1
|
Abi Zamer B, Rah B, Jayakumar MN, Abumustafa W, Hamad M, Muhammad JS. DNA methylation-mediated epigenetic regulation of oncogenic RPS2 as a novel therapeutic target and biomarker in hepatocellular carcinoma. Biochem Biophys Res Commun 2024; 696:149453. [PMID: 38181486 DOI: 10.1016/j.bbrc.2023.149453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Ribosomal Protein S2 (RPS2) has emerged as a potential prognostic biomarker due to its involvement in key cellular processes and its altered expression pattern in certain types of cancer. However, its role in hepatocellular carcinoma (HCC) has yet to be investigated. Herein, we analyzed RPS2 mRNA expression and promoter methylation in HCC patient samples and HepG2 cells. Subsequently, loss-of-function experiments were conducted to determine the function of RPS2 in HCC cells in vitro. Our results revealed that RPS2 mRNA expression is significantly elevated, and its promoter is hypomethylated in HCC patient samples compared to controls. In addition, 5-Azacytidine treatment in HepG2 cells decreased RPS2 promoter methylation level and increased its mRNA expression. RPS2 knockdown in HepG2 cells suppressed cell proliferation and promoted apoptosis. Functional pathway analysis of genes positively and negatively associated with RPS2 expression in HCC showed enrichment in ribosomal biogenesis, translation machinery, cell cycle regulation, and DNA processing. Furthermore, utilizing drug-protein 3D docking, we found that doxorubicin, sorafenib, and 5-Fluorouracil, showed high affinity to the active sites of RPS2, and in vitro treatment with these drugs reduced RPS2 expression. For the first time, we report on DNA methylation-mediated epigenetic regulation of RPS2 and its oncogenic role in HCC. Our findings suggest that RPS2 plays a significant role in the development and progression of HCC, hence its potential prognostic and therapeutic utility. Moreover, as epigenetic changes happen early in cancer development, RPS2 may serve as a potential biomarker for tumor progression.
Collapse
Affiliation(s)
- Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, University of Sharjah, United Arab Emirates
| | - Bilal Rah
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Manju Nidagodu Jayakumar
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Wafaa Abumustafa
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, University of Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Research Institute of Medical and Health Sciences, University of Sharjah, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, University of Sharjah, United Arab Emirates.
| |
Collapse
|
2
|
Liu ZQ. Is it still worth renewing nucleoside anticancer drugs nowadays? Eur J Med Chem 2024; 264:115987. [PMID: 38056297 DOI: 10.1016/j.ejmech.2023.115987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023]
Abstract
Nucleoside has situated the convergence point in the discovery of novel drugs for decades, and a large number of nucleoside derivatives have been constructed for screening novel pharmacological properties at various experimental platforms. Notably, nearly 20 nucleosides are approved to be used in the clinic treatment of various cancers. Nevertheless, the blossom of synthetic nucleoside analogs in comparison with the scarcity of nucleoside anticancer drugs leads to a question: Is it still worth insisting on the screening of novel anticancer drugs from nucleoside derivatives? Hence, this review attempts to emphasize the importance of nucleoside analogs in the discovery of novel anticancer drugs. Firstly, we introduce the metabolic procedures of nucleoside anticancer drug (such as 5-fluorouracil) and summarize the designing of novel nucleoside anticancer candidates based on clinically used nucleoside anticancer drugs (such as gemcitabine). Furthermore, we collect anticancer properties of some recently synthesized nucleoside analogs, aiming at emphasizing the availability of nucleoside analogs in the discovery of anticancer drugs. Finally, a variety of synthetic strategies including the linkage of sugar moiety with nucleobase scaffold, modifications on the sugar moiety, and variations on the nucleobase structure are collected to exhibit the abundant protocols in the achievement of nucleoside analogs. Taken the above discussions collectively, nucleoside still advantages for the finding of novel anticancer drugs because of the clearly metabolic procedures, successfully clinic applications, and abundantly synthetic routines.
