1
|
Das P, Saha P, Singh M, Kumar P, Patnaik S. Effects of electronic correlation on topological properties of Kagome semimetal Ni 3In 2S 2. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:485702. [PMID: 39191268 DOI: 10.1088/1361-648x/ad7439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
Kagome metals gain attention as they manifest a spectrum of quantum phenomena such as superconductivity, charge order, frustrated magnetism, and allied correlated states of condensed matter. With regard to electronic band structure, several of them exhibit non-trivial topological characteristics. Here, we present a thorough investigation on the growth and the physical properties of single crystals of Ni3In2S2which is established to be a Dirac nodal line Kagome semimetal. Extensive characterization is attained through temperature and field-dependent resistivity, angle-dependent magnetoresistance (MR) and specific heat measurements. The central question we seek to address is the effect of electronic correlations in suppressing the manifestation of topological characteristics. In most metals, the Fermi liquid behaviour is restricted to a narrow range of temperatures. Here, we show that Ni3In2S2follows the Fermi-liquid behaviour up to 86 K. This phenomenon is further supported by a high Kadowaki-Woods ratio obtained through specific heat analysis. Different interpretations of the magneto-transport study reveal that MR exhibits linear behaviour, suggesting the presence of Dirac fermions at lower temperatures. The angle-dependent magneto-transport study obeys the Voigt-Thomson formula. This, on the contrary, implies the classical origin of MR. Thus, the effect of strong electron correlation in Ni3In2S2manifests itself in the anisotropic magneto-transport. Furthermore, the magnetization measurement shows the presence of de-Haas van Alphen oscillations. Calculations of the Berry phase provide insights into the topological features in the Kagome semimetal Ni3In2S2.
Collapse
Affiliation(s)
- P Das
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - P Saha
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - M Singh
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - P Kumar
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| | - S Patnaik
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
2
|
Christovam DS, Ferreira-Carvalho M, Marino A, Sundermann M, Takegami D, Melendez-Sans A, Tsuei KD, Hu Z, Rößler S, Valvidares M, Haverkort MW, Liu Y, Bauer ED, Tjeng LH, Zwicknagl G, Severing A. Spectroscopic Evidence of Kondo-Induced Quasiquartet in CeRh_{2}As_{2}. PHYSICAL REVIEW LETTERS 2024; 132:046401. [PMID: 38335370 DOI: 10.1103/physrevlett.132.046401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 02/12/2024]
Abstract
CeRh_{2}As_{2} is a new multiphase superconductor with strong suggestions for an additional itinerant multipolar ordered phase. The modeling of the low-temperature properties of this heavy-fermion compound requires a quartet Ce^{3+} crystal-field ground state. Here, we provide the evidence for the formation of such a quartet state using x-ray spectroscopy. Core-level photoelectron and x-ray absorption spectroscopy confirm the presence of Kondo hybridization in CeRh_{2}As_{2}. The temperature dependence of the linear dichroism unambiguously reveals the impact of Kondo physics for coupling the Kramer's doublets into an effective quasiquartet. Nonresonant inelastic x-ray scattering data find that the |Γ_{7}^{-}⟩ state with its lobes along the 110 direction of the tetragonal structure (xy orientation) contributes most to the multiorbital ground state of CeRh_{2}As_{2}.
