1
|
Wang C, Hu J, Shi J. Role of Interleukin-36 in inflammatory joint diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:249-259. [PMID: 37283111 PMCID: PMC10409900 DOI: 10.3724/zdxbyxb-2023-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/06/2023] [Indexed: 06/08/2023]
Abstract
Interleukin (IL)-36 is a family of cytokines that belongs to the larger IL-1 superfamily. IL-36 agonist/antagonist binds to the interleukin-36 receptor involving in physiological inflammation regulation and pathogenesis of many inflammatory diseases. In inflammatory joint diseases, the expression of IL-36 changes, and some studies have initially explored the role of IL-36 in these diseases. In psoriatic arthritis, IL-36 signal mediates plasma cell and fibroblast-like synoviocyte crosstalk presenting IL-36 agonist/antagonist imbalance. In rheumatoid arthritis, IL-36 agonists induce fibroblast-like synoviocyte to produce pro-inflammatory factors, while IL-36 antagonist deficiency leads to lesion progression. In osteoarthritis, IL-36 agonists induce chondrocytes to produce catabolic enzymes and pro-inflammatory factors. This article reviews the expression and function of IL-36 in different inflammatory joint diseases to provide a reference for revealing their pathogenic mechanisms and discovering therapeutic targets.
Collapse
Affiliation(s)
- Cunyi Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| | - Ji'an Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| | - Jiejun Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
2
|
Yi YH, Chen G, Gong S, Han LZ, Gong TL, Wang YX, Xu WH, Jin X. Injectable Temperature-Sensitive Hydrogel Loaded with IL-36Ra for the Relief of Osteoarthritis. ACS Biomater Sci Eng 2023; 9:1672-1681. [PMID: 36796355 DOI: 10.1021/acsbiomaterials.2c01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Osteoarthritis (OA) is an inflammatory disease accompanied by synovial joint inflammation, and IL-36 plays an important role in this process. Local application of IL-36 receptor antagonist (IL-36Ra) can effectively control the inflammatory response, thereby protecting cartilage and slowing down the development of OA. However, its application is limited by the fact that it is rapidly metabolized locally. We designed and prepared a temperature-sensitive poly(lactic-co-glycolic acid)-poly(ethylene glycol)-poly(lactic-co-glycolic acid) (PLGA-PEG-PLGA) hydrogel (IL-36Ra@Gel) system carrying IL-36Ra and evaluated its basic physicochemical characteristics. The drug release curve of IL-36Ra@Gel indicated that this system could slowly release the drug over a longer period. Furthermore, degradation experiments showed that it could be largely degraded from the body within 1 month. The biocompatibility-related results showed that it had no significant effect on cell proliferation compared to the control group. In addition, the expression of MMP-13 and ADAMTS-5 was lower in IL-36Ra@Gel-treated chondrocytes than in the control group, and the opposite results appeared in aggrecan and collagen X. After 8 weeks of treatment with IL-36Ra@Gel by joint cavity injection, HE and Safranin O/Fast green staining showed that the degree of cartilage tissue destruction in the IL-36Ra@Gel-treated group was less than those in other groups. Meanwhile, the joints of mice in the IL-36Ra@Gel group had the most intact cartilage surface, the smallest thickness of cartilage erosion, and the lowest OARSI and Mankins score among all groups. Consequently, the combination of IL-36Ra and PLGA-PLEG-PLGA temperature-sensitive hydrogels can greatly improve the therapeutic effect and prolong the drug duration time, thus effectively delaying the progression of degenerative changes in OA, providing a new feasible nonsurgical treatment for OA.