Collapse
Affiliation(s)
- Zai-Qun Liu
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun, 130021, People's Republic of China.
| |
Collapse
|
3
|
Xia E, Chi Y, Jin L, Shen Y, Hirachan S, Bhandari A, Wang O. Preoperative prediction of lymph node metastasis in patients with papillary thyroid carcinoma by an artificial intelligence algorithm. Am J Transl Res 2021; 13:7695-7704. [PMID: 34377246 PMCID: PMC8340231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND It is necessary to identify patients at risk of developing lymph node metastasis prior to papillary thyroid carcinoma (PTC) surgery. This can be challenging due to limiting factors, and an artificial intelligence algorithm may be a viable option. OBJECTIVE In this study, we aimed to evaluate whether combining an artificial intelligence algorithm (support vector machine and probabilistic neural network) and clinico-pathologic data can preoperatively predict lymph node metastasis of papillary thyroid carcinoma (PTC). METHODS We retrospectively examined 251 PTCs with lymph node metastasis and 194 PTCs without lymph node metastasis. The artificial intelligence algorithm included the support vector machine (SVM) and the probabilistic neural network (PNN). RESULTS The ACR TI-RADS (Thyroid Imaging, Reporting and Data System), number of tumours, no well-defined margin, lymph node status and rim calcification on ultrasonography (US), age, sex, tumour size, and presence of Hashimoto's thyroiditis were significantly more frequent among PTCs with central lymph node metastasis than those without metastasis (P<0.05). The PNN classifier revealed an F1 score of 0.88 on the central lymph node metastasis test set. The SVM classifier revealed an F1 score of 0.93 on the lateral lymph node metastasis test set. Our study demonstrates that combining artificial intelligence algorithms and clinico-pathologic data can effectively predict the lymph node metastasis of papillary thyroid carcinoma prior to surgery.
Collapse
Affiliation(s)
- Erjie Xia
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang Province, People’s Republic of China
| | - Yili Chi
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang Province, People’s Republic of China
| | - Linli Jin
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang Province, People’s Republic of China
| | - Yanyan Shen
- Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang Province, People’s Republic of China
| | - Suzita Hirachan
- Department of Surgery, Breast Unit, Tribhuvan University Teaching HospitalKathmandu, Nepal
| | - Adheesh Bhandari
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang Province, People’s Republic of China
| | - Ouchen Wang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang Province, People’s Republic of China
| |
Collapse
|
4
|
Alanazi SA, Harisa GI, Badran MM, Haq N, Radwan AA, Kumar A, Shakeel F, Alanazi FK. Cholesterol-Conjugate as a New Strategy to Improve the Cytotoxic Effect of 5-Fluorouracil on Liver Cancer: Impact of Liposomal Composition. Curr Drug Deliv 2020; 17:898-910. [PMID: 32072911 DOI: 10.2174/1567201817666200211095452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/13/2019] [Accepted: 01/20/2020] [Indexed: 11/22/2022]
Abstract
Purpose:
Hepatocellular carcinoma (HCC) is a common liver malignancy, which has a low
survival rate of all cancers. 5-fluorouracil (5-FU) is clinically recognized to treat HCC. However, the
success of this therapy is highly limited due to rapid clearance and non- selective distribution. Cholesterol-
conjugate (5-FUC) loaded liposomes proposed to facilitate the transport of 5-FUC into tumor cells
via Low-Density Lipoprotein receptor (LDL receptor) that overexpressed in HCC. Thus, the aim of this
study was to use 5-FUC loaded liposome as a promising strategy to combat HCC and improve the response
of HCC to chemotherapy.
Methods:
5-FUC and 5-FU loaded liposomes were optimized based on Cholesterol (CHO) ratio and
type of phospholipid to achieve a potential effect on HCC. Liposomes were prepared by the thin-film
hydration method, and evaluated in terms of particle size, polydispersity, zeta potential, Entrapment
Efficiency (EE), morphology, drug release and cytotoxicity.
Results:
The obtained liposomes had a suitable nano-range particle size with negative zeta potential,
and acceptable EE%. In vitro drug release of 5-FUC loaded liposomes showed a lower cumulative release
over 24 h as compared to 5-FU loaded liposomes. 5-FUC loaded liposomes exhibited a higher in
vitro cytotoxic effect as compared to the free drug and 5-FU loaded liposomes against HepG2 cell lines
after 48 h via MTT assay.
Conclusion:
These results concluded that 5-FUC loaded liposomes could be used as an alternative tactic
to increase the therapeutic index of 5-FU and pave the way for potential clinical applications.