Collapse
Affiliation(s)
- Denise S Christovam
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
| | - Miguel Ferreira-Carvalho
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
- Institute of Physics II, University of Cologne, Zülpicher Straße 77, 50937 Cologne, Germany
| | - Andrea Marino
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
| | - Martin Sundermann
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
- PETRA III, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Daisuke Takegami
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
| | - Anna Melendez-Sans
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
| | - Ku Ding Tsuei
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30077, Taiwan
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
| | - Sahana Rößler
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
| | - Manuel Valvidares
- ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona 08290, Spain
| | - Maurits W Haverkort
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany
| | - Yu Liu
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Eric D Bauer
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Liu Hao Tjeng
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
| | - Gertrud Zwicknagl
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
- Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Andrea Severing
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
- Institute of Physics II, University of Cologne, Zülpicher Straße 77, 50937 Cologne, Germany
| |
Collapse
|
3
|
Fuhrman WT, Sidorenko A, Hänel J, Winkler H, Prokofiev A, Rodriguez-Rivera JA, Qiu Y, Blaha P, Si Q, Broholm CL, Paschen S. Pristine quantum criticality in a Kondo semimetal. SCIENCE ADVANCES 2021; 7:eabf9134. [PMID: 34138738 PMCID: PMC8133744 DOI: 10.1126/sciadv.abf9134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
The observation of quantum criticality in diverse classes of strongly correlated electron systems has been instrumental in establishing ordering principles, discovering new phases, and identifying the relevant degrees of freedom and interactions. At focus so far have been insulators and metals. Semimetals, which are of great current interest as candidate phases with nontrivial topology, are much less explored in experiments. Here, we study the Kondo semimetal CeRu4Sn6 by magnetic susceptibility, specific heat, and inelastic neutron scattering experiments. The power-law divergence of the magnetic Grünesien ratio reveals that, unexpectedly, this compound is quantum critical without tuning. The dynamical energy over temperature scaling in the neutron response throughout the Brillouin zone and the temperature dependence of the static uniform susceptibility, indicate that temperature is the only energy scale in the criticality. Such behavior, which has been associated with Kondo destruction quantum criticality in metallic systems, could be generic in the semimetal setting.
Collapse
Affiliation(s)
- Wesley T Fuhrman
- Institute for Quantum Matter and Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andrey Sidorenko
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria
| | - Jonathan Hänel
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria
| | - Hannes Winkler
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria
| | - Andrey Prokofiev
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria
| | - Jose A Rodriguez-Rivera
- Department of Materials Sciences, University of Maryland, College Park, MD 20742, USA
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Yiming Qiu
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Peter Blaha
- Institute of Materials Chemistry, Vienna University of Technology, 1040 Vienna, Austria
| | - Qimiao Si
- Department of Physics and Astronomy, Rice Center for Quantum Materials, Rice University, Houston, TX 77005, USA
| | - Collin L Broholm
- Institute for Quantum Matter and Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218, USA
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Silke Paschen
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria.
- Department of Physics and Astronomy, Rice Center for Quantum Materials, Rice University, Houston, TX 77005, USA
| |
Collapse
|
4
|
Weiland A, Wei K, McCandless GT, Baumbach RE, Chan JY. Fantastic n = 4: Ce 5Co 4+xGe 13-ySn y of the A n+1M nX 3n+1 homologous series. J Chem Phys 2021; 154:114707. [PMID: 33752369 DOI: 10.1063/5.0045015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ce-based intermetallics are of interest due to the potential to study the interplay of localized magnetic moments and conduction electrons. Our work on Ce-based germanides led to the identification of a new homologous series An+1MnX3n+1 (A = rare earth, M = transition metal, X = tetrels, and n = 1-6). This work presents the single-crystal growth, structure determination, and anisotropic magnetic properties of the n = 4 member of the Cen+1ConGe3n+1 homologous series. Ce5Co4+xGe13-ySny consists of three Ce sites, three Co sites, seven Ge sites, and two Sn sites, and the crystal structure is best modeled in the orthorhombic space group Cmmm where a = 4.3031(8) Å, b = 45.608(13) Å, and c = 4.3264(8) Å, which is in close agreement with the previously reported Sn-free analog where a = 4.265(1) Å, b = 45.175(9) Å, and c = 4.293(3) Å. Anisotropic magnetic measurements show Kondo-like behavior and three magnetic transitions at 6, 4.9, and 2.4 K for Ce5Co4+xGe13-ySny.
