1
|
Le HT, Lubian AF, Bowring B, van der Poorten D, Iredell J, George J, Venturini C, Ahlenstiel G, Read S. Using a human colonoid-derived monolayer to study bacteriophage translocation. Gut Microbes 2024; 16:2331520. [PMID: 38517357 PMCID: PMC10962583 DOI: 10.1080/19490976.2024.2331520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Bacteriophages (phages) are estimated to be the most abundant microorganisms on Earth. Their presence in human blood suggests that they can translocate from non-sterile sites such as the gastrointestinal tract where they are concentrated. To examine phage translocation ex vivo, we adapted a primary colonoid monolayer model possessing cell diversity and architecture, and a thick layer of mucus akin to the colonic environment in vivo. We show that the colonoid monolayer is superior to the Caco-2 cell-line model, possessing intact and organized tight junctions and generating a physiologically relevant mucus layer. We showed, using two different phages, that translocation across the colonoid monolayer was largely absent in differentiated monolayers that express mucus, unlike Caco-2 cultures that expressed little to no mucus. By stimulating mucus production or removing mucus, we further demonstrated the importance of colonic mucus in preventing phage translocation. Finally, we used etiological drivers of gut permeability (alcohol, fat, and inflammatory cytokines) to measure their effects on phage translocation, demonstrating that all three stimuli have the capacity to amplify phage translocation. These findings suggest that phage translocation does occur in vivo but may be largely dependent on colonic mucus, an important insight to consider in future phage applications.
Collapse
Affiliation(s)
- Huu Thanh Le
- Blacktown Clinical School, Western Sydney University, Sydney, Australia
- Storr Liver Centre, Westmead Institute for Medical Research, Sydney, Australia
| | - Alicia Fajardo Lubian
- Centre for Infectious Diseases and Microbiology (CIDM), Westmead Institute for Medical Research, Sydney, Australia
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Bethany Bowring
- Centre for Infectious Diseases and Microbiology (CIDM), Westmead Institute for Medical Research, Sydney, Australia
| | - David van der Poorten
- Department of Hepatology and Gastroenterology, Westmead Hospital, Westmead, Australia
| | - Jonathan Iredell
- Centre for Infectious Diseases and Microbiology (CIDM), Westmead Institute for Medical Research, Sydney, Australia
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Sydney, Australia
- Department of Hepatology and Gastroenterology, Westmead Hospital, Westmead, Australia
- School of Medicine, The University of Sydney, Sydney, Australia
| | - Carola Venturini
- Centre for Infectious Diseases and Microbiology (CIDM), Westmead Institute for Medical Research, Sydney, Australia
- Sydney School of Veterinary Science, The University of Sydney, Sydney, Australia
| | - Golo Ahlenstiel
- Blacktown Clinical School, Western Sydney University, Sydney, Australia
- Storr Liver Centre, Westmead Institute for Medical Research, Sydney, Australia
- Blacktown Mt Druitt Hospital, Sydney, Australia
| | - Scott Read
- Blacktown Clinical School, Western Sydney University, Sydney, Australia
- Storr Liver Centre, Westmead Institute for Medical Research, Sydney, Australia
- Blacktown Mt Druitt Hospital, Sydney, Australia
| |
Collapse
|
2
|
Moreno-Mendieta S, Guillén D, Vasquez-Martínez N, Hernández-Pando R, Sánchez S, Rodríguez-Sanoja R. Understanding the Phagocytosis of Particles: the Key for Rational Design of Vaccines and Therapeutics. Pharm Res 2022; 39:1823-1849. [PMID: 35739369 DOI: 10.1007/s11095-022-03301-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/23/2022] [Indexed: 12/17/2022]
Abstract
A robust comprehension of phagocytosis is crucial for understanding its importance in innate immunity. A detailed description of the molecular mechanisms that lead to the uptake and clearance of endogenous and exogenous particles has helped elucidate the role of phagocytosis in health and infectious or autoimmune diseases. Furthermore, knowledge about this cellular process is important for the rational design and development of particulate systems for the administration of vaccines or therapeutics. Depending on these specific applications and the required biological responses, particles must be designed to encourage or avoid their phagocytosis and prolong their circulation time. Functionalization with specific polymers or ligands and changes in the size, shape, or surface of particles have important effects on their recognition and internalization by professional and nonprofessional phagocytes and have a major influence on their fate and safety. Here, we review the phagocytosis of particles intended to be used as carrier or delivery systems for vaccines or therapeutics, the cells involved in this process depending on the route of administration, and the strategies employed to obtain the most desirable particles for each application through the manipulation of their physicochemical characteristics. We also offer a view of the challenges and potential opportunities in the field and give some recommendations that we expect will enable the development of improved approaches for the rational design of these systems.
