1
|
Atif M, Malik MNH, Alsahli TG, Ali M, Younis W, Alharbi KS, Alzare SI, Alsuwayt B, Maqbool T, Anjum I, Jahan S, Alanzi AR, Solre GFB, Bilal HM. p-Cymene inhibits pro-fibrotic and inflammatory mediators to prevent hepatic dysfunction. Open Life Sci 2025; 20:20221054. [PMID: 40291773 PMCID: PMC12032992 DOI: 10.1515/biol-2022-1054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 04/30/2025] Open
Abstract
This study evaluated the hepatoprotective potential of p-cymene (p-CYM) against two models of liver damage: ethanol (EtOH)-induced hepatocellular injury and diethylnitrosamine-carbon tetrachloride (DEN-CCl4)-induced liver fibrosis (LF). HepG2 cells were treated with p-CYM or silymarin (SIL) before exposure to 10% EtOH in order to induce cellular injury. LF was induced in Sprague-Dawley rats using a single dose of DEN followed by increasing doses of CCl4 over 60 days. Rats were treated twice weekly with p-CYM or SIL from day 21 to day 60. Results showed that p-CYM effectively mitigated EtOH-induced cell death in HepG2 cells by enhancing the activity of superoxide dismutase and glutathione reductase. In vivo findings revealed that p-CYM attenuated DEN- CCl4-induced liver damage by preventing weight loss, improving serum biomarkers (e.g., aspartate transaminase, alanine aminotransferase, alkaline phosphatase, and bilirubin), and reducing liver fibrotic changes. It also decreased the expression of pro-inflammatory and pro-fibrotic markers such as TNF-α, IL-1β, IL-6, TGF-β1, COL1A1, and TIMP-1. Molecular docking further supported the experimental findings, showing strong interactions between p-CYM and the target proteins. These results indicate that the hepatoprotective effects of p-CYM are likely due to its combined antioxidant, anti-inflammatory, and anti-fibrotic properties.
Collapse
Affiliation(s)
- Muhammad Atif
- Faculty of Pharmacy, The University of Lahore, Lahore54000, Pakistan
| | | | - Tariq G. Alsahli
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Muhammad Ali
- Faculty of Pharmacy, The University of Lahore, Lahore54000, Pakistan
| | - Waqas Younis
- Faculty of Pharmacy, The University of Lahore, Lahore54000, Pakistan
| | - Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al-Qassim, 51452, Saudi Arabia
| | - Sami I. Alzare
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Bader Alsuwayt
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Hafr Al-Batin31991, Saudi Arabia
| | - Tahir Maqbool
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore54000, Pakistan
| | - Irfan Anjum
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad44000, Pakistan
| | - Shah Jahan
- Department of Immunology, University of Health Sciences, Lahore54000, Pakistan
| | - Abdullah R. Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Gideon F. B. Solre
- Department of Chemistry, Thomas J. R. Faulkner College of Science and Technology, University of Liberia, Monrovia, Montserrado, Liberia
| | | |
Collapse
|
2
|
Li X, Li S, Li N. Research Progress on Natural Products Alleviating Liver Inflammation and Fibrosis via NF-κB Pathway. Chem Biodivers 2025; 22:e202402248. [PMID: 39576739 DOI: 10.1002/cbdv.202402248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/24/2024]
Abstract
Liver fibrosis is a key pathological process in chronic liver diseases, regulated by various cytokines and signaling pathways. Among these, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway plays a significant role in the initiation and progression of liver fibrosis. Recently, natural products have garnered attention as potential anti-fibrotic agents. This review highlights recent studies on how natural products, including flavonoids, terpenoids, polysaccharides, phenols, alkaloids, quinones, phenylpropanoids, steroids, and nitrogen compounds, mitigate liver fibrosis by modulating the NF-κB signaling pathway. Specifically, it examines how these natural products influence NF-κB activation, nuclear translocation, and downstream signaling, thereby inhibiting inflammatory responses, reducing apoptosis, and regulating hepatic stellate cell (HSC) activity, ultimately achieving therapeutic effects against liver fibrosis. A deeper understanding of the mechanisms by which natural products regulate the NF-κB signaling pathway can provide crucial theoretical foundations and valuable insights for the development of novel anti-fibrotic drugs.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Pathology, Henan Medical College, Zhengzhou, Henan, China
| | - Saifei Li
- Department of Pharmacy, Henan Medical College, Zhengzhou, Henan, China
| | - Ningning Li
- Department of Pathology, Henan Medical College, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Meng X, Wang D, Zhang H, Kang T, Meng X, Liang S. Portulaca oleracea L. extract relieve mice liver fibrosis by inhibiting TLR-4/NF-κB, Bcl-2/Bax and TGF-β1/Smad2 signalling transduction. Nat Prod Res 2025; 39:1435-1443. [PMID: 38164691 DOI: 10.1080/14786419.2023.2300034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Portulaca oleracea L. are annual herb, which has various pharmacological effects including hepatoprotective property. However, the effect of Portulaca oleracea L. (POL-1) in mice with carbon tetrachloride (CCl4)-induced liver fibrosis and its mechanism of action have not been clarified. POL-1 ameliorated the CCl4-induced liver fibrosis in mice, as shown by decreased collagen deposition and the decreased expression of liver fibrosis marker collagen I and α-smooth muscle actin (α-SMA) mRNA. In addition, treatment with POL-1 suppressed the proliferation of activated human hepatic stellate cell line (LX-2). POL-1 inhibited the oxidative stress and inflammation in fibrotic livers of mice. Mechanistically, POL-1 inhibited the CCl4-induced expression of toll-like receptor-4 (TLR4), myeloid differentiation factor 88 (MyD88), nuclear factor kappa-B (NF-κBp65) p65, Bcl2-associated X (Bax), transforming growth factor-β1 (TGF-β1) and drosophila mothers against decapentaplegic 2 (Smad2) proteins, upregulated B-cell lymphoma -2 (Bcl-2) proteins in livers of mice. These findings suggested that POL-1 attenuated liver fibrosis.
Collapse
Affiliation(s)
- Xianqun Meng
- Department of Traditional Chinese Medicine Identification, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Dan Wang
- Department of Traditional Chinese Medicine Identification, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Hui Zhang
- Department of Traditional Chinese Medicine Identification, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Tingguo Kang
- Department of Traditional Chinese Medicine Identification, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xiansheng Meng
- Department of Traditional Chinese Medicine Identification, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Shanshan Liang
- Plant Polysaccharide Research Center, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
4
|
Liang C, Liu J, Jiang M, Zhu Y, Dong P. The advancement of targeted regulation of hepatic stellate cells using traditional Chinese medicine for the treatment of liver fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119298. [PMID: 39798676 DOI: 10.1016/j.jep.2024.119298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver fibrosis, which is a precursor to cirrhosis in chronic liver diseases, is driven by various factors. The activation and proliferation of hepatic stellate cells (HSCs) are recognized as a crucial phase in the progression of liver fibrosis. Compared with western drug therapy, Traditional Chinese medicine (TCM) and herbal medicine not only have the advantages of multi-target and multi-pathways in the treatment of liver fibrosis, but also have high safety without toxic side effects. AIM OF THE REVIEW This paper aims to compile and analyze the active ingredients in TCM and their corresponding signaling pathways that target and modulate the phenotype of hepatic stellate cells, offering a potential treatment for hepatic fibrosis. METHODS The Literature information was obtained from the scientific databases PubMed, Web of Science and CNKI from January 2010 to June 2020 with the aim of elucidating the intrinsic mechanisms and roles of TCM and natural medicine in the treatment of LF. The search terms included "liver fibrosis" or "hepatic fibrosis", "traditional Chinese medicine" or "Chinese herbal medicine", "medicinal plant", "natural plant", and "herb". RESULTS We described the antifibrosis activity of TCM and natural medicine in LF based on different signaling pathways. Plant medicine and herbal formulas regulated the related gene and protein expression via pathways such as TGF-β/Smad, PI3K/AKT/mTOR, MAPK and Wnt/β-catenin, which inhibit the proliferation, apoptosis, autophagy and activation of HSCs. CONCLUSION By reviewing both domestic and international literature on TCM interventions in liver fibrosis, this study presents a thorough evaluation of recent research progress and the challenges faced in the clinical application of TCM for this condition. The goal is to lay a solid foundation for further in-depth studies and to strengthen the theoretical framework in this field. The inhibitory effect of TCM and natural medicine on fibrosis was reflected in multiple levels and multiple pathways, providing reasonable evidence for new drug development. To make TCM and natural medicine widely and flexibly used in clinical practice, the efficacy, safety and mechanism of action need more in-depth experimental research. It also seeks to provide a theoretical foundation for future research on targeted therapies for liver fibrosis and related diseases.