Collapse
Affiliation(s)
- Ashley Weiland
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Kaya Wei
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - Gregory T McCandless
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Ryan E Baumbach
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - Julia Y Chan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
5
|
Ablett JM, Prieur D, Céolin D, Lassalle-Kaiser B, Lebert B, Sauvage M, Moreno T, Bac S, Balédent V, Ovono A, Morand M, Gélebart F, Shukla A, Rueff JP. The GALAXIES inelastic hard X-ray scattering end-station at Synchrotron SOLEIL. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:263-271. [PMID: 30655494 DOI: 10.1107/s160057751801559x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
GALAXIES is an in-vacuum undulator hard X-ray micro-focused beamline dedicated to the study of the electronic structure of materials with high energy resolution using both photoelectron spectroscopy and inelastic X-ray scattering and under both non-resonant (NR-IXS) and resonant (RIXS) conditions. Due to the penetrating power of hard X-rays and the `photon-in/photon-out' technique, the sample environment is not a limitation. Materials under extreme conditions, for example in diamond anvil cells or catalysis chambers, thus constitute a major research direction. Here, the design and performance of the inelastic X-ray scattering end-station that operates in the energy range from ∼4 keV up to 12 keV is reported, and its capabilities are highlighted using a selection of data taken from recently performed experiments. The ability to scan `on the fly' the incident and scattered/emitted X-ray energies, and the sample position enables fast data collection and high experimental throughput. A diamond X-ray transmission phase retarder, which can be used to generate circularly polarized light, will also be discussed in the light of the recent RIXS-MCD approach.
Collapse
Affiliation(s)
- J M Ablett
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - D Prieur
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - D Céolin
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - B Lassalle-Kaiser
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - B Lebert
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - M Sauvage
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - Th Moreno
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - S Bac
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - V Balédent
- Laboratoire de Physique des Solides, 91400 Orsay, France
| | - A Ovono
- École Nationale Supérieure d'Ingénieurs de Limoges, France
| | - M Morand
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, UMR CNRS 7590, MNHN, IRD UMR 206, 4 Place Jussieu, F-75005 Paris, France
| | - F Gélebart
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, UMR CNRS 7590, MNHN, IRD UMR 206, 4 Place Jussieu, F-75005 Paris, France
| | - A Shukla
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, UMR CNRS 7590, MNHN, IRD UMR 206, 4 Place Jussieu, F-75005 Paris, France
| | - J P Rueff
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| |
Collapse
|
6
|
The stannides REIr 2Sn 4 ( RE=La, Ce, Pr, Nd, Sm). ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2018. [DOI: 10.1515/znb-2018-0115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Abstract
The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm) were synthesized from the elements by arc melting or by induction melting in sealed niobium containers. They crystallize with the NdRh2Sn4 type structure, space group Pnma. The samples were characterized by powder X-ray diffraction (Guinier technique). Three structures were refined from single-crystal X-ray data: a=1844.5(2), b=450.33(4), c=716.90(6) pm, wR2=0.0323, 1172 F
2 values, 44 variables for LaIr2Sn4, a=1840.08(2), b=448.24(4), c=719.6(1) pm, wR2=0.0215, 1265 F
2 values, 45 variables for Ce1.13Ir2Sn3.87, and a=1880.7(1), b=446.2(1), c=733.0(1) pm, wR2=0.0845, 836 F
2 values, 45 variables for Ce1.68Ir2Sn3.32. The structures consist of three-dimensional [Ir2Sn4] polyanionic networks in which the rare earth atoms fill pentagonal prismatic channels. The striking structural motif concerns the formation of solid solutions RE
1+
x
Ir2Sn4−
x
on the Sn4 sites, which have similar coordination as the RE sites. Temperature dependent magnetic susceptibility measurements revealed diamagnetic behavior for LaIr2Sn4. CeIr2Sn4, PrIr2Sn4 and NdIr2Sn4 show Curie-Weiss paramagnetism while SmIr2Sn4 exhibits typical van Vleck paramagnetism. Antiferromagnetic ground states were observed for CeIr2Sn4 (T
N=3.3 K) and SmIr2Sn4 (T
N=3.8 K). 119Sn Mössbauer spectra show a close superposition of four sub-spectra which can be distinguished through their isomer shift and the quadrupole splitting parameter.
