1
|
Sun L, Zhao X, Zhang H, Li G, Li N. Relationship between STAP1 methylation in peripheral blood T cells and the clinicopathological characteristics and prognosis of patients within 5-cm diameter HCC. Minerva Gastroenterol (Torino) 2024; 70:16-21. [PMID: 37526444 DOI: 10.23736/s2724-5985.23.03309-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
BACKGROUND The aim of this study is to explore the methylation of signal transduction adaptor protein 1 (STAP1) in peripheral blood T cells as a prognostic marker for hepatocellular carcinoma (HCC) ≤5 cm. METHODS A total of 66 HCC patients who visited our hospital from November 2012 to June 2016 were retrospectively analyzed, and 55 patients who met the inclusion and exclusion criteria were studied. Clinical and pathological data were collected from all patients to detect STAP1 methylation. STAP1 methylation expression was analyzed in HCC patients ≤5 cm with different clinicopathological features; univariate and independent prognostic factors were analyzed in HCC patients; and the relationship between STAP1 methylation expression and prognosis was analyzed in HCC patients. RESULTS There was no significant difference in STAP1 methylation expression between patients with different gender, age, history of alcoholism, history of liver cirrhosis, recurrence, 3-year OS, 5-year OS, treatment, number of tumors, tumor diameter, HBV-DNA, HBSAg, Hbe-Ag expression, and AFP level (P>0.05); however, there was significant difference in STAP1 methylation expression between patients with different survival, 3-year DFS, and 5-year DFS (P<0.05). Multivariate Cox regression analysis showed that recurrence and STAP1 methylation were independent factors for OS and DFS (P<0.05). Kaplan-Meier survival curve results showed that the median survival time, OS, and DFS of STAP1 hypermethylation expression were shorter than those of hypomethylation (P<0.05). CONCLUSIONS STAP1 methylation in peripheral blood T cells serves as a potential prognostic marker for HCC ≤5 cm.
Collapse
Affiliation(s)
- Libo Sun
- General Surgery Center, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Xiaofei Zhao
- General Surgery Center, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Haitao Zhang
- General Surgery Center, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Guangming Li
- General Surgery Center, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Ning Li
- General Surgery Center, Beijing You-An Hospital, Capital Medical University, Beijing, China -
| |
Collapse
|
2
|
Onodera A, González-Avalos E, Lio CWJ, Georges RO, Bellacosa A, Nakayama T, Rao A. Roles of TET and TDG in DNA demethylation in proliferating and non-proliferating immune cells. Genome Biol 2021; 22:186. [PMID: 34158086 PMCID: PMC8218415 DOI: 10.1186/s13059-021-02384-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/21/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND TET enzymes mediate DNA demethylation by oxidizing 5-methylcytosine (5mC) in DNA to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Since these oxidized methylcytosines (oxi-mCs) are not recognized by the maintenance methyltransferase DNMT1, DNA demethylation can occur through "passive," replication-dependent dilution when cells divide. A distinct, replication-independent ("active") mechanism of DNA demethylation involves excision of 5fC and 5caC by the DNA repair enzyme thymine DNA glycosylase (TDG), followed by base excision repair. RESULTS Here by analyzing inducible gene-disrupted mice, we show that DNA demethylation during primary T cell differentiation occurs mainly through passive replication-dependent dilution of all three oxi-mCs, with only a negligible contribution from TDG. In addition, by pyridine borane sequencing (PB-seq), a simple recently developed method that directly maps 5fC/5caC at single-base resolution, we detect the accumulation of 5fC/5caC in TDG-deleted T cells. We also quantify the occurrence of concordant demethylation within and near enhancer regions in the Il4 locus. In an independent system that does not involve cell division, macrophages treated with liposaccharide accumulate 5hmC at enhancers and show altered gene expression without DNA demethylation; loss of TET enzymes disrupts gene expression, but loss of TDG has no effect. We also observe that mice with long-term (1 year) deletion of Tdg are healthy and show normal survival and hematopoiesis. CONCLUSIONS We have quantified the relative contributions of TET and TDG to cell differentiation and DNA demethylation at representative loci in proliferating T cells. We find that TET enzymes regulate T cell differentiation and DNA demethylation primarily through passive dilution of oxi-mCs. In contrast, while we observe a low level of active, replication-independent DNA demethylation mediated by TDG, this process does not appear to be essential for immune cell activation or differentiation.