Collapse
Affiliation(s)
- Yi-Hu Yi
- Department of Orthopaedics, Union Hospital, Tongji, Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guo Chen
- Department of Orthopaedics, Union Hospital, Tongji, Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Song Gong
- Department of Orthopaedics, Union Hospital, Tongji, Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Li-Zhi Han
- Department of Orthopaedics, Union Hospital, Tongji, Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tian-Lun Gong
- Department of Orthopaedics, Union Hospital, Tongji, Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu-Xiang Wang
- Department of Orthopaedics, Union Hospital, Tongji, Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei-Hua Xu
- Department of Orthopaedics, Union Hospital, Tongji, Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xin Jin
- Department of Orthopaedics, Union Hospital, Tongji, Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Koop K, Enderle K, Hillmann M, Ruspeckhofer L, Vieth M, Sturm G, Trajanoski Z, Kühl AA, Atreya R, Leppkes M, Baum P, Roy J, Martin A, Neurath MF, Neufert C. Interleukin 36 receptor-inducible matrix metalloproteinase 13 mediates intestinal fibrosis. Front Immunol 2023; 14:1163198. [PMID: 37207229 PMCID: PMC10189878 DOI: 10.3389/fimmu.2023.1163198] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Background Fibrostenotic disease is a common complication in Crohn's disease (CD) patients hallmarked by transmural extracellular matrix (ECM) accumulation in the intestinal wall. The prevention and medical therapy of fibrostenotic CD is an unmet high clinical need. Although targeting IL36R signaling is a promising therapy option, downstream mediators of IL36 during inflammation and fibrosis have been incompletely understood. Candidate molecules include matrix metalloproteinases which mediate ECM turnover and are thereby potential targets for anti-fibrotic treatment. Here, we have focused on understanding the role of MMP13 during intestinal fibrosis. Methods We performed bulk RNA sequencing of paired colon biopsies taken from non-stenotic and stenotic areas of patients with CD. Corresponding tissue samples from healthy controls and CD patients with stenosis were used for immunofluorescent (IF) staining. MMP13 gene expression was analyzed in cDNA of intestinal biopsies from healthy controls and in subpopulations of patients with CD in the IBDome cohort. In addition, gene regulation on RNA and protein level was studied in colon tissue and primary intestinal fibroblasts from mice upon IL36R activation or blockade. Finally, in vivo studies were performed with MMP13 deficient mice and littermate controls in an experimental model of intestinal fibrosis. Ex vivo tissue analysis included Masson's Trichrome and Sirius Red staining as well as evaluation of immune cells, fibroblasts and collagen VI by IF analysis. Results Bulk RNA sequencing revealed high upregulation of MMP13 in colon biopsies from stenotic areas, as compared to non-stenotic regions of patients with CD. IF analysis confirmed higher levels of MMP13 in stenotic tissue sections of CD patients and demonstrated αSMA+ and Pdpn+ fibroblasts as a major source. Mechanistic experiments demonstrated that MMP13 expression was regulated by IL36R signaling. Finally, MMP13 deficient mice, as compared to littermate controls, developed less fibrosis in the chronic DSS model and showed reduced numbers of αSMA+ fibroblasts. These findings are consistent with a model suggesting a molecular axis involving IL36R activation in gut resident fibroblasts and MMP13 expression during the pathogenesis of intestinal fibrosis. Conclusion Targeting IL36R-inducible MMP13 could evolve as a promising approach to interfere with the development and progression of intestinal fibrosis.