Collapse
Affiliation(s)
- Chen Liang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Jingjing Liu
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Meixiu Jiang
- The Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Yan Zhu
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Pengzhi Dong
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China.
| |
Collapse
|
5
|
Ling F, Chen Y, Li J, Xu M, Song G, Tu L, Wang H, Li S, Zhu L. Estrogen Receptor β Activation Mitigates Colitis-associated Intestinal Fibrosis via Inhibition of TGF-β/Smad and TLR4/MyD88/NF-κB Signaling Pathways. Inflamm Bowel Dis 2025; 31:11-27. [PMID: 39078887 DOI: 10.1093/ibd/izae156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 01/07/2025]
Abstract
BACKGROUND Intestinal fibrosis, a complex complication of colitis, is characterized by excessive extracellular matrix (ECM) deposition. Estrogen receptor (ER) β may play a role in regulating this process. METHODS Intestinal tissue samples from stenotic and nonstenotic regions were collected from Crohn's disease (CD) patients. RNA sequencing was conducted on a mouse model to identify differentially expressed mRNAs. Histological, immunohistochemical, and semiquantitative Western blotting analyses were employed to assess ECM deposition and fibrosis. The roles of relevant pathways in fibroblast transdifferentiation, activity, and migration were examined. RESULTS Estrogen receptor β expression was found to be downregulated in the stenotic intestinal tissue of CD patients. Histological fibrosis score, collagen deposition, and profibrotic molecules in the colon of an intestinal fibrosis mouse model were significantly decreased after activation of ERβ. In vitro, ERβ activation alleviated transforming growth factor (TGF)-β-induced fibroblast activation and migration, as evidenced by the inhibition of col1α1, fibronectin, α-smooth muscle actin (α-SMA), collagen I, and N-cadherin expression. RNA sequencing showed that ERβ activation affected the expression of genes involved in ECM homeostasis and tissue remodeling. Enrichment analysis of differentially expressed genes highlighted that the downregulated genes were enriched in ECM-receptor interaction, TGF-β signaling, and Toll-like receptor (TLR) signaling. Western blotting confirmed the involvement of TGF-β/Smad and TLR4/MyD88/NF-κB signaling pathways in modulating fibrosis both in vivo and in vitro. The promoter activity of TGF-β1 and TLR4 could be suppressed by ERβ transcription factor. CONCLUSION Estrogen receptor β may regulate intestinal fibrosis through modulation of the TGF-β/Smad and TLR4/MyD88/NF-κB signaling pathways. Targeting ERβ activation could be a promising therapeutic strategy for treating intestinal fibrosis.
Collapse
Affiliation(s)
- Fangmei Ling
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yidong Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junrong Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingyang Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gengqing Song
- Department of Gastroenterology and Hepatology, Metrohealth Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | - Lei Tu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangru Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Hassanein EHM, Althagafy HS, Baraka MA, Amin H. Hepatoprotective effects of diosmin: a narrative review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:279-295. [PMID: 39167171 PMCID: PMC11787178 DOI: 10.1007/s00210-024-03297-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/11/2024] [Indexed: 08/23/2024]
Abstract
Liver diseases represent a formidable global health threat. Hesperidin, a flavonoid found in citrus fruits, is the source of diosmin (DS). The in vivo and in vitro investigations of the pharmacological effects of DS reveal that it exhibits tremendous beneficial effects, such as fighting against inflammation, oxidative stress, and fibrosis. These effects have been noticed in various disease models, emphasizing the potential therapeutic value of DS in tackling diverse pathological conditions. Interestingly, DS has promising liver-defense capabilities against a range of hepatic illnesses, such as radiation-induced hepatic injury, liver ischemia/reperfusion injury, alcoholic hepatic disease, nonalcoholic fatty liver disease (NAFLD), and hepatocellular carcinoma (HCC). Furthermore, DS demonstrates potential hepatoprotective effects against environmental toxins, such as heavy metals. DS activates PPAR-γ and Nrf2, leading to antioxidant effects that reduce oxidative stress. Moreover, DS suppresses NF-κB, NLRP3, MAPK activities, and cytokine production (TNF-α and IL-1β), resulting in inflammation suppression. These anti-inflammatory effects are attributed to the activation of PPAR-γ and Nrf2, which are NF-κB inhibitors. This review aims to comprehensively discuss the hepatoprotective capacity of DS, elucidating the underlying mechanisms and identifying several research avenues that warrant further exploration to ascertain the prospective clinical advantages of DS intake as a viable strategy for the treatment of hepatic illnesses.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammad A Baraka
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Haitham Amin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| |
Collapse
|
7
|
Malik MNH, Abid I, Ismail S, Anjum I, Qadir H, Maqbool T, Najam K, Ibenmoussa S, Bourhia M, Salamatullah AM, Wondmie GF. Exploring the hepatoprotective properties of citronellol: In vitro and in silico studies on ethanol-induced damage in HepG2 cells. Open Life Sci 2024; 19:20220950. [PMID: 39290493 PMCID: PMC11406226 DOI: 10.1515/biol-2022-0950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/20/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Citronellol (CT) is a monoterpene alcohol present in the essential oil of plants of the genus Cymbopogon and exhibits diverse pharmacological activities. The aim of the current study was to investigate the hepatoprotective potential of CT against ethanol-induced toxicity in HepG2 cell lines. Silymarin (SIL) was used as a standard drug. MTT, crystal violet assay, DAPI, and PI staining were carried out to assess the effect of ethanol and CT on cell viability. RT-PCR determined the molecular mechanisms of hepatoprotective action of CT. CT ameliorated cell viability and restricted ethanol-induced cell death. DAPI and PI staining showed distinct differences in cell number and morphology. Less cell viability was observed in the diseased group obviously from strong PI staining when compared to the CT- and SIL-treated group. Moreover, CT showed downregulation of interleukin (IL-6), transforming growth factor-beta 1 (TGF-β1), collagen type 1 A 1 (COL1A1), matrix metalloproteinase-1 (MMP-1), tissue inhibitor of metalloproteinase-1 (TIMP-1) and glutathione peroxidase-7 (GPX-7) levels. Molecular docking studies supported the biochemical findings. It is concluded that the cytoprotective activity of CT against ethanol-induced toxicity might be explained by its anti-inflammatory, immunomodulatory, and collagen-regulating effects.
Collapse
Affiliation(s)
| | - Iqra Abid
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Sana Ismail
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Irfan Anjum
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Halima Qadir
- Department of Basic Medical Sciences, Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Tahir Maqbool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Komal Najam
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Samir Ibenmoussa
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, Montpellier, 34000, France
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, 80060, Agadir, Morocco
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, 11 P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | | |
Collapse
|
8
|
Li Z, Ma Y, Fan C, Jiang H. The circAno6/miR-296-3p/TLR4 signaling axis mediates the inflammatory response to induce the activation of hepatic stellate cells. Gene 2024; 920:148497. [PMID: 38677350 DOI: 10.1016/j.gene.2024.148497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Circular RNA (circRNA) is a novel functional non-coding RNA(ncRNA) that plays a role in the occurrence and development of multiple human liver diseases, including liver fibrosis (LF). LF is a reversible repair response after liver injury, and the activation of hepatic stellate cells (HSCs) is the core event. However, the regulatory mechanisms by which circRNAs induce the activation of HSCs in LF are still poorly understood. The circAno6/miR-296-3p/toll-like receptor 4 (TLR4) signaling axis that mediates the inflammatory response and causes the activation of HSCs was investigated in this study. METHODS First, a circAno6 overexpression plasmid and small interfering RNA were transfected into cells to determine whether circAno6 can affect the function of HSCs. Second, real-time quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), western blotting (WB) and immunofluorescence (IF) were used to detect the effects of circAno6 plasmid/siRNA transfection on HSC activation indices, inflammatory markers and the circAno6/miR-296-3p/TLR4 signaling axis. The subcellular position of circAno6 was then examined by nucleo-cytoplasmic separation and fluorescence in situ hybridization (FISH). Finally, a luciferase reporter gene assay was used to identify the relationship between circAno6 and miR-296-3p as well as the relationship between miR-296-3p and TLR4. RESULTS CircAno6 was considerably upregulated in HSCs and positively correlated with cell proliferation and alpha-smooth muscle actin (α-SMA), collagen I, NOD-likereceptorthermalproteindomainassociatedprotein 3 (NLRP3), interleukin-1β (IL-1β) and interleukin-18 (IL-18) expression. Overexpression of circAno6 increased the inflammatory response and induced HSC activation, whereas interference resulted in the opposite effects. FISH experiments revealed the localization of circAno6 in the cytoplasm. Then, a double luciferase reporter assay confirmed that miR-296-3p significantly inhibited luciferase activity in the circAno6-WT and TLR4-WT groups. CONCLUSION This study suggests that circAno6 and miR-296-3p/TLR4 may form a regulatory axis and regulate the inflammatory response, which in turn induces HSC activation. Targeting circAno6 may be a potential therapeutic strategy to treat LF.
Collapse
Affiliation(s)
- Zhen Li
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province 230031, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, China
| | - Yanzhen Ma
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province 230031, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, China
| | - Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province 230031, China
| | - Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province 230031, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui Province 230012, China.
| |
Collapse
|
9
|
Mao S, Yao J, Zhang T, Zhang X, Tan W, Li C. Bilobalide attenuates lipopolysaccharide‑induced HepG2 cell injury by inhibiting TLR4‑NF‑κB signaling via the PI3K/Akt pathway. Exp Ther Med 2024; 27:24. [PMID: 38125341 PMCID: PMC10728898 DOI: 10.3892/etm.2023.12312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2023] Open
Abstract
Inflammation is involved in the pathological process underlying a number of liver diseases. Bilobalide (BB) is a natural compound from Ginkgo biloba leaves that was recently demonstrated to exert hepatoprotective effects by inhibiting oxidative stress in the liver cancer cell line HepG2. The anti-inflammatory activity of BB has been reported in recent studies. The major objective of the present study was to investigate whether BB could attenuate inflammation-associated cell damage. HepG2 cells were cultured with lipopolysaccharide (LPS) and BB, and cell damage was evaluated by measuring cell viability using MTT assay. The activity of the NF-κB signaling pathway was assessed by measuring the levels of IκBα, NF-κB p65, phosphorylated (p)-IκBα, p-p65, p65 DNA-binding activity and inflammatory cytokines IL-1β, IL-6 and TNF-α. A toll-like receptor (TLR)4 inhibitor (CLI-095) was used to detect the involvement of TLR4 in cell injury caused by LPS. In addition, the PI3K/Akt inhibitor LY294002 was applied to explore the involvement of the PI3K/Akt axis in mediating the effects of BB. The results demonstrated that LPS induced HepG2 cell injury. LPS also elevated the levels of p-IκBα, p-p65, p65 DNA-binding activity and inflammatory cytokines. However, CLI-095 significantly attenuated the LPS-induced cell damage and inhibited the activation of NF-κB signaling. BB also dose-dependently attenuated the LPS-induced cell damage, activation of NF-κB signaling and TLR4 overexpression. Furthermore, it was observed that LY294002 diminished the cytoprotective effects of BB on cell injury, TLR4 expression and NF-κB activation. These findings indicated that BB could attenuate LPS-induced inflammatory injury to HepG2 cells by regulating TLR4-NF-κB signaling.