Collapse
Affiliation(s)
- Silvia Moreno-Mendieta
- Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México, Mexico. .,Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, 04510, Ciudad de México, Mexico.
| | - Daniel Guillén
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Nathaly Vasquez-Martínez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, 04510, Ciudad de México, Mexico.,Doctorado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Delegación Tlalpan, Ciudad de México, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, 04510, Ciudad de México, Mexico
| | - Romina Rodríguez-Sanoja
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, 04510, Ciudad de México, Mexico.
| |
Collapse
|
3
|
Shek D, Chen D, Read SA, Ahlenstiel G. Examining the gut-liver axis in liver cancer using organoid models. Cancer Lett 2021; 510:48-58. [PMID: 33891996 DOI: 10.1016/j.canlet.2021.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 12/23/2022]
Abstract
The World Health Organization predicts that by 2030 liver cancer will cause 1 million deaths annually, thus becoming the third most lethal cancer worldwide. Hepatocellular carcinoma and cholangiocarcinoma are the two major primary cancer subtypes involving the liver. Both are often diagnosed late, and hence response to treatment and survival are poor. It is therefore of utmost importance to understand the mechanisms by which liver cancers initiate and progress. The causes of primary liver cancer are diverse, resulting primarily from obesity, chronic alcohol abuse or viral hepatitis. Importantly, both alcohol and high fat diet can promote intestinal permeability, enabling microbial translocation from the gut into the liver. As a result, these microbial antigens and metabolites exacerbate hepatic inflammation and fibrosis, increasing the risk of primary liver cancer. Organoids are primary, three-dimensional, stem cell derived liver models that can recapitulate many of the disease phenotypes observed in vivo. This review aims to summarize the advantages of organoid culture to examine the gut-liver axis with respect to cancer initiation and progression. In particular, the use of gut and liver organoid mono- and co-cultures together and with immune cell populations to best recapitulate disease mechanisms and develop therapeutic interventions.
Collapse
Affiliation(s)
- Dmitrii Shek
- Blacktown Clinical School, Western Sydney University, Blacktown, NSW, Australia; Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia; Blacktown Hospital, Blacktown, NSW, Australia
| | - Dishen Chen
- Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Scott A Read
- Blacktown Clinical School, Western Sydney University, Blacktown, NSW, Australia; Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia; Blacktown Hospital, Blacktown, NSW, Australia.
| | - Golo Ahlenstiel
- Blacktown Clinical School, Western Sydney University, Blacktown, NSW, Australia; Storr Liver Centre, The Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia; Blacktown Hospital, Blacktown, NSW, Australia.
| |
Collapse
|
4
|
Stentiford GD, Bass D, Williams BAP. Ultimate opportunists-The emergent Enterocytozoon group Microsporidia. PLoS Pathog 2019; 15:e1007668. [PMID: 31048922 PMCID: PMC6497299 DOI: 10.1371/journal.ppat.1007668] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Grant D. Stentiford
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment Fisheries and Aquaculture Science, Weymouth Laboratory, Weymouth, Dorset, United Kingdom
- Centre for Sustainable Aquaculture Futures, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- * E-mail:
| | - David Bass
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment Fisheries and Aquaculture Science, Weymouth Laboratory, Weymouth, Dorset, United Kingdom
- Centre for Sustainable Aquaculture Futures, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- Department of Life Sciences, The Natural History Museum, London, United Kingdom
| | - Bryony A. P. Williams
- Centre for Sustainable Aquaculture Futures, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|