Collapse
Affiliation(s)
- Saleh Ayed Alanazi
- Department of Pharmaceutics, Kayyali Chair for Pharmaceutical Industries, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gamaleldin Ibrahim Harisa
- Department of Pharmaceutics, Kayyali Chair for Pharmaceutical Industries, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad M. Badran
- Department of Pharmaceutics, Kayyali Chair for Pharmaceutical Industries, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nazrul Haq
- Department of Pharmaceutics, Kayyali Chair for Pharmaceutical Industries, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Awwad Abdoh Radwan
- Department of Pharmaceutics, Kayyali Chair for Pharmaceutical Industries, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ashok Kumar
- Vitiligo Research Chair, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, Kayyali Chair for Pharmaceutical Industries, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fars Kaed Alanazi
- Department of Pharmaceutics, Kayyali Chair for Pharmaceutical Industries, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Li M, Cui ZG, Zakki SA, Feng Q, Sun L, Feril LB, Inadera H. Aluminum chloride causes 5-fluorouracil resistance in hepatocellular carcinoma HepG2 cells. J Cell Physiol 2019; 234:20249-20265. [PMID: 30993729 DOI: 10.1002/jcp.28625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 01/18/2023]
Abstract
Chemoresistance is one of the major obstacles in chemotherapy-based hepatocellular carcinoma (HCC) intervention. Aluminum (Al) is an environmental pollutant that plays a vital role in carcinogenesis, tumorigenesis, and metastasis. However, the effect of Al on chemoresistance remains unknown. 5-Fluorouracil (5-FU) is a widely used antitumor drug. Therefore, we investigated the effects of aluminum chloride (AlCl3 ) on the chemoresistance of HepG2 cells to 5-FU and explored the underlying mechanisms of these effects. The results demonstrated that AlCl3 pretreatment attenuated 5-FU-induced apoptosis through Erk activation and reversed 5-FU-induced cell cycle arrest by downregulating p-Chk2Thr68 levels. In addition, AlCl3 markedly increased the levels of proteins associated with cell migration, such as MMP-2 and MMP-9. Further investigation demonstrated that an Erk inhibitor (U0126) reversed the AlCl3 -induced decrease in apoptosis, enhancement of cell cycle progression, promotion of cell migration, and attenuation of oxidative stress. In summary, AlCl3 induced chemoresistance to 5-FU in HepG2 cells. The present study suggests a potential influence of AlCl3 on 5-FU therapy. These findings may help others to understand and properly address the resistance of HCC to chemotherapeutic agents.
Collapse
Affiliation(s)
- Mengling Li
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Zheng-Guo Cui
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan.,Graduate School of Medicine, Henan Polytechnic University, Jiaozuo, China
| | - Shahbaz Ahmad Zakki
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Qianwen Feng
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Lu Sun
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| | - Loreto B Feril
- Department of Anatomy, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Hidekuni Inadera
- Department of Public Health, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama, Japan
| |
Collapse
|
6
|
Mohiyuddin S, Naqvi S, Packirisamy G. Enhanced antineoplastic/therapeutic efficacy using 5-fluorouracil-loaded calcium phosphate nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:2499-2515. [PMID: 30345213 PMCID: PMC6176813 DOI: 10.3762/bjnano.9.233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
In the past few decades, the successful theranostic application of nanomaterials in drug delivery systems has significantly improved the antineoplastic potency of conventional anticancer therapy. Several mechanistic advantages of nanomaterials, such as enhanced permeability, retention, and low toxicity, as well as surface engineering with targeting moieties, can be used as a tool in enhancing the therapeutic efficacy of current approaches. Inorganic calcium phosphate nanoparticles have the potential to increase the therapeutic potential of antiproliferative drugs due to their excellent loading efficiency, biodegradable nature and controlled-release behaviour. Herein, we report a novel system of 5-fluorouracil (5-FU)-loaded calcium phosphate nanoparticles (CaP@5-FU NPs) synthesized via a reverse micelle method. The formation of monodispersed, spherical, crystalline nanoparticles with an approximate diameter of 160-180 nm was confirmed by different methods. The physicochemical characterization of the synthesized CaP@5-FU NPs was done with transmission electron microscopy (TEM), dynamic light scattering (DLS), field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The antineoplastic potential of the CaP@5-FU NPs against colorectal and lung cancer cells was reported. The CaP@5-FU NPs were found to inhibit half the population (IC50) of lung adenocarcinoma (A549) cells at 32 μg/mL and colorectal (HCT-15) cancer cells at 48.5 μg/mL treatment. The apoptotic induction of CaP@5-FU NPs was confirmed with acridine orange/ethidium bromide (AO/EB) staining and by examining the morphological changes with Hoechst and rhodamine B staining in a time-dependent manner. The apparent membrane bleb formation was observed in FE-SEM micrographs. The up-regulated proapoptotic and down-regulated antiapoptotic gene expressions were further confirmed with semiquantitative reverse transcriptase polymerase chain reaction (PCR). The increased intracellular reactive oxygen species (ROS) were quantified via flow cytometry upon CaP@5-FU NP treatment. Likewise, the cell cycle analysis was performed to confirm the enhanced apoptotic induction. Our study concludes that the calcium phosphate nanocarriers system, i.e. CaP@5-FU NPs, has higher antineoplastic potential as compared to 5-FU alone and can be used as an improved alternative to the antimitotic drug, which causes severe side effects when administrated alone.