Collapse
Affiliation(s)
- Atsushi Onodera
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
- Institute for Global Prominent Research, Chiba University, 1-33, Yayoicho, Inage-ku, Chiba, 263-8522, Japan
| | - Edahí González-Avalos
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Chan-Wang Jerry Lio
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
- Present address: Department of Microbial Infection and Immunity, Ohio State University, 460 W 12th Ave, Columbus, OH, 43210, USA
| | - Romain O Georges
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Alfonso Bellacosa
- Cancer Signaling and Epigenetics Program & Cancer Epigenetics Institute, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
- AMED-CREST, AMED, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA, 92037, USA.
| |
Collapse
|
3
|
Koldobskiy MA, Jenkinson G, Abante J, Rodriguez DiBlasi VA, Zhou W, Pujadas E, Idrizi A, Tryggvadottir R, Callahan C, Bonifant CL, Rabin KR, Brown PA, Ji H, Goutsias J, Feinberg AP. Converging genetic and epigenetic drivers of paediatric acute lymphoblastic leukaemia identified by an information-theoretic analysis. Nat Biomed Eng 2021; 5:360-376. [PMID: 33859388 PMCID: PMC8370714 DOI: 10.1038/s41551-021-00703-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/18/2021] [Indexed: 02/02/2023]
Abstract
In cancer, linking epigenetic alterations to drivers of transformation has been difficult, in part because DNA methylation analyses must capture epigenetic variability, which is central to tumour heterogeneity and tumour plasticity. Here, by conducting a comprehensive analysis, based on information theory, of differences in methylation stochasticity in samples from patients with paediatric acute lymphoblastic leukaemia (ALL), we show that ALL epigenomes are stochastic and marked by increased methylation entropy at specific regulatory regions and genes. By integrating DNA methylation and single-cell gene-expression data, we arrived at a relationship between methylation entropy and gene-expression variability, and found that epigenetic changes in ALL converge on a shared set of genes that overlap with genetic drivers involved in chromosomal translocations across the disease spectrum. Our findings suggest that an epigenetically driven gene-regulation network, with UHRF1 (ubiquitin-like with PHD and RING finger domains 1) as a central node, links genetic drivers and epigenetic mediators in ALL.
Collapse
Affiliation(s)
- Michael A Koldobskiy
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Garrett Jenkinson
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Whitaker Biomedical Engineering Institute, Johns Hopkins University, Baltimore, MD, USA
- Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Jordi Abante
- Whitaker Biomedical Engineering Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Varenka A Rodriguez DiBlasi
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cancer Immunology and Immune Modulation, Boehringer Ingelheim, Ridgefield, CT, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Elisabet Pujadas
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adrian Idrizi
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rakel Tryggvadottir
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Colin Callahan
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Challice L Bonifant
- Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen R Rabin
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Patrick A Brown
- Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - John Goutsias
- Whitaker Biomedical Engineering Institute, Johns Hopkins University, Baltimore, MD, USA.