Collapse
Affiliation(s)
- Kristina Koop
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Kristina Koop,
| | - Karin Enderle
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Miriam Hillmann
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Laura Ruspeckhofer
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Vieth
- Institute of Pathology, Klinikum Bayreuth, Friedrich-Alexander-Universität Erlangen-Nürnberg, Bayreuth, Germany
| | - Gregor Sturm
- Biocenter, Institute of Bioinformatics, Medical University Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University Innsbruck, Innsbruck, Austria
- The Transregio 241 IBDome Consortium, Erlangen, Germany
| | - Anja A. Kühl
- The Transregio 241 IBDome Consortium, Erlangen, Germany
- iPATH.Berlin, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Raja Atreya
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- The Transregio 241 IBDome Consortium, Erlangen, Germany
| | - Moritz Leppkes
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Patrick Baum
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | | | - Andrea Martin
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, United States
| | - Markus F. Neurath
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Clemens Neufert
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie, Erlangen, Germany
| |
Collapse
|
4
|
Annexin in Taenia crassiceps ORF Strain is Localized in the Osmoregulatory System. Acta Parasitol 2022; 67:827-834. [PMID: 35113341 DOI: 10.1007/s11686-022-00526-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/18/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE Annexins are proteins with important roles in parasites, some of which are related to excretion-secretion processes, protein traffic, and microvesicle functionality. The participation of annexins in osmoregulation has been reported in tapeworms, including Taenia solium. This study aimed to investigate the localization and expression of annexin in cysticerci of Taenia crassiceps, used as a model of cysticercosis. METHODS We used an antibody made with a protein, previously employed on Schistosoma bovis, to detect annexin in T. crassiceps proteins extracts used Western blot assay. The histological distribution of annexin was studied with immunofluorescence and confocal microscopy. RESULTS The antibody against annexin recognized a band at a molecular weight of 40.9 kDa. The histological distribution of annexin showed that the protein is mainly localized in the tegument and the protonephridia ducts. CONCLUSION In our study, annexin was detected at a molecular weight similar to that described for Schistosoma bovis. In addition, its principal localization entailed structures of the osmoregulatory system one of the most important by the survival of the parasites. This confirms and solidifies previous reports concerning the role of annexins in T. crassiceps and this will be interesting by the development of new compounds against this protein.
Collapse
|
5
|
Cunningham-Hollinger HC, Kuehn LA, Cammack KM, Hales KE, Oliver WT, Crouse MS, Chen C, Freetly HC, Lindholm-Perry AK. Transcriptome profiles of the skeletal muscle of mature cows during feed restriction and realimentation. BMC Res Notes 2021; 14:361. [PMID: 34530907 PMCID: PMC8447676 DOI: 10.1186/s13104-021-05757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/23/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Realimentation can compensate for weight loss from poor-quality feedstuffs or drought. Mature cows fluctuate in body weight throughout the year due to nutrient availability. The objective of this study was to determine whether cows that differ in weight gain during realimentation also differ in the abundance of transcripts for enzymes associated with energy utilization in skeletal muscle. Mature cows were subjected to feed restriction followed by ad libitum feed. Skeletal muscle transcriptome expression differences during the two feeding periods were determined from cows with greater (n = 6) and less (n = 6) weight gain during the ad libitum feeding period. RESULTS A total of 567 differentially expressed genes (408 up- and 159 down-regulated) were identified for the comparison of restriction and ad libitum periods (PBonferroni < 0.05). These genes were over-represented in lysosome, aminoacyl-tRNA biosynthesis, and glutathione metabolism pathways. Validation of the expression of five of the genes was performed and four were confirmed. These data suggest that realimentation weight gain for all cows is partially controlled by protein turnover, but oxidative stress and cellular signaling pathways are also involved in the muscle tissue. This dataset provides insight into molecular mechanisms utilized by mature cows during realimentation after a period of low abundance feed.
Collapse
Affiliation(s)
| | - Larry A Kuehn
- USDA, ARS, U.S. Meat Animal Research Center, P.O. Box 166, Clay Center, NE, 68933, USA
| | - Kristi M Cammack
- South Dakota State University, West River Ag Center, Rapid City, SD, 57702, USA
| | - Kristin E Hales
- USDA, ARS, U.S. Meat Animal Research Center, P.O. Box 166, Clay Center, NE, 68933, USA
| | - William T Oliver
- USDA, ARS, U.S. Meat Animal Research Center, P.O. Box 166, Clay Center, NE, 68933, USA
| | - Matthew S Crouse
- USDA, ARS, U.S. Meat Animal Research Center, P.O. Box 166, Clay Center, NE, 68933, USA
| | - Celine Chen
- USDA, ARS, Beltsville Human Nutrition Research Center, Beltsville, MD, 20705, USA
| | - Harvey C Freetly
- USDA, ARS, U.S. Meat Animal Research Center, P.O. Box 166, Clay Center, NE, 68933, USA
| | | |
Collapse
|
6
|
Choi MC, Jo J, Park J, Kang HK, Park Y. NF-κB Signaling Pathways in Osteoarthritic Cartilage Destruction. Cells 2019; 8:cells8070734. [PMID: 31319599 PMCID: PMC6678954 DOI: 10.3390/cells8070734] [Citation(s) in RCA: 318] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is a type of joint disease associated with wear and tear, inflammation, and aging. Mechanical stress along with synovial inflammation promotes the degradation of the extracellular matrix in the cartilage, leading to the breakdown of joint cartilage. The nuclear factor-kappaB (NF-κB) transcription factor has long been recognized as a disease-contributing factor and, thus, has become a therapeutic target for OA. Because NF-κB is a versatile and multi-functional transcription factor involved in various biological processes, a comprehensive understanding of the functions or regulation of NF-κB in the OA pathology will aid in the development of targeted therapeutic strategies to protect the cartilage from OA damage and reduce the risk of potential side-effects. In this review, we discuss the roles of NF-κB in OA chondrocytes and related signaling pathways, including recent findings, to better understand pathological cartilage remodeling and provide potential therapeutic targets that can interfere with NF-κB signaling for OA treatment.