Collapse
Affiliation(s)
- Shanid Mohiyuddin
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Saba Naqvi
- Nanobiotechnology Laboratory, Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Gopinath Packirisamy
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
- Nanobiotechnology Laboratory, Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
7
|
Guo J, Li Y, Lam CWK, Wang C, Yao M, Zhang W. ZH-1 enhances the anticancer activity of gemcitabine via deoxyribonucleotide synthesis and apoptotic pathway against A549 cells. Food Chem Toxicol 2018; 119:222-230. [PMID: 29653181 DOI: 10.1016/j.fct.2018.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/06/2018] [Accepted: 04/08/2018] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to investigate the inhibitory effect of ZH-1 ((6S,9aS,6aR,9bR)-6-(phenylcarbonyl)-6,6a,9a,9b-tetrahydro-8H-azolidino[3,4-a]b enzo [e]indolizine-7,9-dione) and its potential interaction with gemcitabine in A549 cells. MTT assay showed that the combined use of gemcitabine and ZH-1 presented a significant inhibition effect on A549 cell growth with the cell viability from 82.3 ± 5.6% to 51.0 ± 6.6%. The CI value was 0.60 suggesting a synergistic effect between these two drugs. HPLC-MS/MS data indicated that combined treatment with gemcitabine and ZH-1 induced a significant decrease in deoxyadenosine triphosphate, deoxycytidine triphosphate, deoxyguanosine triphosphate and deoxythymidine triphosphate levels compared with use of gemcitabine alone. Five RNs as well as seven dRNs were considered to be significantly contributive to the discrimination of samples. Furthermore, western blot analysis revealed that the combination treatment caused A549 cell apoptosis via the intrinsic pathway by up-regulating Bax/Bcl-2 ratio, activating caspase-9, caspase-3 and poly-ADP-ribose polymerase, and promoting caspase-7, caspase-9 and poly-ADP-ribose polymerase cleavage. Collectively, the combined treatment with gemcitabine and ZH-1 exerted a strong synergistic action on anticancer activity through growth inhibition, perturbations in ribonucleotides and deoxyribonucleotides and the activation of intrinsic apoptotic signaling pathway.
Collapse
Affiliation(s)
- Jianru Guo
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Yan Li
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Caiyun Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Meicun Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China.
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China.
| |
Collapse
|
8
|
Li M, Zhang H, Chen B, Wu Y, Guan L. Prediction of pKa Values for Neutral and Basic Drugs based on Hybrid Artificial Intelligence Methods. Sci Rep 2018; 8:3991. [PMID: 29507318 PMCID: PMC5838250 DOI: 10.1038/s41598-018-22332-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/21/2018] [Indexed: 11/23/2022] Open
Abstract
The pKa value of drugs is an important parameter in drug design and pharmacology. In this paper, an improved particle swarm optimization (PSO) algorithm was proposed based on the population entropy diversity. In the improved algorithm, when the population entropy was higher than the set maximum threshold, the convergence strategy was adopted; when the population entropy was lower than the set minimum threshold the divergence strategy was adopted; when the population entropy was between the maximum and minimum threshold, the self-adaptive adjustment strategy was maintained. The improved PSO algorithm was applied in the training of radial basis function artificial neural network (RBF ANN) model and the selection of molecular descriptors. A quantitative structure-activity relationship model based on RBF ANN trained by the improved PSO algorithm was proposed to predict the pKa values of 74 kinds of neutral and basic drugs and then validated by another database containing 20 molecules. The validation results showed that the model had a good prediction performance. The absolute average relative error, root mean square error, and squared correlation coefficient were 0.3105, 0.0411, and 0.9685, respectively. The model can be used as a reference for exploring other quantitative structure-activity relationships.