Collapse
Affiliation(s)
- Shumei Mao
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Jinpeng Yao
- Department of Cardiology, Yantai Kaifaqu Hospital, Yantai, Shandong 264006, P.R. China
| | - Teng Zhang
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiang Zhang
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Wei Tan
- Department of Respiratory Medicine, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Chengde Li
- Department of Clinical Pharmacy, Key Laboratory of Applied Pharmacology in Universities of Shandong, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
10
|
Liu M, Kang W, Hu Z, Wang C, Zhang Y. Targeting MyD88: Therapeutic mechanisms and potential applications of the specific inhibitor ST2825. Inflamm Res 2023; 72:2023-2036. [PMID: 37814128 DOI: 10.1007/s00011-023-01801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/11/2023] Open
Abstract
BACKGROUND Myeloid differentiation factor-88 (MyD88) is a crucial adapter protein that coordinates the innate immune response and establishes an adaptive immune response. The interaction of the Toll/Interleukin-1 receptor (IL-1R) superfamily with MyD88 triggers the activation of various signalling pathways such as nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), promoting the production of a variety of immune and inflammatory mediators and potentially driving the development of a variety of diseases. OBJECTIVE This article will explore the therapeutic potential and mechanism of the MyD88-specific inhibitor ST2825 and describe its use in the treatment of several diseases. We envision future research and clinical applications of ST2825 to provide new ideas for the development of anti-inflammatory drugs and disease-specific drugs to open new horizons for the prevention and treatment of related inflammatory diseases. MATERIALS AND METHODS This review analysed relevant literature in PubMed and other databases. All relevant studies on MyD88 inhibitors and ST2825 that were published in the last 20 years were used as screening criteria. These studies looked at the development and improvement of MyD88 inhibitors and ST2825. RESULTS Recent evidence using the small-molecule inhibitor of ST2825 has suggested that blocking MyD88 activity can be used to treat diseases such as neuroinflammation, inflammatory diseases such as acute liver/kidney injury, or autoimmune diseases such as systemic lupus erythematosus and can affect transplantation immunity. In addition, ST2825 has potential therapeutic value in B-cell lymphoma with the MyD88 L265P mutation. CONCLUSION Targeting MyD88 is a novel therapeutic strategy, and scientific research is presently focused on the development of MyD88 inhibitors. The peptidomimetic compound ST2825 is a widely studied small-molecule inhibitor of MyD88. Thus, ST2825 may be a potential therapeutic small-molecule agent for modulating host immune regulation in inflammatory diseases and inflammatory therapy.
Collapse
Affiliation(s)
- Meiqi Liu
- Hengyang Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, People's Republic of China
| | - Wenyan Kang
- Hengyang Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, People's Republic of China
| | - Zhizhong Hu
- Hengyang Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, People's Republic of China
| | - Chengkun Wang
- Hengyang Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, People's Republic of China.
| | - Yang Zhang
- Hengyang Medical School, Cancer Research Institute, University of South China, Chang Sheng Xi Avenue 28, Hengyang City, Hunan, 421001, People's Republic of China.
| |
Collapse
|
11
|
Mahmoudi F, Arasteh O, Elyasi S. Preventive and therapeutic use of herbal compounds against doxorubicin induced hepatotoxicity: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1595-1617. [PMID: 36892626 DOI: 10.1007/s00210-023-02429-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/16/2023] [Indexed: 03/10/2023]
Abstract
Doxorubicin (DOX) is associated with numerous acute and chronic dose-related toxicities including hepatotoxicity. This adverse reaction may limit the use of other chemotherapeutic agents with hepatic excretion, and so, its prevention is an important issue. The aim of this study was to conduct a comprehensive review of in vitro, in vivo and human studies regarding the protective effects of synthetic and naturally-occurring compounds against DOX-induced liver injury. The search was conducted in Embase, PubMed, and Scopus databases using the following keywords: "doxorubicin," "Adriamycin," "hepatotoxicity," "liver injury," "liver damage," and "hepatoprotective," and all articles published in English were included without time restriction. Forty eligible studies to the end of May 2022 finally were reviewed. Our results demonstrated that all of these drugs, except acetylsalicylic acid, had considerable hepatoprotective effects against DOX. In addition, none of the studied compounds attenuated the antitumor efficacy of DOX treatment. Silymairn was the only compound which is assessed in human studies and showed promising preventive and therapeutic effects. Altogether, our results demonstrated that most of compounds with antioxidant, anti-apoptosis, and anti-inflammatory properties are efficacious against DOX-induced hepatotoxicity and may be considered as a potential adjuvant agent for prevention of hepatotoxicity in cancer patients, after fully been assessed in well-designed large clinical trials.
Collapse
Affiliation(s)
- Faezeh Mahmoudi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box 91775-1365, Mashhad, Iran
| | - Omid Arasteh
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box 91775-1365, Mashhad, Iran
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, P.O. Box 91775-1365, Mashhad, Iran.
| |
Collapse
|
12
|
Meng X, Kuang H, Wang Q, Zhang H, Wang D, Kang T. A polysaccharide from Codonopsis pilosula roots attenuates carbon tetrachloride-induced liver fibrosis via modulation of TLR4/NF-κB and TGF-β1/Smad3 signaling pathway. Int Immunopharmacol 2023; 119:110180. [PMID: 37068337 DOI: 10.1016/j.intimp.2023.110180] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/22/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
The present work reported the extraction, purification, characterization of a polysaccharide from roots of Codonopsis pilosula (CPP-A-1) and its effect on liver fibrosis. The findings exhibited that the molecular weight of CPP-A-1 was 9424 Da, and monosaccharide composition were glucose and fructose and minor contents of arabinose. Structural characterization of CPP-A-1 has a backbone consisting of→(2-β-D-Fruf-1)n→ (n ≈ 46-47). Treatment with CPP-A-1 inhibited the proliferation of transforming growth factor-beta 1 (TGF-β)-activated human hepatic stellate cell line (LX-2), and induced cell apoptosis. We used carbon tetrachloride (CCl4) to construct mice model of liver fibrosis and subsequently administered CPP-A-1 treatment. The results showed that CPP-A-1 alleviated CCl4-induced liver fibrosis as demonstrated by reversing liver histological changes, decreased serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) contents, collagen deposition, and downregulated fibrosis-related collagen I and α-smooth muscle actin (α-SMA), and inhibited the generation of excessive extracellular matrix (ECM) components by restoring the balance between matrix metalloproteinases (MMPs) and its inhibitor (TIMPs). Moreover, CPP-A-1 improved anti-oxidation effects detected by promoting liver superoxide dismutase (SOD), glutathione (GSH) and Mn-SOD levels, and inhibition of liver malondialdehyde (MDA) and iNOS levels. CPP-A-1 also ameliorated the inflammatory factor (tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-6), and expression of inflammatory factor genes (TNF-α, IL-11 mRNA). In addition, our results showed that CPP-A-1 inhibited Toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) and transforming growth factor-β1 (TGF-β1)/drosophila mothers against decapentaplegic 3 (Smad3) signaling pathways. Furthermore, In vitro tests of LX-2 cells demonstrated that CPP-A-1 not only inhibited α-SMA expression with lipopolysaccharide (LPS) or TGF-β1 stimulation, but also inhibited TLR4/NF-κB and TGF-β1/Smad3 signaling, similar to corresponding small-molecule inhibitors. Therefore, CPP-A-1 might exert suppressive effects against liver fibrosis by regulating TLR4/NF-κB and TGF-β1/Smad3 signaling, our findings support a possible application of CPP-A-1 for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xianqun Meng
- Department of Traditional Chinese Medicine Identification, Liaoning University Of Traditional Chinese Medicine, Dalian 116600, China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Qiuhong Wang
- Key Laboratory of Chinese Medicinal Herbs Preparation, Guangdong Pharmaceutical University, Guangdong 510000, China
| | - Hui Zhang
- Department of Traditional Chinese Medicine Identification, Liaoning University Of Traditional Chinese Medicine, Dalian 116600, China
| | - Dan Wang
- Department of Traditional Chinese Medicine Identification, Liaoning University Of Traditional Chinese Medicine, Dalian 116600, China.
| | - Tingguo Kang
- Department of Traditional Chinese Medicine Identification, Liaoning University Of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
13
|
Bao MY, Li M, Bu QR, Yang Y, Song H, Wang CZ, Wang TM, Li N. The effect of herbal medicine in innate immunity to Candida albicans. Front Immunol 2023; 14:1096383. [PMID: 37483621 PMCID: PMC10359817 DOI: 10.3389/fimmu.2023.1096383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/06/2023] [Indexed: 07/25/2023] Open
Abstract
Candida albicans (C. albicans) is an opportunistic pathogenic fungus that often causes mucosal and systemic infections. Several pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs) and C-type lectin receptors (CLRs), have been implicated in the host recognition of C. albicans. These PRRs recognize the pathogen-associated molecular patterns (PAMPs) of C. albicans to activate innate immune cells, thereby rapidly inducing various inflammatory responses by activating intracellular signaling cascades. Herbal medicine and its active components deserve priority development due to their low toxicity and high antibacterial, antiviral and antifungal activities. This review discussed the activities of herbal compounds against C. albicans and their related mechanisms, especially their regulatory role on innate immune cells such as neutrophils, macrophages, and dendritic cells (DCs) implicated in C. albicans infections. Our work aims to find new therapeutic drugs and targets to prevent and treat diseases caused by C. albicans infection with the mechanisms by which this fungus interacts with the innate immune response.