Collapse
Affiliation(s)
- Moon-Chang Choi
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea.
| | - Jiwon Jo
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju 38065, Korea
| | - Hee Kyoung Kang
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea
| | - Yoonkyung Park
- Department of Biomedical Science, Chosun University, Gwangju 61452, Korea.
| |
Collapse
|
7
|
Li T, Chubinskaya S, Esposito A, Jin X, Tagliafierro L, Loeser R, Hakimiyan AA, Longobardi L, Ozkan H, Spagnoli A. TGF-β type 2 receptor-mediated modulation of the IL-36 family can be therapeutically targeted in osteoarthritis. Sci Transl Med 2019; 11:eaan2585. [PMID: 31068441 PMCID: PMC7102613 DOI: 10.1126/scitranslmed.aan2585] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/07/2018] [Accepted: 04/01/2019] [Indexed: 12/14/2022]
Abstract
Mechanisms that govern the shift from joint homeostasis to osteoarthritis (OA) remain unknown. Here, we identify a pathway used for joint development and homeostasis, and its role in OA. Using a combination of transgenic, pharmacological, and surgical conditions in mouse and human tissues, we found that TGF-β signaling promotes joint homeostasis through regulation of the IL-36 family. We identified IL-36 receptor antagonist (IL-36 in mice and IL-36RN in humans) as a potential disease-modifying OA drug. Specifically, OA development was associated with IL-36α up-regulation and IL-36Ra down-regulation in mice with tissue-specific postnatally induced ablation of Tgfbr2, mice treated with a TGF-β signaling inhibitor, mice with posttraumatic OA, and aging mice with naturally occurring OA. In human cartilage, OA severity was associated with decreased TGFBR2 and IL-36RN, whereas IL-36α increased. Functionally, intra-articular treatment with IL-36Ra attenuated OA development in mice, and IL-36RN reduced MMP13 in human OA chondrocytes. These findings highlight the relevance of TGFBR2-IL-36 interplay in joint homeostasis and IL-36RN as a potential therapeutic agent for OA.
Collapse
Affiliation(s)
- Tieshi Li
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pediatrics, University of Nebraska Medical Center, Children's Hospital & Medical Center, Omaha, NE 68198-5945, USA
| | - Susan Chubinskaya
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA
| | - Alessandra Esposito
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Pediatrics, University of Nebraska Medical Center, Children's Hospital & Medical Center, Omaha, NE 68198-5945, USA
| | - Xin Jin
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | | | - Richard Loeser
- Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Arnavaz A Hakimiyan
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lara Longobardi
- Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Huseyin Ozkan
- Department of Medicine, Division of Rheumatology, Allergy, and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Orthopedics and Traumatology, Gulhane Military Medical School, Ankara, Turkey
| | - Anna Spagnoli
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA.