Collapse
Affiliation(s)
- Mengshan Li
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China.
| | - Huaijing Zhang
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| | - Bingsheng Chen
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| | - Yan Wu
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| | - Lixin Guan
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
9
|
Farooq M, Al Marhoon ZM, Taha NA, Baabbad AA, Al-Wadaan MA, El-Faham A. Synthesis of Novel Class of N-Alkyl-isatin-3-iminobenzoic Acid Derivatives and Their Biological Activity in Zebrafish Embryos and Human Cancer Cell Lines. Biol Pharm Bull 2017; 41:350-359. [PMID: 29249771 DOI: 10.1248/bpb.b17-00674] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isatin (1H-indole-2,3-dione) and many of its derivatives are reported to have pharmacological properties. In this study, we report the synthesis and biological activity of a new class of N-alkyl-isatin-3-iminobenzoic acid derivatives prepared via the condensation of N-alkyl isatin with 4-aminobenzoic acid by conventional, microwave, and ultrasonic methods. Microwave irradiation yielded the products in a shorter reaction time with higher yields and purities. The compounds were screened in zebrafish embryos, and also in three human cancer cell lines (MCF7, HepG2, and Jurkat) and one normal human cell line i.e., human foreskin cell line (HFF-1). Two compounds (3c, 3f) were found to be highly effective against hematopoiesis in live zebrafish embryo at 10 µM concentration. The developmental stage-dependent treatment indicated that these compounds interfered with the differentiation of hemangioblasts to hematopoietic cells in zebrafish embryos. The comparative screening of semaxanib (SU5416) (a known isatin derivatives), to compounds synthesized in this study, revealed the contrasting effects of these two classes of isatin derivatives on zebrafish hematopoiesis. Most of the N-alkyl-isatin-3-iminobenzoic acid derivatives were toxic on cancer and non-cancer tested human cells lines, however, the compounds 3c and 3f specifically affected the cell viability of Jurkat cells (human hematological cell line) with least IC50 values of 16.5 and 7.8 µM. The structure-activity relationship (SAR) analysis indicated that the substitution pattern of the isatin at the 5-position was vital for activity. The in vivo and in vitro biological activities of these compounds suggested their potential use as pharmaceutical compounds for human leukemia treatment.
Collapse
Affiliation(s)
- Muhammad Farooq
- Bioproducts Research Chair, College of Science, Department of Zoology, King Saud University
| | | | - Nael Abu Taha
- Bioproducts Research Chair, College of Science, Department of Zoology, King Saud University
| | | | | | - Ayman El-Faham
- Department of Chemistry, College of Science, King Saud University.,Department of Chemistry, Faculty of Science, Alexandria University
| |
Collapse
|
10
|
Tang BD, Xia X, Lv XF, Yu BX, Yuan JN, Mai XY, Shang JY, Zhou JG, Liang SJ, Pang RP. Inhibition of Orai1-mediated Ca 2+ entry enhances chemosensitivity of HepG2 hepatocarcinoma cells to 5-fluorouracil. J Cell Mol Med 2016; 21:904-915. [PMID: 27878958 PMCID: PMC5387165 DOI: 10.1111/jcmm.13029] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/29/2016] [Indexed: 11/27/2022] Open
Abstract
Increasing evidence supports that activation of store-operated Ca2+ entry (SOCE) is implicated in the chemoresistance of cancer cells subjected to chemotherapy. However, the molecular mechanisms underlying chemoresistance are not well understood. In this study, we aim to investigate whether 5-FU induces hepatocarcinoma cell death through regulating Ca2+ -dependent autophagy. [Ca2+ ]i was measured using fura2/AM dye. Protein expression was determined by Western blotting and immunohistochemistry. We found that 5-fluorouracil (5-FU) induced autophagic cell death in HepG2 hepatocarcinoma cells by inhibiting PI3K/AKT/mTOR pathway. Orai1 expression was obviously elevated in hepatocarcinoma tissues. 5-FU treatment decreased SOCE and Orai1 expressions, but had no effects on Stim1 and TRPC1 expressions. Knockdown of Orai1 or pharmacological inhibition of SOCE enhanced 5-FU-induced inhibition of PI3K/AKT/mTOR pathway and potentiated 5-FU-activated autophagic cell death. On the contrary, ectopic overexpression of Orai1 antagonizes 5-FU-induced autophagy and cell death. Our findings provide convincing evidence to show that Orai1 expression is increased in hepatocarcinoma tissues. 5-FU can induce autophagic cell death in HepG2 hepatocarcinoma cells through inhibition of SOCE via decreasing Orai1 expression. These findings suggest that Orai1 expression is a predictor of 5-FU sensitivity for hepatocarcinoma treatment and blockade of Orai1-mediated Ca2+ entry may be a promising strategy to sensitize hepatocarcinoma cells to 5-FU treatment.