Collapse
Affiliation(s)
- Meng-Yuan Bao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ming Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Qing-Ru Bu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yue Yang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Chang-Zhong Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Tian-Ming Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Ning Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Li S, Wang R, Song F, Chen P, Gu Y, Chen C, Yuan Y. Salvianolic acid A suppresses CCl 4-induced liver fibrosis through regulating the Nrf2/HO-1, NF-κB/IκBα, p38 MAPK, and JAK1/STAT3 signaling pathways. Drug Chem Toxicol 2023; 46:304-313. [PMID: 35057680 DOI: 10.1080/01480545.2022.2028822] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Salvianolic acid A (SA-A), a water-soluble compound extracted from traditional Chinese herb Radix Salvia miltiorrhiza, has anti-fibrotic effects on carbon tetrachloride (CCl4)-induced liver fibrosis. However, the underlying molecular mechanism remains unclear. Thus, this study aimed to elucidate the molecular mechanism underlying the anti-fibrotic effects of SA-A on CCl4-induced liver fibrosis in mice. All mice (except control group) were intraperitoneally administered CCl4 dissolved in peanut oil to induce liver fibrosis. Treatment groups were then gavaged with SA-A (20 or 40 mg/kg). The liver function index; liver fibrosis index; and superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) levels were determined. Furthermore, histopathological changes in liver tissues were observed via hematoxylin-eosin and Masson's trichrome staining. The expression of α-smooth muscle actin (α-SMA) and collagen I was detected using immunofluorescence, and the mRNA levels of inflammatory factors were determined using quantitative polymerase chain reaction. Finally, western blotting and immunofluorescence were used to determine the expression levels of proteins related to Nrf2/HO-1, NF-κB/IκBα, p38 MAPK, and JAK1/STAT3 signaling pathways. The results showed that SA-A could ameliorate CCl4-induced liver injury and liver fibrosis, improve morphology, and alleviate collagen deposition in the fibrotic liver. Moreover, SA-A could regulate the Nrf2/HO-1, NF-κB/IκBα, p38 MAPK, and JAK1/STAT3 signaling pathways; increase the levels of SOD and GSH-Px; and decrease MDA level in the fibrotic liver. Collectively, our study findings indicate that SA-A is effective in preventing liver fibrosis in mice by inhibiting inflammation and oxidative stress via regulating the Nrf2/HO-1, NF-κB/IκBα, p38 MAPK, and JAK1/STAT3 signaling pathways.
Collapse
Affiliation(s)
- Shengnan Li
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuxing Song
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Panpan Chen
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun Chen
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Zhang Y, Lu Y, Gao Y, Liang X, Zhang R, Wang X, Zou X, Yang W. Effects of Aire on perforin expression in BMDCs via TLR7/8 and its therapeutic effect on type 1 diabetes. Int Immunopharmacol 2023; 117:109890. [PMID: 36805202 DOI: 10.1016/j.intimp.2023.109890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/19/2023]
Abstract
AIMS Type 1 diabetes, as a kind of autoimmune diseases, usually results from the broken-down of self-tolerance. Autoimmune regulator (Aire), as a transcription factor, induces peripheral tolerance by regulating Toll-like receptor (TLR) expression in dendritic cells (DCs). Several studies have recently identified a small population of perforin-expressing DCs, which is an important population of tolerogenic DCs (tolDCs) that restricts autoreactive T cells in vivo through a perforin-mediated mechanism. Thus, the present study explored the specific relationship among Aire, perforin-expressing DCs and immune tolerance, as well as their roles in type 1 diabetes. METHODS We conducted studies based on the Aire-overexpressing bone marrow-derived dendritic cell (BMDC) model. And through in vitro and in vivo experiments to observe that Aire-overexpressing BMDCs which express perforin induce immune tolerance and treat type 1 diabetes via TLR7/8. RESULTS Aire enhances the expression of perforin in BMDCs after treatment with the TLR7/8 ligand as well as promotes the expression of TLR7/8 and myeloid differentiation primary response gene 88 (MyD88)-dependent pathway molecules. Aire-overexpressing BMDCs mediate apoptosis of allogeneic CD8+ T cells via perforin in vitro. Moreover, Aire-overexpressing BMDCs enhance the therapeutic effect of type 1 diabetes in non-obese diabetic (NOD) mice via perforin and induce apoptosis of autoreactive CD8+ T cells in vivo. CONCLUSIONS These results provide an experimental basis for comprehensively elucidating the role and significance of Aire expression in peripheral DCs, thereby providing new ideas for the treatment of autoimmune diseases by using Aire as a target to induce the production of perforin-expressing DCs.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yaoping Lu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yan Gao
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaojing Liang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Rongchao Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaoya Wang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xueyang Zou
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|
16
|
Yanan S, Bohan L, Shuaifeng S, Wendan T, Ma Z, Wei L. Inhibition of Mogroside IIIE on isoproterenol-induced myocardial fibrosis through the TLR4/MyD88/NF-κB signaling pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:114-120. [PMID: 36594066 PMCID: PMC9790049 DOI: 10.22038/ijbms.2022.67908.14848] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/09/2022] [Indexed: 01/04/2023]
Abstract
Objectives To investigate the effect of mogroside IIIE (MGIIIE) on isoproterenol (ISO)-induced myocardial fibrosis and explore its possible mechanisms. Materials and Methods Forty C57BL/6 male mice (6-8 weeks) were randomly divided into a control group (n=10), model group (n=10), low MGIIIE dose group (n=10), and high MGIIIE dose group (n=10). Myocardial fibrosis was established by subcutaneous ISO injection. After 2 weeks of continuous gastric administration of MGIIIE, the cardiac structure was evaluated by echocardiography. Myocardial inflammation and fibrosis were evaluated by histology examination. Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), p-IκBα, p-NF-κB, transforming growth factor β1 (TGF-β1), and α-smooth muscle actin (α-SMA) expression were detected by western blot. Inflammatory cytokines (IL-1β, IL-6, and TNF-α) in the serum were examined by ELISA. In the in vitro study, Ang II (1 μmol/l) was used to stimulate the fibroblasts, then inflammation and fibrosis index were detected. Results MGIIIE inhibited inflammation and fibrosis and down-regulated TLR4, MyD88, TGF-β1, and α-SMA expression in the myocardium. In the in vitro study, MGIIIE ameliorates the deposition of Col Ш and Col I and decreases the release of inflammatory cytokines. MGIIIE increased p-IκBα and reduced p-NF-κB expression both in vivo and in vitro. Conclusion MGIIIE plays a role in anti-myocardial fibrosis, by inhibiting TLR4/MyD88/NF-κB signaling expression, and decreasing inflammatory cytokine release. MGIIIE may represent a novel therapeutic strategy for treating cardiac fibrosis.
Collapse
Affiliation(s)
- Shi Yanan
- Department of Cardiology, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, PR. China, 150001.,These authors contributed eqully to this work
| | - Li Bohan
- Harbin Medical University, Harbin, PR. China, 150001.,These authors contributed eqully to this work
| | - Sun Shuaifeng
- Department of Cardiology, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, PR. China, 150001.,These authors contributed eqully to this work
| | - Tian Wendan
- Heilongjiang Provincial Hospital, Harbin, PR. China, 150001
| | - Zizhe Ma
- Department of Cardiology, the Fourth Affiliated Hospital, Harbin Medical University, Harbin, PR. China, 150001.,These authors contributed eqully to this work
| | - Liu Wei
- Department of Geriatric Cardiology, Guangdong Provincial People’s Hospital. Guangzhou, PR. China, 510080,Corresponding author: Liu Wei. Department of Geriatric Cardiology, Guangdong Provincial People’s Hospital. Guangzhou, PR. China, 510080. Tel/ Fax: +86- 18904502999;
| |
Collapse
|
17
|
Guan L, Mao Z, Yang S, Wu G, Chen Y, Yin L, Qi Y, Han L, Xu L. Dioscin alleviates Alzheimer's disease through regulating RAGE/NOX4 mediated oxidative stress and inflammation. Biomed Pharmacother 2022; 152:113248. [PMID: 35691153 DOI: 10.1016/j.biopha.2022.113248] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with amyloid beta (Aβ) deposition and intracellular neurofibrillary tangles (NFTs) as its characteristic pathological changes. Ameliorating oxidative stress and inflammation has become a new trend in the prevention and treatment of AD. Dioscin, a natural steroidal saponin which exists in Dioscoreae nipponicae rhizomes, displays various pharmacological activities, but its role in Alzheimer's disease (AD) is still unknown. In the present work, effect of dioscin on AD was evaluated in injured SH-SY5Y cells induced by H2O2 and C57BL/6 mice with AD challenged with AlCl₃ combined with D-galactose. Results showed that dioscin obviously increased cell viability and decreased reactive oxygen species (ROS) level in injured SH-SY5Y cells. In vivo, dioscin obviously improved the spatial learning and memory abilities as well as gait and interlimb coordination disorders of mice with AD. Moreover, dioscin distinctly restored the levels of malondialdehyde (MDA), superoxide dismutase (SOD), amyloid beta 42 (Aβ42), acetylcholine (ACh) and acetylcholinesterase (AChE) of mice, and reversed the histopathological changes of brain tissue. Mechanism studies revealed that dioscin markedly down-regulated the expression levels of RAGE and NOX4. Subsequently, dioscin markedly up-regulated the expression levels of Nrf2 and HO-1 related to oxidative stress, and down-regulated the levels of p-NF-κB(p-p65)/NF-κB(p65), AP-1 and inflammatory factors involved in inflammatory pathway. RAGE siRNAs transfection further clarified that the pharmacological activity of dioscin in AD was achieved by regulating RAGE/NOX4 pathway. In conclusion, dioscin showed excellent anti-AD effect by adjusting RAGE/NOX4-mediated oxidative stress and inflammation, which provided the basis for the further research and development against AD.
Collapse
Affiliation(s)
- Linshu Guan
- College of Pharmacy, Dalian Medical University, Dalian 116044, China; The Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Zhang Mao
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Sen Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Guanlin Wu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yurong Chen
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Yan Qi
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lan Han
- School of pharmacy, Anhui University of Traditional Chinese Medicine, Hefei 230012, China.