- Department of Pediatrics, University of Nebraska Medical Center, Children's Hospital & Medical Center, Omaha, NE 68198-5945, USA
| |
Collapse
|
8
|
Sun EY, Fleck AKM, Abu-Hakmeh AE, Kotsakis A, Leonard GR, Wan LQ. Cartilage Metabolism is Modulated by Synovial Fluid Through Metalloproteinase Activity. Ann Biomed Eng 2018; 46:810-818. [PMID: 29589167 DOI: 10.1007/s10439-018-2010-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/04/2017] [Indexed: 01/03/2023]
Abstract
Synovial fluid (SF) contains various cytokines that regulate chondrocyte metabolism and is dynamically associated with joint disease. The objective of this study was to investigate the effects of diluted normal SF on catabolic metabolism of articular cartilage under inflammatory conditions. For this purpose, SF was isolated from healthy bovine joints, diluted, and added to cartilage explant cultures stimulated with interleukin-1 (IL-1) for 12 days. The kinetic release of sulfated glycosaminoglycan (sGAG) and collagen, as well as nitric oxide and gelatinase matrix metalloproteinases were analyzed in the supernatant. Chondrocyte survival and matrix integrity in the explants were evaluated with Live/Dead and histological staining. Diluted synovial fluid treatment suppressed sGAG and collagen release, downregulated the production of nitric oxide and matrix metalloproteinases, reduced IL-1-induced chondrocyte death, and rescued matrix depletion. Our results demonstrate that normal SF can counteract inflammation-driven cartilage catabolism. This study reports on the protective function of healthy SF and the therapeutic potential of recapitulation of SF for cartilage repair.
Collapse
Affiliation(s)
- Eric Y Sun
- Laboratory for Tissue Engineering and Morphogenesis, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA.,Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Allison K M Fleck
- Laboratory for Tissue Engineering and Morphogenesis, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Ahmad E Abu-Hakmeh
- Laboratory for Tissue Engineering and Morphogenesis, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Alexandra Kotsakis
- Laboratory for Tissue Engineering and Morphogenesis, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA
| | - Garrett R Leonard
- Division of Orthopaedic Surgery, Albany Medical Center, 43 New Scotland Avenue, Albany, NY, 12208, USA
| | - Leo Q Wan
- Laboratory for Tissue Engineering and Morphogenesis, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA. .,Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA. .,Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY, 12180, USA. .,Laboratory for Tissue Engineering and Morphogenesis, Rensselaer Polytechnic Institute, Biotech 2147, 110 8th Street, Troy, NY, 12180, USA.
| |
Collapse
|
9
|
Mobasheri A, Bay-Jensen AC, van Spil WE, Larkin J, Levesque MC. Osteoarthritis Year in Review 2016: biomarkers (biochemical markers). Osteoarthritis Cartilage 2017; 25:199-208. [PMID: 28099838 DOI: 10.1016/j.joca.2016.12.016] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/09/2016] [Accepted: 12/14/2016] [Indexed: 02/02/2023]
Abstract
PURPOSE The aim of this "Year in Review" article is to summarize and discuss the implications of biochemical marker related articles published between the Osteoarthritis Research Society International (OARSI) 2015 Congress in Seattle and the OARSI 2016 Congress in Amsterdam. METHODS The PubMed/MEDLINE bibliographic database was searched using the combined keywords: 'biomarker' and 'osteoarthritis'. The PubMed/MEDLINE literature search was conducted using the Advanced Search Builder function (http://www.ncbi.nlm.nih.gov/pubmed/advanced). RESULTS Over two hundred new biomarker-related papers were published during the literature search period. Some papers identified new biomarkers whereas others explored the biological properties and clinical utility of existing markers. There were specific references to several adipocytokines including leptin and adiponectin. ADAM Metallopeptidase with Thrombospondin Type 1 motif 4 (ADAMTS-4) and aggrecan ARGS neo-epitope fragment (ARGS) in synovial fluid (SF) and plasma chemokine (CeC motif) ligand 3 (CCL3) were reported as potential new knee biomarkers. New and refined proteomic technologies and novel assays including a fluoro-microbead guiding chip (FMGC) for measuring C-telopeptide of type II collagen (CTX-II) in serum and urine and a novel magnetic nanoparticle-based technology (termed magnetic capture) for collecting and concentrating CTX-II, were described this past year. CONCLUSION There has been steady progress in osteoarthritis (OA) biomarker research in 2016. Several novel biomarkers were identified and new technologies have been developed for measuring existing biomarkers. However, there has been no "quantum leap" this past year and identification of novel early OA biomarkers remains challenging. During the past year, OARSI published a set of recommendations for the use of soluble biomarkers in clinical trials, which is a major step forward in the clinical use of OA biomarkers and bodes well for future OA biomarker development.