| | - Andrew P Feinberg
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Wang R, Wang Y, Zhang X, Zhang Y, Du X, Fang Y, Li G. Hierarchical cooperation of transcription factors from integration analysis of DNA sequences, ChIP-Seq and ChIA-PET data. BMC Genomics 2019; 20:296. [PMID: 32039697 PMCID: PMC7226942 DOI: 10.1186/s12864-019-5535-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Chromosomal architecture, which is constituted by chromatin loops, plays an important role in cellular functions. Gene expression and cell identity can be regulated by the chromatin loop, which is formed by proximal or distal enhancers and promoters in linear DNA (1D). Enhancers and promoters are fundamental non-coding elements enriched with transcription factors (TFs) to form chromatin loops. However, the specific cooperation of TFs involved in forming chromatin loops is not fully understood. Results Here, we proposed a method for investigating the cooperation of TFs in four cell lines by the integrative analysis of DNA sequences, ChIP-Seq and ChIA-PET data. Results demonstrate that the interaction of enhancers and promoters is a hierarchical and dynamic complex process with cooperative interactions of different TFs synergistically regulating gene expression and chromatin structure. The TF cooperation involved in maintaining and regulating the chromatin loop of cells can be regulated by epigenetic factors, such as other TFs and DNA methylation. Conclusions Such cooperation among TFs provides the potential features that can affect chromatin’s 3D architecture in cells. The regulation of chromatin 3D organization and gene expression is a complex process associated with the hierarchical and dynamic prosperities of TFs. Electronic supplementary material The online version of this article (10.1186/s12864-019-5535-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruimin Wang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Wuhan, 430070, China
| | - Yunlong Wang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Wuhan, 430070, China
| | - Xueying Zhang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Wuhan, 430070, China
| | - Yaliang Zhang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Wuhan, 430070, China
| | - Xiaoyong Du
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Wuhan, 430070, China.,Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaping Fang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Wuhan, 430070, China. .,Huazhong Agricultural University, Wuhan, 430070, China. .,College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Guoliang Li
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Wuhan, 430070, China. .,Huazhong Agricultural University, Wuhan, 430070, China. .,College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Yan H, He J, Guan Q, Cai H, Zhang L, Zheng W, Qi L, Zhang S, Liu H, Li H, Zhao W, Yang S, Guo Z. Identifying CpG sites with different differential methylation frequencies in colorectal cancer tissues based on individualized differential methylation analysis. Oncotarget 2017; 8:47356-47364. [PMID: 28537885 PMCID: PMC5564570 DOI: 10.18632/oncotarget.17647] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 04/21/2017] [Indexed: 12/20/2022] Open
Abstract
A big challenge to clinical diagnosis and therapy of colorectal cancer (CRC) is its extreme heterogeneity, and thus it would be of special importance if we could find common biomarkers besides subtype-specific biomarkers for CRC. Here, with DNA methylation data produced by different laboratories, we firstly revealed that the relative methylation-level orderings (RMOs) of CpG sites within colorectal normal tissues are highly stable but widely disrupted in the CRC tissues. This finding provides the basis for using the RankComp algorithm to identify differentially methylated (DM) CpG sites in every individual CRC sample through comparing the RMOs within the individual sample with the stable RMOs predetermined in normal tissues. For 75 CRC samples, RankComp detected averagely 4,062 DM CpG sites per sample and reached an average precision of 91.34% in terms that the hypermethylation or hypomethylation states of the DM CpG sites detected for each cancer sample were consistent with the observed differences between this cancer sample and its paired adjacent normal sample. Finally, we applied RankComp to identify DM CpG sites for each of the 268 CRC samples from The Cancer Genome Atlas and found 26 and 143 genes whose promoter regions included CpG sites that were hypermethylated and hypomethylated, respectively, in more than 95% of the 268 CRC samples. Individualized pathway analysis identified six pathways that were significantly enriched with DM genes in more than 90% of the CRC tissues. These universal DNA methylation biomarkers could be important diagnostic makers and therapy targets for CRC.
Collapse
Affiliation(s)
- Haidan Yan
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, Fujian Medical University, Fuzhou, China
| | - Jun He
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, Fujian Medical University, Fuzhou, China
| | - Qingzhou Guan
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, Fujian Medical University, Fuzhou, China
| | - Hao Cai
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, Fujian Medical University, Fuzhou, China
| | - Lin Zhang
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou, China
| | - Weicheng Zheng
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, Fujian Medical University, Fuzhou, China
| | - Lishuang Qi
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Suyun Zhang
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Huaping Liu
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, Fujian Medical University, Fuzhou, China
| | - Hongdong Li
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, Fujian Medical University, Fuzhou, China
| | - Wenyuan Zhao
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Sheng Yang
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zheng Guo
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, Fujian Medical University, Fuzhou, China.,Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|