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
18
|
Semwal P, Painuli S, Abu-Izneid T, Rauf A, Sharma A, Daştan SD, Kumar M, Alshehri MM, Taheri Y, Das R, Mitra S, Emran TB, Sharifi-Rad J, Calina D, Cho WC. Diosgenin: An Updated Pharmacological Review and Therapeutic Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1035441. [PMID: 35677108 PMCID: PMC9168095 DOI: 10.1155/2022/1035441] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
Plants including Rhizoma polgonati , Smilax china , and Trigonella foenum-graecum contain a lot of diosgenin, a steroidal sapogenin. This bioactive phytochemical has shown high potential and interest in the treatment of various disorders such as cancer, diabetes, arthritis, asthma, and cardiovascular disease, in addition to being an important starting material for the preparation of several steroidal drugs in the pharmaceutical industry. This review aims to provide an overview of the in vitro, in vivo, and clinical studies reporting the diosgenin's pharmacological effects and to discuss the safety issues. Preclinical studies have shown promising effects on cancer, neuroprotection, atherosclerosis, asthma, bone health, and other pathologies. Clinical investigations have demonstrated diosgenin's nontoxic nature and promising benefits on cognitive function and menopause. However, further well-designed clinical trials are needed to address the other effects seen in preclinical studies, as well as a better knowledge of the diosgenin's safety profile.
Collapse
Affiliation(s)
- Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, 248002 Uttarakhand, India
| | - Sakshi Painuli
- Department of Biotechnology, Graphic Era University, Dehradun, 248002 Uttarakhand, India
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences Department, College of Pharmacy, Al Ain University, Al Ain 64141, UAE
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar-23561, K.P .K, Pakistan
| | - Anshu Sharma
- Department of Food Science and Technology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, 173230, India
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
19
|
Shang Q, Zhu L, Shang W, Zeng J, Qi Y. Dioscin exhibits protective effects on in vivo and in vitro asthma models via suppressing TGF-β1/Smad2/3 and AKT pathways. J Biochem Mol Toxicol 2022; 36:e23084. [PMID: 35481609 DOI: 10.1002/jbt.23084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 03/02/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022]
Abstract
Dioscin is a natural product that possesses protective effects on multiple chronic injuries, but its effects on asthma are not fully understood. Herein, we evaluated its effects on asthmatic mice established by ovalbumin (OVA) sensitization and challenges and further explored the mechanism. Inflammatory cells in bronchoalveolar lavage fluids (BALFs) were analyzed using Diff-Quik staining. OVA-specific immunoglobulin E (IgE)/IgG1 in serum and inflammatory cytokines (interleukin 4[IL-4], IL-5, IL-13, and tumor necrosis factor-α) in BALFs and lung tissues were measured using Enzyme-Linked Immunosorbent Assay Kits. Hematoxylin and eosin, periodic acid-Schiff, and immunohistochemistry staining showed histopathological changes in lung tissues. Epithelial-mesenchymal transition (EMT) in human bronchial epithelial (16HBE) cells was assessed by immunofluorescence staining. Hydroxyproline content was used to evaluate collagen deposition. Polymerase chain reaction and Western blot were performed to measure messenger RNA and protein expression. We found that dioscin treatment (particularly at the dose of 80 mg/kg) significantly inhibited pulmonary inflammation in asthmatic mice, as evidenced by the decreased serum OVA-specific IgE/IgG1 and the reduced inflammatory cells and cytokines in BALFs and lung tissues. Moreover, dioscin effectively ameliorated the goblet cell hyperplasia, mucus hypersecretion, collagen deposition, and smooth muscle hyperplasia in the airways of asthmatic mice. Mechanistically, dioscin restrained the activated TGF-β1/Smad2/3 and protein kinase B (AKT) signal pathways in lung tissues and potently reversed the TGF-β1-induced EMT and phosphorylation of Smad2/3 and AKT in 16HBE cells. Collectively, dioscin displayed protective effects on OVA-induced asthmatic mice via adjusting TGF-β1/Smad2/3 and AKT signal pathways, supporting the fact that dioscin could be a candidate for chronic asthma prevention in the future.
Collapse
Affiliation(s)
- Qian Shang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Li Zhu
- Department of Pulmonary and Critical Care Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Weina Shang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Jia Zeng
- Department of Pulmonary and Critical Care Medicine, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yong Qi
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| |
Collapse
|
20
|
MyD88 in hepatic stellate cells enhances liver fibrosis via promoting macrophage M1 polarization. Cell Death Dis 2022; 13:411. [PMID: 35484116 PMCID: PMC9051099 DOI: 10.1038/s41419-022-04802-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/19/2022] [Accepted: 03/30/2022] [Indexed: 11/08/2022]
Abstract
During liver fibrosis, quiescent HSCs (qHSCs) are activated to become activated HSCs (aHSCs)/myofibroblasts. The signal adapter MyD88, an essential component of TLR signaling, plays an important role in liver fibrosis. However, far less is known about the specific effects of MyD88 signaling in both qHSCs and aHSCs in the progress of liver fibrosis. Here, we used a CCl4-induced mouse fibrosis model in which MyD88 was selectively depleted in qHSCs (GFAPMyD88−/− mice) or aHSCs (α-SMAMyD88−/− mice). MyD88 deficiency in qHSCs or aHSCs attenuated liver fibrosis in mice and inhibited α-SMA-positive cell activation. Inhibition of MyD88 in HSCs decreased α-SMA and collagen I levels, inflammatory cell infiltration, and pro-inflammatory gene expression. Furthermore, MyD88 signaling in HSCs increased the secretion of CXCL10, which promoted macrophage M1 polarization through CXCR3, leading to activation of the JAK/STAT1 pathway. Inhibition of CXCL10 attenuated macrophage M1 polarization and reduced liver fibrosis. Thus, MyD88 signaling in HSCs crucially contributes to liver fibrosis and provides a promising therapeutic target for the prevention and treatment of liver fibrosis.
Collapse
|
21
|
Zhu Y, Wu F, Yang Q, Feng H, Xu D. Resveratrol Inhibits High Glucose-Induced H9c2 Cardiomyocyte Hypertrophy and Damage via RAGE-Dependent Inhibition of the NF- κB and TGF- β1/Smad3 Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7781910. [PMID: 35251212 PMCID: PMC8896917 DOI: 10.1155/2022/7781910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/07/2022] [Indexed: 11/18/2022]
Abstract
Hyperglycaemia is associated with the development of cardiac vascular disease. Resveratrol (RES) is a naturally occurring polyphenolic compound that possesses many biological properties, including anti-inflammatory properties and antioxidation functions. Our study aimed to explore the RES's protective roles on high glucose (HG)-induced H9c2 cells and the underlying mechanisms. Small-molecule inhibitors, western blotting (WB), as well as reverse-transcription PCR (RT-PCR) were employed to investigate the mechanisms underlying HG-induced damage in H9c2 cells. RES (40 μg/mL) treatment significantly alleviated HG-induced cardiac hypertrophy and cardiac dysfunction. RES abated the HG-induced increase in the levels of extracellular matrix (ECM) components and inflammatory cytokines, reducing ECM accumulation and inflammatory responses. Additionally, RES administration prevented HG-induced mitochondrion-mediated cardiac apoptosis of myocardial cells. In terms of mechanisms, we demonstrated that RES ameliorated the HG-induced overexpression of receptor for advanced glycation endproducts (RAGE) and downregulation of NF-κB signalling. Moreover, RES inhibited HG-induced cardiac fibrosis by inhibiting transforming growth factor beta 1 (TGF-β1)/Smad3-mediated ECM synthesis in cultured H9c2 cardiomyocytes. Further studies revealed that the effects of RES against HG-induced upregulation of NF-κB and TGF-β1/Smad3 pathways were similar to those of FPS-ZM1, a RAGE inhibitor. Collectively, the results implied that RES might help alleviate HG-induced cardiotoxicity via RAGE-dependent downregulation of the NF-κB and TGF-β/Smad3 pathways. This study provided evidence that RES can be developed as a promising cardioprotective drug.
Collapse
Affiliation(s)
- Yanzhou Zhu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fuling Wu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qin Yang
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haixing Feng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
22
|
Zhou L, Li Y, Liang Q, Liu J, Liu Y. Combination therapy based on targeted nano drug co-delivery systems for liver fibrosis treatment: A review. J Drug Target 2022; 30:577-588. [PMID: 35179094 DOI: 10.1080/1061186x.2022.2044485] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Liver fibrosis is the hallmark of liver disease and occurs prior to the stages of cirrhosis and hepatocellular carcinoma. Any type of liver damage or inflammation can result in fibrosis. Fibrosis does not develop overnight, but rather as a result of the long-term action of injury factors. At present, however, there are no good treatment methods or specific drugs other than removing the pathogenic factors. Drug application is still limited, which means that drugs with good performance in vitro cannot achieve good therapeutic effects in vivo, owing to various factors such as poor drug targeting, large side effects, and strong hydrophobicity. Hepatic stellate cells (HSC) are the primary effector cells in liver fibrosis. The nano-drug delivery system is a new and safe drug delivery system that has many advantages which are widely used in the field of liver fibrosis. Drug resistance and side effects can be reduced when two or more drugs are used in combination drug delivery. Combination therapy of drugs with different targets has emerged as a novel approach to treating liver fibrosis, and the nano co-delivery system enhances the benefits of combination therapy. While nano co-delivery systems can maximize benefits while avoiding drug side effects, this is precisely the advantage of the nano co-delivery system. This review briefly described the pathogenesis and current treatment strategies, the different co-delivery systems of combination drugs in the nano delivery system, and targeting strategies for nano delivery systems on liver fibrosis therapy. Because of their superior performance, nano delivery systems and targeting drug delivery systems have received a lot of attention in the new drug delivery system. The new delivery systems offer a new pathway in the treatment of liver fibrosis, and it is believed that it can be a new treatment for fibrosis in the future. Nano co-delivery system of combination drugs and targeting strategies has proven the effectiveness of anti-fibrosis at the experimental level.