Collapse
|
7
|
Similar temperature scale for valence changes in Kondo lattices with different Kondo temperatures. Nat Commun 2018; 9:2011. [PMID: 29789552 PMCID: PMC5964219 DOI: 10.1038/s41467-018-04438-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/18/2018] [Indexed: 11/21/2022] Open
Abstract
The Kondo model predicts that both the valence at low temperatures and its temperature dependence scale with the characteristic energy TK of the Kondo interaction. Here, we study the evolution of the 4f occupancy with temperature in a series of Yb Kondo lattices using resonant X-ray emission spectroscopy. In agreement with simple theoretical models, we observe a scaling between the valence at low temperature and TK obtained from thermodynamic measurements. In contrast, the temperature scale Tv at which the valence increases with temperature is almost the same in all investigated materials while the Kondo temperatures differ by almost four orders of magnitude. This observation is in remarkable contradiction to both naive expectation and precise theoretical predictions of the Kondo model, asking for further theoretical work in order to explain our findings. Our data exclude the presence of a quantum critical valence transition in YbRh2Si2. The competition between interactions promoting magnetic order and those suppressing magnetism causes unusual electronic behaviour in Kondo lattice materials. Here, the authors show the energy scale for valence fluctuations is not controlled by the Kondo scale, contrary to expectations from single-site models.
Collapse
|
8
|
Sundermann M, Yavaş H, Chen K, Kim DJ, Fisk Z, Kasinathan D, Haverkort MW, Thalmeier P, Severing A, Tjeng LH. 4f Crystal Field Ground State of the Strongly Correlated Topological Insulator SmB_{6}. PHYSICAL REVIEW LETTERS 2018; 120:016402. [PMID: 29350947 DOI: 10.1103/physrevlett.120.016402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/25/2017] [Indexed: 06/07/2023]
Abstract
We investigated the crystal-electric field ground state of the 4f manifold in the strongly correlated topological insulator SmB_{6} using core-level nonresonant inelastic x-ray scattering. The directional dependence of the scattering function that arises from higher multipole transitions establishes unambiguously that the Γ_{8} quartet state of the Sm f^{5} J=5/2 configuration governs the ground-state symmetry and, hence, the topological properties of SmB_{6}. Our findings contradict the results of density functional calculations reported so far.
Collapse
Affiliation(s)
- M Sundermann
- Institute of Physics II, University of Cologne, Zülpicher Straße 77, 50937 Cologne, Germany
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
| | - H Yavaş
- PETRA III, Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - K Chen
- Institute of Physics II, University of Cologne, Zülpicher Straße 77, 50937 Cologne, Germany
| | - D J Kim
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Z Fisk
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - D Kasinathan
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
| | - M W Haverkort
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany
| | - P Thalmeier
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
| | - A Severing
- Institute of Physics II, University of Cologne, Zülpicher Straße 77, 50937 Cologne, Germany
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
| | - L H Tjeng
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
| |
Collapse
|
9
|
Abstract
While electronic states with nontrivial topology have traditionally been known in insulators, they have been evidenced in metals during the past 2 years. Such Weyl semimetals show topological protection while conducting electricity both in the bulk and on the surface. An outstanding question is whether topological protection can happen in metals with strong correlations. Here, we report theoretical work on a strongly correlated lattice model to demonstrate the emergence of a Weyl–Kondo semimetal. We identify Weyl fermions in the bulk and Fermi arcs on the surface, both of which are associated with the many-body phenomenon called the Kondo effect. We determine a key signature of this Weyl–Kondo semimetal, which is realized in a recently discovered heavy-fermion compound. Insulating states can be topologically nontrivial, a well-established notion that is exemplified by the quantum Hall effect and topological insulators. By contrast, topological metals have not been experimentally evidenced until recently. In systems with strong correlations, they have yet to be identified. Heavy-fermion semimetals are a prototype of strongly correlated systems and, given their strong spin-orbit coupling, present a natural setting to make progress. Here, we advance a Weyl–Kondo semimetal phase in a periodic Anderson model on a noncentrosymmetric lattice. The quasiparticles near the Weyl nodes develop out of the Kondo effect, as do the surface states that feature Fermi arcs. We determine the key signatures of this phase, which are realized in the heavy-fermion semimetal Ce3Bi4Pd3. Our findings provide the much-needed theoretical foundation for the experimental search of topological metals with strong correlations and open up an avenue for systematic studies of such quantum phases that naturally entangle multiple degrees of freedom.
