung- Hsing University, Taichung, Taiwan
| |
Collapse
|
11
|
|