Collapse
Affiliation(s)
- Liyue Zhou
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yifan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qiangwei Liang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jinxia Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
23
|
Nie X, Yu Q, Li L, Yi M, Wu B, Huang Y, Zhang Y, Han H, Yuan X. Kinsenoside Protects Against Radiation-Induced Liver Fibrosis via Downregulating Connective Tissue Growth Factor Through TGF-β1 Signaling. Front Pharmacol 2022; 13:808576. [PMID: 35126163 PMCID: PMC8814438 DOI: 10.3389/fphar.2022.808576] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/03/2022] [Indexed: 12/25/2022] Open
Abstract
Radiation-induced liver fibrosis (RILF) is a serious complication of the radiotherapy of liver cancer, which lacks effective prevention and treatment measures. Kinsenoside (KD) is a monomeric glycoside isolated from Anoectochilus roxburghii, which has been reported to show protective effect on the early progression of liver fibrosis. However, the role of KD in affecting RILF remains unknown. Here, we found that KD alleviated RILF via downregulating connective tissue growth factor (CTGF) through TGF-β1 signaling. Sprague-Dawley rats were administered with 20 mg/kg KD per day for 8 weeks after a single 30Gy irradiation on the right part of liver, and tumor-bearing nude mice were administered with 30 mg/kg KD per day after a single fraction of 10Gy on the tumor inoculation site. Twenty-four weeks postirradiation, we found that the administration of KD after irradiation resulted in decreased expression of α-SMA and fibronectin in the liver tissue while had no adverse effect on the tumor radiotherapy. Besides, KD inhibited the activation of hepatic stellate cells (HSCs) postirradiation via targeting CTGF as indicated by the transcriptome sequencing. Results of the pathway enrichment and immunohistochemistry suggested that KD reduced the expression of TGF-β1 protein after radiotherapy, and exogenous TGF-β1 induced HSCs to produce α-SMA and other fibrosis-related proteins. The content of activated TGF-β1 in the supernatant decreased after treatment with KD. In addition, KD inhibited the expression of the fibrosis-related proteins by regulating the TGF-β1/Smad/CTGF pathway, resulting in the intervention of liver fibrosis. In conclusion, this study revealed that KD alleviated RILF through the regulation of TGFβ1/Smad/CTGF pathway with no side effects on the tumor therapy. KD, in combination with blocking the TGF-β1 pathway and CTGF molecule or not, may become the innovative and effective treatment for RILF.
Collapse
Affiliation(s)
- Xiaoqi Nie
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Department of Dermatology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Yu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Long Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Minxiao Yi
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bili Wu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yonghui Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hu Han
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hu Han, ; Xianglin Yuan,
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hu Han, ; Xianglin Yuan,
| |
Collapse
|
24
|
Abstract
Herbal compounds including those already well-established in traditional Chinese medicine have been increasingly tested in the treatment of various diseases. Recent studies have shown that herbal compounds can be of benefit also for pulmonary silicosis as they can diminish changes associated with silica-induced inflammation, fibrosis, and oxidative stress. Due to a lack of effective therapeutic strategies, development of novel approaches which may be introduced particularly in the early stage of the disease, is urgently needed. This review summarizes positive effects of several alternative plant-based drugs in the models of experimental silicosis with a potential for subsequent clinical investigation and use in future.
Collapse
Affiliation(s)
- J Adamcakova
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | | |
Collapse
|
25
|
Abstract
Herbal compounds including those already well-established in traditional Chinese medicine have been increasingly tested in the treatment of various diseases. Recent studies have shown that herbal compounds can be of benefit also for pulmonary silicosis as they can diminish changes associated with silica-induced inflammation, fibrosis, and oxidative stress. Due to a lack of effective therapeutic strategies, development of novel approaches which may be introduced particularly in the early stage of the disease, is urgently needed. This review summarizes positive effects of several alternative plant-based drugs in the models of experimental silicosis with a potential for subsequent clinical investigation and use in future.
Collapse
Affiliation(s)
- J ADAMCAKOVA
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - D MOKRA
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| |
Collapse
|
26
|
Ge S, Yang W, Chen H, Yuan Q, Liu S, Zhao Y, Zhang J. MyD88 in Macrophages Enhances Liver Fibrosis by Activation of NLRP3 Inflammasome in HSCs. Int J Mol Sci 2021; 22:ijms222212413. [PMID: 34830293 PMCID: PMC8622429 DOI: 10.3390/ijms222212413] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease mediated by the activation of hepatic stellate cells (HSCs) leads to liver fibrosis. The signal adaptor MyD88 of Toll-like receptor (TLR) signaling is involved during the progression of liver fibrosis. However, the specific role of MyD88 in myeloid cells in liver fibrosis has not been thoroughly investigated. In this study, we used a carbon tetrachloride (CCl4)-induced mouse fibrosis model in which MyD88 was selectively depleted in myeloid cells. MyD88 deficiency in myeloid cells attenuated liver fibrosis in mice and decreased inflammatory cell infiltration. Furthermore, deficiency of MyD88 in macrophages inhibits the secretion of CXC motif chemokine 2 (CXCL2), which restrains the activation of HSCs characterized by NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome activation. Moreover, targeting CXCL2 by CXCR2 inhibitors attenuated the activation of HSCs and reduced liver fibrosis. Thus, MyD88 may represent a potential candidate target for the prevention and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Shuang Ge
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China; (S.G.); (W.Y.)
| | - Wei Yang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China; (S.G.); (W.Y.)
| | - Haiqiang Chen
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China; (H.C.); (Q.Y.); (S.L.)
| | - Qi Yuan
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China; (H.C.); (Q.Y.); (S.L.)
| | - Shi Liu
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China; (H.C.); (Q.Y.); (S.L.)
| | - Yongxiang Zhao
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China; (S.G.); (W.Y.)
- Correspondence: (Y.Z.); (J.Z.)
| | - Jinhua Zhang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China; (S.G.); (W.Y.)
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China; (H.C.); (Q.Y.); (S.L.)
- Correspondence: (Y.Z.); (J.Z.)
| |
Collapse
|
27
|
Zhao L, Mehmood A, Soliman MM, Iftikhar A, Iftikhar M, Aboelenin SM, Wang C. Protective Effects of Ellagic Acid Against Alcoholic Liver Disease in Mice. Front Nutr 2021; 8:744520. [PMID: 34595202 PMCID: PMC8478122 DOI: 10.3389/fnut.2021.744520] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Ellagic acid, a natural polyphenolic compound commonly present in vegetables, fruits, nuts, and other edible plants, exerts many pharmacological activities. The present project was designed to explore the hepatoprotective effect of ellagic acid against alcohol-induced liver disease (ALD) and the correlation among alcohol, oxidative stress, inflammation, and gut microbiota. Fifty percent (v/v) alcohol (10 mL/kg bw daily) was orally administrated for 4 weeks in mice along with ellagic acid (50 and 100 mg/kg bw). Alcohol administration significantly (p < 0.05) increased the activities of alanine aminotransferase and serum aspartate aminotransferase, levels of triglyceride, low density lipoprotein, free fatty acid, and total cholesterol, and decreased contents of the high-density lipoprotein in model group compared with the control group, which were further improved by ellagic acid (50 or 100 mg/kg bw). Furthermore, daily supplementation of ellagic acid alleviated hepatic antioxidant activities (glutathione peroxidase, catalase, malondialdehyde, superoxide dismutase, and glutathione), proinflammatory cytokines levels (IL-6, IL-1β, and TNF-α), genes expressions (Tlr4, Myd88, Cd14, Cox2, Nos2, and Nfκb1), and histopathological features in alcohol-induced liver injured mice. Additionally, results also revealed that ellagic acid supplementation improved alcohol-induced gut microbiota dysbiosis. In conclusion, ellagic acid mitigated oxidative stress, inflammatory response, steatosis, and gut microbiota dysbiosis in ALD mice. Our results suggested that ellagic acid could be applied as an ideal dietary therapy against ALD.
Collapse
Affiliation(s)
- Liang Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Asra Iftikhar
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, The University of Faisalabad, Faisalabad, Pakistan
| | - Maryam Iftikhar
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| | | | - Chengtao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, China
| |
Collapse
|
28
|
Zhao L, Mehmood A, Yuan D, Usman M, Murtaza MA, Yaqoob S, Wang C. Protective Mechanism of Edible Food Plants against Alcoholic Liver Disease with Special Mention to Polyphenolic Compounds. Nutrients 2021; 13:nu13051612. [PMID: 34064981 PMCID: PMC8151346 DOI: 10.3390/nu13051612] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Alcoholic liver disease (ALD) is one type of liver disease, causing a global healthcare problem and mortality. The liver undergoes tissue damage by chronic alcohol consumption because it is the main site for metabolism of ethanol. Chronic alcohol exposure progresses from alcoholic fatty liver (AFL) to alcoholic steatohepatitis (ASH), which further lead to fibrosis, cirrhosis, and even hepatocellular cancer. Therapeutic interventions to combat ALD are very limited such as use of corticosteroids. However, these therapeutic drugs are not effective for long-term usage. Therefore, additional effective and safe therapies to cope with ALD are urgently needed. Previous studies confirmed that edible food plants and their bioactive compounds exert a protective effect against ALD. In this review article, we summarized the hepatoprotective potential of edible food plants and their bioactive compounds. The underlying mechanism for the prevention of ALD by edible food plants was as follows: anti-oxidation, anti-inflammation, lipid regulation, inhibition of apoptosis, gut microbiota composition modulation, and anti-fibrosis.