Collapse
Affiliation(s)
- Bao-Dong Tang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xin Xia
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Fei Lv
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Bei-Xin Yu
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jia-Ni Yuan
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Yi Mai
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jin-Yan Shang
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jia-Guo Zhou
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Si-Jia Liang
- Department of Pharmacology, Cardiac and Cerebrovascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Rui-Ping Pang
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Department of Physiology, Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
11
|
Guo JR, Chen QQ, Lam CWK, Wang CY, Wong VKW, Chang ZF, Zhang W. Profiling ribonucleotide and deoxyribonucleotide pools perturbed by gemcitabine in human non-small cell lung cancer cells. Sci Rep 2016; 6:37250. [PMID: 27845436 PMCID: PMC5109029 DOI: 10.1038/srep37250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/26/2016] [Indexed: 12/15/2022] Open
Abstract
In this study, we investigated the dosage effect of gemcitabine, an inhibitor of ribonucleotide reductase (RR), on cellular levels of ribonucleotides and deoxyribonucleotides using high performance liquid chromatography-electrospray ionization tandem mass spectrometric method. As anticipated, after 4-h incubation of non-small cell lung cancer (A549) cells with gemcitabine at 0.5 and 2 μM, there were consistent reductions in levels of deoxyribonucleoside diphosphates (dNDP) and their corresponding deoxyribonucleoside triphosphates (dNTP). However, after 24-h exposure to 0.5 μM gemcitabine, the amounts of dNTP were increased by about 3 fold, whereas cells after 24-h 2 μM gemcitabine treatment exhibited deoxycytidine diphosphate (dCDP), deoxyadenosine diphosphate (dADP) and deoxyguanosine diphosphate (dGDP) levels less than 50% of control values, with deoxycytidine triphosphate (dCTP) and deoxyguanosine triphosphate (dGTP) returning to the control level. Using cell cycle analysis, we found that 24-h incubation at 0.5 μM gemcitabine resulted in a significant increase in S phase arrest, while 2 μM treatment increased G0/G1 population. Our data demonstrated the correlation between the level of RR and the increased levels of dNTPs in the group of 0.5 μM treatment for 24-h with a markedly reduced level of dFdCTP. Accordingly, we proposed that the dosage of dFdC could determine the arrested phase of cell cycle, in turn affecting the recovery of dNTPs pools.
Collapse
Affiliation(s)
- Jian-Ru Guo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Qian-Qian Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Cai-Yun Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Zee-Fen Chang
- Institute of Molecular Medicine; College of Medicine; National Taiwan University, Taipei, Taiwan (R.O.C.)
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
12
|
Effect of Phyllanthus amarus Extract on 5-Fluorouracil-Induced Perturbations in Ribonucleotide and Deoxyribonucleotide Pools in HepG2 Cell Line. Molecules 2016; 21:molecules21091254. [PMID: 27657029 PMCID: PMC6273671 DOI: 10.3390/molecules21091254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to investigate the antitumor activities of Phyllanthus amarus (PHA) and its potential of herb–drug interactions with 5-Fluorouracil (5-FU). Cell viability, ribonucleotides (RNs) and deoxyribonucleotides (dRNs) levels, cell cycle distribution, and expression of thymidylate synthase (TS) and ribonucleotide reductase (RR) proteins were measured with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, high performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS) method, flow cytometry and Western blot analysis, respectively. Our standardized PHA extract showed toxicity to HepG2 cells at high concentrations after 72 h exposure and induced G2/M cell cycle arrest. Combined use of 5-FU with PHA resulted in significant decreases in ATP, CTP, GTP, UTP and dTTP levels, while AMP, CMP, GMP and dUMP levels increased significantly compared with use of 5-FU alone. Further, PHA could increase the role of cell cycle arrest at S phase induced by 5-FU. Although PHA alone had no direct impact on TS and RR, PHA could change the levels of RNs and dRNs when combined with 5-FU. This may be due to cell cycle arrest or regulation of key enzyme steps in intracellular RNs and dRNs metabolism.
Collapse
|