Collapse
Affiliation(s)
- A Mobasheri
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, GU2 7AL, United Kingdom; Faculty of Health and Medical Sciences, Duke of Kent Building, University of Surrey, Guildford, Surrey, GU2 7XH, United Kingdom; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom.
| | - A-C Bay-Jensen
- Rheumatology, Biomarkers and Research, Nordic Bioscience A/S, Herlev, Denmark
| | - W E van Spil
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - J Larkin
- C3 DPU, Immunoinflammation Therapeutic Area, GlaxoSmithKline, King of Prussia, PA, 19406, United States
| | - M C Levesque
- AbbVie Bioresearch Center, 100 Research Drive, Worcester, MA, 01605, United States
| |
Collapse
|
10
|
Poland M, Ten Klooster JP, Wang Z, Pieters R, Boekschoten M, Witkamp R, Meijerink J. Docosahexaenoyl serotonin, an endogenously formed n-3 fatty acid-serotonin conjugate has anti-inflammatory properties by attenuating IL-23-IL-17 signaling in macrophages. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1861:2020-2028. [PMID: 27663185 DOI: 10.1016/j.bbalip.2016.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/24/2016] [Accepted: 09/16/2016] [Indexed: 01/01/2023]
Abstract
Conjugates of fatty acids and amines, including endocannabinoids, are known to play important roles as endogenous signaling molecules. Among these, the ethanolamine conjugate of the n-3 poly unsaturated long chain fatty acid (PUFA) docosahexaenoic acid (22:6n-3) (DHA) was shown to possess strong anti-inflammatory properties. Previously, we identified the serotonin conjugate of DHA, docosahexaenoyl serotonin (DHA-5-HT), in intestinal tissues and showed that its levels are markedly influenced by intake of n-3 PUFAs. However, its biological roles remain to be elucidated. Here, we show that DHA-5-HT possesses potent anti-inflammatory properties by attenuating the IL-23-IL-17 signaling cascade in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Transcriptome analysis revealed that DHA-5-HT down-regulates LPS-induced genes, particularly those involved in generating a CD4+ Th17 response. Hence, levels of PGE2, IL-6, IL-1β, and IL-23, all pivotal macrophage-produced mediators driving the activation of pathogenic Th17 cells in a concerted way, were found to be significantly suppressed by concentrations as low as 100-500nM DHA-5-HT. Furthermore, DHA-5-HT inhibited the ability of RAW264.7 cells to migrate and downregulated chemokines like MCP-1, CCL-20, and gene-expression of CCL-22 and of several metalloproteinases. Gene set enrichment analysis (GSEA) suggested negative overlap with gene sets linked to inflammatory bowel disease (IBD) and positive overlap with gene sets related to the Nrf2 pathway. The specific formation of DHA-5-HT in the gut, combined with increasing data underlining the importance of the IL-23-IL-17 signaling pathway in the etiology of many chronic inflammatory diseases merits further investigation into its potential as therapeutic compound in e.g. IBD or intestinal tumorigenesis.
Collapse
Affiliation(s)
- Mieke Poland
- Division of Human Nutrition, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands.
| | - Jean Paul Ten Klooster
- Institute for Life Sciences & Chemistry, Utrecht University of Applied Sciences, Utrecht, The Netherlands.
| | - Zheng Wang
- Division of Human Nutrition, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands.
| | - Raymond Pieters
- Institute for Life Sciences & Chemistry, Utrecht University of Applied Sciences, Utrecht, The Netherlands.
| | - Mark Boekschoten
- Division of Human Nutrition, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands.
| | - Renger Witkamp
- Division of Human Nutrition, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands.
| | - Jocelijn Meijerink
- Division of Human Nutrition, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|