Collapse
Affiliation(s)
- Liang Zhao
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Dongdong Yuan
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Correspondence: ; Tel.: +86-10-6898-4547
| | - Muhammad Usman
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Mian Anjum Murtaza
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha 40100, Pakistan;
| | - Sanabil Yaqoob
- Department of Food Science and Technology, University of Central Punjab, Punjab 54590, Pakistan;
| | - Chengtao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; (L.Z.); (A.M.); (M.U.); (C.W.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
29
|
Song M, Chae YJ, Koppula S, Kim MK, Yoon T. Chrysanthemum indicum ethanol extract attenuates hepatic stellate cell activation in vitro and thioacetamide-induced hepatofibrosis in rats. Asian Pac J Trop Biomed 2021. [DOI: 10.4103/2221-1691.328057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
30
|
Nowak AJ, Relja B. The Impact of Acute or Chronic Alcohol Intake on the NF-κB Signaling Pathway in Alcohol-Related Liver Disease. Int J Mol Sci 2020; 21:E9407. [PMID: 33321885 PMCID: PMC7764163 DOI: 10.3390/ijms21249407] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Ethanol misuse is frequently associated with a multitude of profound medical conditions, contributing to health-, individual- and social-related damage. A particularly dangerous threat from this classification is coined as alcoholic liver disease (ALD), a liver condition caused by prolonged alcohol overconsumption, involving several pathological stages induced by alcohol metabolic byproducts and sustained cellular intoxication. Molecular, pathological mechanisms of ALD principally root in the innate immunity system and are especially associated with enhanced functionality of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway. NF-κB is an interesting and convoluted DNA transcription regulator, promoting both anti-inflammatory and pro-inflammatory gene expression. Thus, the abundancy of studies in recent years underlines the importance of NF-κB in inflammatory responses and the mechanistic stimulation of inner molecular motifs within the factor components. Hereby, in the following review, we would like to put emphasis on the correlation between the NF-κB inflammation signaling pathway and ALD progression. We will provide the reader with the current knowledge regarding the chronic and acute alcohol consumption patterns, the molecular mechanisms of ALD development, the involvement of the NF-κB pathway and its enzymatic regulators. Therefore, we review various experimental in vitro and in vivo studies regarding the research on ALD, including the recent active compound treatments and the genetic modification approach. Furthermore, our investigation covers a few human studies.
Collapse
Affiliation(s)
- Aleksander J. Nowak
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Leipziger Strasse 44, 39120 Magdeburg, Germany;
- Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | - Borna Relja
- Experimental Radiology, University Clinic for Radiology and Nuclear Medicine, Leipziger Strasse 44, 39120 Magdeburg, Germany;
- Medical Faculty, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| |
Collapse
|
31
|
Gao Y, Xi B, Li J, Li Z, Xu J, Zhong M, Xu Q, Lian Y, Wei R, Wang L, Cao H, Jin L, Zhang K, Dong J. Scoparone alleviates hepatic fibrosis by inhibiting the TLR-4/NF-κB pathway. J Cell Physiol 2020; 236:3044-3058. [PMID: 33090488 DOI: 10.1002/jcp.30083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 01/15/2023]
Abstract
The aim of this study was to investigate the role of scoparone (SCO) in hepatic fibrosis. For this, we conducted in vivo and in vitro experiments. In vivo rats that were divided into six groups, control, carbon tetrachloride, and colchicine, as well as SCO groups, SCO50, SCO100, and SCO200 treated with 50, 100, and 200 mg/kg SCO doses, respectively. Furthermore, SCO was shown to inhibit Toll-like receptor-4 (TLR-4)/nuclear factor kappa-B (NF-κB; TLR-4/NF-κB) signals by inhibiting TLR-4, which in turn downregulates the expression of MyD88, promotes NF-κB inhibitor-α, NF-κB inhibitor-β, and NF-κB inhibitor-ε activation, while inhibiting NF-κB inhibitor-ζ. Subsequently, the decrease of phosphorylation of nuclear factor-κB levels leads to the downregulation of the downstream inflammatory factors' tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1 beta, thus weakening hepatic fibrosis. Notably, the SCO200 treated group presented the most significant improvement. Hence, we conclude that SCO alleviates hepatic fibrosis by inhibiting TLR-4/NF-κB signals.
Collapse
Affiliation(s)
- Ya Gao
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Boting Xi
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Jiani Li
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Zimeng Li
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Jie Xu
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Mingli Zhong
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Qiongmei Xu
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Yuanyu Lian
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Riming Wei
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Liping Wang
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| | - Houkang Cao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Ling Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Kefeng Zhang
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jianghui Dong
- College of Pharmacy, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
32
|
Liu X, Cai HX, Cao PY, Feng Y, Jiang HH, Liu L, Ke J, Long X. TLR4 contributes to the damage of cartilage and subchondral bone in discectomy-induced TMJOA mice. J Cell Mol Med 2020; 24:11489-11499. [PMID: 32914937 PMCID: PMC7576306 DOI: 10.1111/jcmm.15763] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 02/05/2023] Open
Abstract
The abundance of inflammatory mediators in injured joint indicates innate immune reactions activated during temporomandibular joint osteoarthritis (TMJOA) progression. Toll‐like receptor 4 (TLR4) can mediate innate immune reaction. Herein, we aimed to investigate the expression profile and effect of TLR4 in the cartilage and subchondral bone of the discectomy‐induced TMJOA mice. The expression of TLR4 and NFκB p65 in the synovium of TMJOA patients was measured by immunohistochemistry, Western blotting and RT‐PCR. H&E and Masson staining were utilized to assess the damage of cartilage and subchondral bone of the discectomy‐induced TMJOA mice. A TLR4 inhibitor, TAK‐242, was used to assess the effect of TLR4 in the cartilage and subchondral bone of the discectomy‐induced TMJOA mice by Safranin O, micro‐CT, immunofluorescence and immunohistochemistry. Western blotting was used to quantify the expression and effect of TLR4 in IL‐1β–induced chondrocytes. The expression of TLR4 and NFκB p65 was elevated in the synovium of TMJOA patients, compared with the normal synovium. TLR4 elevated in the damaged cartilage and subchondral bone of discectomy‐induced TMJOA mice, and the rate of TLR4 expressing chondrocytes positively correlated with OA score. Intraperitoneal injections of TAK‐242 ameliorate the extent of TMJOA. Furthermore, TLR4 promotes the expression of MyD88/NFκB, pro‐inflammatory and catabolic mediators in cartilage of discectomy‐induced TMJOA. Besides, TLR4 participates in the production of MyD88/NFκB, pro‐inflammatory and catabolic mediators in IL‐1β–induced chondrocytes. TLR4 contributes to the damage of cartilage and subchondral bone in discectomy‐induced TMJOA mice through activation of MyD88/NFκB and release of pro‐inflammatory and catabolic mediators.
Collapse
Affiliation(s)
- Xin Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heng-Xing Cai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Pin-Yin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yaping Feng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heng-Hua Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jin Ke
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xing Long
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
33
|
Mendes BG, Schnabl B. From intestinal dysbiosis to alcohol-associated liver disease. Clin Mol Hepatol 2020; 26:595-605. [PMID: 32911590 PMCID: PMC7641547 DOI: 10.3350/cmh.2020.0086] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Alcohol-associated intestinal dysbiosis and bacterial overgrowth can lead to a dysregulation of tryptophan metabolism and lower production of indoles. Several of these indole derivatives are aryl hydrocarbon receptor ligands that, in turn, are involved in antimicrobial defense via induction of interleukin-22 (IL-22). IL-22 increases the expression of intestinal regenerating islet-derived 3 (Reg3) lectins, which maintain low bacterial colonization of the inner mucus layer and reduce bacterial translocation to the liver. Chronic alcohol consumption is associated with reduced intestinal expression of Reg3β and Reg3γ, increased numbers of mucosa-associated bacteria and bacterial translocation. Translocated microbial products and viable bacteria reach the liver and activate the innate immune system. Release of inflammatory molecules promotes inflammation, contributes to hepatocyte death and results in a fibrotic response. This review summarizes the mechanisms by which chronic alcohol intake changes the gut microbiota and contributes to alcohol-associated liver disease by changing microbial-derived metabolites.
Collapse
Affiliation(s)
- Beatriz Garcia Mendes
- Department of Clinical Analysis, Federal University of Santa Catarina, Florianopolis, SC, Brazil.,Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
34
|
Wu G, Shi Y, Han L, Feng C, Ge Y, Yu Y, Tang X, Cheng X, Sun J, Le GW. Dietary Methionine Restriction Ameliorated Fat Accumulation, Systemic Inflammation, and Increased Energy Metabolism by Altering Gut Microbiota in Middle-Aged Mice Administered Different Fat Diets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7745-7756. [PMID: 32597175 DOI: 10.1021/acs.jafc.0c02965] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Diet greatly influences gut microbiota. Dietary methionine restriction (MR) prevents and ameliorates age-related or high-fat-induced diseases and prolongs life span. This study aimed to reveal the impact of MR on gut microbiota in middle-aged mice with low-, medium-, high-fat diets. C57BL/6J mice were randomly divided into six groups with different MR and fat-content diets. Multiple indicators of intestinal function, fat accumulation, energy consumption, and inflammation were measured. 16S rRNA gene sequencing was used to analyze cecal microbiota. Our results indicated that MR considerably reduced the concentrations of lipopolysaccharide (LPS) and increased short-chain fatty acids (SCFAs) by upregulating the abundance of Corynebacterium and SCFA-producing bacteria Bacteroides, Faecalibaculum, and Roseburia and downregulating the LPS-producing or proinflammatory bacteria Desulfovibrio and Escherichia-Shigella. The effect of MR on LPS and SCFAs further reduced fat accumulation and systemic inflammation, enhanced heat production, and mediated the LPS/LBP/CD14/ TLR4 pathway to strength the intestinal mucosal immunity barrier in middle-aged mice.