Collapse
|
10
|
Dzsaber S, Prochaska L, Sidorenko A, Eguchi G, Svagera R, Waas M, Prokofiev A, Si Q, Paschen S. Kondo Insulator to Semimetal Transformation Tuned by Spin-Orbit Coupling. PHYSICAL REVIEW LETTERS 2017; 118:246601. [PMID: 28665644 DOI: 10.1103/physrevlett.118.246601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Indexed: 06/07/2023]
Abstract
Recent theoretical studies of topologically nontrivial electronic states in Kondo insulators have pointed to the importance of spin-orbit coupling (SOC) for stabilizing these states. However, systematic experimental studies that tune the SOC parameter λ_{SOC} in Kondo insulators remain elusive. The main reason is that variations of (chemical) pressure or doping strongly influence the Kondo coupling J_{K} and the chemical potential μ-both essential parameters determining the ground state of the material-and thus possible λ_{SOC} tuning effects have remained unnoticed. Here, we present the successful growth of the substitution series Ce_{3}Bi_{4}(Pt_{1-x}Pd_{x})_{3} (0≤x≤1) of the archetypal (noncentrosymmetric) Kondo insulator Ce_{3}Bi_{4}Pt_{3}. The Pt-Pd substitution is isostructural, isoelectronic, and isosize, and it therefore is likely to leave J_{K} and μ essentially unchanged. By contrast, the large mass difference between the 5d element Pt and the 4d element Pd leads to a large difference in λ_{SOC}, which thus is the dominating tuning parameter in the series. Surprisingly, with increasing x (decreasing λ_{SOC}), we observe a Kondo insulator to semimetal transition, demonstrating an unprecedented drastic influence of the SOC. The fully substituted end compound Ce_{3}Bi_{4}Pd_{3} shows thermodynamic signatures of a recently predicted Weyl-Kondo semimetal.
Collapse
Affiliation(s)
- S Dzsaber
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - L Prochaska
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - A Sidorenko
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - G Eguchi
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - R Svagera
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - M Waas
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - A Prokofiev
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
| | - Q Si
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| | - S Paschen
- Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10, 1040 Vienna, Austria
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
11
|
Abstract
The second-order phase transition into a hidden order phase in URu2Si2 goes along with an order parameter that is still a mystery, despite 30 years of research. However, it is understood that the symmetry of the order parameter must be related to the symmetry of the low-lying local electronic [Formula: see text]-states. Here, we present results of a spectroscopic technique, namely core-level nonresonant inelastic X-ray scattering (NIXS). This method allows for the measurement of local high-multipole excitations and is bulk-sensitive. The observed anisotropy of the scattering function unambiguously shows that the 5[Formula: see text] ground-state wave function is composed mainly of the [Formula: see text] with majority [Formula: see text] = [Formula: see text] + [Formula: see text] and/or [Formula: see text] singlet states. The incomplete dichroism indicates the possibility that quantum states of other irreducible representation are mixed into the ground state.
Collapse
|