Collapse
Affiliation(s)
- Guoqing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yonghui Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Le Han
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanxing Feng
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yueting Ge
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yihao Yu
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xue Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiangrong Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jin Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Institute of Nutrition and Health, Qingdao University, Qingdao 266021, China
| | - Guo-Wei Le
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Center for Food Nutrition and Functional Food Engineering, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
35
|
Xiong X, Lu W, Zhang K, Zhou W. Pterostilbene reduces endothelial cell apoptosis by regulation of the Nrf2-mediated TLR-4/MyD88/NF-κB pathway in a rat model of atherosclerosis. Exp Ther Med 2020; 20:2090-2098. [PMID: 32782521 PMCID: PMC7401285 DOI: 10.3892/etm.2020.8923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
Endothelial cell injury in vascular arterial walls plays a crucial role in the pathological process of atherosclerosis. Pterostilbene, a stilbenoid chemically related to resveratrol, has anti-inflammatory, anti-apoptosis and antioxidant properties. However, the underlying mechanisms mediated by pterostilbene in regards to endothelial cell injury in vascular arterial walls are not fully understood. The purpose of the present study was to investigate the benefits of pterostilbene in a rat model of atherosclerosis. The possible mechanism of pterostilbene was also analyzed in regards to endothelial cell injury in vascular arterial walls in vitro. A rat model of atherosclerosis was established using endothelial injury of the iliac arteries. CCK-8 assay, TUNEL, immunofluorescence, western blot analysis and hematoxylin and eosin (H&E) staining were used to analyze the role of pterostilbene in the pathological processes of atherosclerosis. In vivo results showed that pterostilbene decreased cholesterol (CHO), high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) in plasma and attenuated interleukin (IL)-1, tumor necrosis factor (TNF)-α and IL-6 and oxidative stress injury in serum in the experimental animals. Pterostilbene treatment reduced atherogenesis, aortic plaques, macrophage infiltration and apoptosis of vascular arterial walls in the atherosclerosis rat model. In vitro assay demonstrated that pterostilbene administration increased viability of the endothelial cells, attenuated oxidative stress injury and apoptosis of endothelial cells. The results found that pterostilbene regulated endothelial cell apoptosis via the Nrf2-mediated TLR-4/MyD88/NF-κB pathway. In conclusion, data from the present study revealed that pterostilbene protects rats against atherosclerosis by regulation of the Nrf2-mediated TLR-4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Xiaowei Xiong
- Department of General Surgery, Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| | - Weihang Lu
- Department of Vascular and Endovascular Surgery, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Kaihua Zhang
- Department of General Surgery, Jiujiang No. 1 People's Hospital, Jiujiang, Jiangxi 332001, P.R. China
| | - Weimin Zhou
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330008, P.R. China
| |
Collapse
|
36
|
Hu N, Wang C, Dai X, Zhou M, Gong L, Yu L, Peng C, Li Y. Phillygenin inhibits LPS-induced activation and inflammation of LX2 cells by TLR4/MyD88/NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112361. [PMID: 31683033 DOI: 10.1016/j.jep.2019.112361] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/12/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese medicine Forsythiae Fructus is the dried fruit of Forsythia suspensa (Thunb.) Vahl. It is commonly used to clear heat and detoxify, reduce swelling and disperse knot, and evacuate wind and heat. AIM OF THE STUDY Inflammation is involved in liver fibrosis. Phillygenin (PHI) is a kind of lignans extracted and separated from Forsythiae Fructus, which has been reported to have a good anti-inflammatory effect. Therefore, we aimed to explore whether PHI has a therapeutic effect on liver fibrosis caused by inflammation. MATERIALS AND METHODS Firstly, the induction of the LX2 cells inflammatory model and fibrosis model by LPS with different concentrations were studied. Then, high, medium and low doses PHI was given for intervention therapy. The secretion of IL-6, IL-1β and TNF-α inflammatory factors were detected by ELISA kit, and the expression of collagen I and α-SMA was detected by Western blot and RT-qPCR. The possible mechanism of PHI on TLR4/MyD88/NF-κB signal pathway was studied by computer-aided drug design software and the results were further verified by Western blot and RT-qPCR experiments. RESULTS The results showed that LPS could promote the expression of IL-6, IL-1β and TNF-α and the expression of collagen I and α-SMA, indicating that LPS could induce inflammation and fibrosis in LX2 cells. PHI could inhibit LX2 cell activation and fibrotic cytokine expression by inhibiting LPS-induced pro-inflammatory reaction. Molecular docking results showed that PHI could successfully dock with TLR4, MyD88, IKKβ, p65, IκBα, and TAK1 proteins. Subsequently, Western blot and qPCR results further proved that PHI could inhibit the proteins expression in TLR4/MyD88/NF-κB signal pathway which were consistent with the molecular docking results. CONCLUSION PHI can inhibit LPS-induced pro-inflammatory reaction and LX2 cell activation through TLR4/MyD88/NF-κB signaling pathway, thereby inhibiting liver fibrosis.
Collapse
Affiliation(s)
- Naihua Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Cheng Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Xuyang Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Mengting Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Lihong Gong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Lingyuan Yu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
37
|
Zhou Z, Kim JW, Qi J, Eo SK, Lim CW, Kim B. Toll-Like Receptor 5 Signaling Ameliorates Liver Fibrosis by Inducing Interferon β-Modulated IL-1 Receptor Antagonist in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:614-629. [PMID: 31972159 DOI: 10.1016/j.ajpath.2019.11.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/17/2019] [Accepted: 11/05/2019] [Indexed: 02/08/2023]
Abstract
Bacterial flagellin, recognized by cell surface of Toll-like receptor (TLR) 5, is a potent activator of many types of cells, leading to the activation of innate or adaptive immunity, which are pivotal in regulating fibrotic process. However, the exact role of TLR5 signaling in hepatic fibrogenesis remains unclear, and this study aims to elucidate its underlying mechanisms. Flagellin was injected to hepatotoxin- and cholestasis-induced liver fibrosis murine models. Flagellin-induced TLR5 activation significantly decreased the severity of liver fibrosis. Interestingly, the expression levels of IL-1 receptor antagonist (IL1RN) and interferon (IFN)β markedly increased in fibrotic livers on flagellin treatment. Consistently, in vivo activation of TLR5 signaling markedly increased IFNβ and IL1RN expression in the livers. Notably, flagellin injection significantly exacerbated the severity of liver fibrosis in IFN-α/β receptor 1 (IFNAR1) knockout mice. Furthermore, hepatic expression of IL1RN in the fibrotic livers of IFNAR1 knockout mice was significantly lower than those of wild-type mice. In support of these findings, flagellin-mediated IL1RN production is not sufficient to alleviate the severity of hepatic fibroinflammatory responses in IFNAR1-deficient milieu. Finally, hepatic stellate cells treated with IL1RN had significantly decreased cellular activation and its associated fibrogenic responses. Collectively, manipulation of TLR5 signaling may be a promising therapeutic strategy for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Zixiong Zhou
- Biosafety Research Institute, and the BK21 Plus Program, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, South Korea
| | - Jong-Won Kim
- Biosafety Research Institute, and the BK21 Plus Program, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, South Korea
| | - Jing Qi
- Biosafety Research Institute, and the BK21 Plus Program, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, South Korea
| | - Seong Kug Eo
- Biosafety Research Institute, and the BK21 Plus Program, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, South Korea
| | - Chae Woong Lim
- Biosafety Research Institute, and the BK21 Plus Program, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, South Korea
| | - Bumseok Kim
- Biosafety Research Institute, and the BK21 Plus Program, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, South Korea.
| |
Collapse
|
38
|
Wang C, Li Q, Li T. Dioscin alleviates lipopolysaccharide-induced acute lung injury through suppression of TLR4 signaling pathways. Exp Lung Res 2020; 46:11-22. [PMID: 31931639 DOI: 10.1080/01902148.2020.1711830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Aim: Acute lung injury (ALI) is a life-threatening inflammatory syndrome that lacks an effective therapy. Dioscin, a natural steroid saponin isolated from a variety of herbs, could serve as an anti-inflammatory agent, as suggested in previous reports. The purpose of this study was to explore the effects of dioscin on lipopolysaccharide (LPS)-induced ALI and validate the potential mechanisms.Materials and Methods: An ALI model was induced by intratracheal administration of LPS. Dioscin (20, 40, and 80 mg/kg) was administered intragastrically once daily for seven consecutive days prior to LPS challenge.Results: Our data revealed that dioscin significantly suppressed LPS-induced lung pathological changes, pulmonary capillary permeability, pulmonary edema, inflammatory cell infiltration, myeloperoxidase (MPO) activity, and cytokine production, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, and keratinocyte chemoattractant (KC). Moreover, dioscin inhibited LPS-induced nuclear factor-kappaB (NF-κB) activation as well as Toll-like receptor 4 (TLR4) expression.Conclusions: In brief, the results indicated that dioscin alleviates LPS-induced ALI through suppression of TLR4 signaling pathways.
Collapse
Affiliation(s)
- Chuntao Wang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingnian Li
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Hu S, Li SW, Yan Q, Hu XP, Li LY, Zhou H, Pan LX, Li J, Shen CP, Xu T. Natural products, extracts and formulations comprehensive therapy for the improvement of motor function in alcoholic liver disease. Pharmacol Res 2019; 150:104501. [PMID: 31689520 DOI: 10.1016/j.phrs.2019.104501] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
|
40
|
Cao G, Zhu R, Jiang T, Tang D, Kwan HY, Su T. Danshensu, a novel indoleamine 2,3-dioxygenase1 inhibitor, exerts anti-hepatic fibrosis effects via inhibition of JAK2-STAT3 signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:153055. [PMID: 31377585 DOI: 10.1016/j.phymed.2019.153055] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/03/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Indoleamine 2,3-dioxygenase 1 (IDO1), an important intracellular rate-limiting enzyme in the development of Hepatic fibrosis (HF), and has been proposed as a hallmark of HF. Danshensu (DSS) is a major bioactive component that isolated from a edible traditional Chinese medicinal herb Salviae Miltiorrhizae Radix et Rhizoma (Danshen), while, the anti-HF mode and mechanism of action of DSS have not been fully elucidated. METHODS Carbon tetrachloride (CCl4)-induced rat HF model and TGF-β1-induced hepatic stellate cell (HSC) model were employed to assess the in vivo and in vitro anti-HF effects of DSS. HSC-T6 cells stably expressing IDO1, a constitutively active IDO1 mutant, was used to determine the role of JAK2-STAT3 signaling in the DSS's anti-HF effects. RESULTS We found that intragastric administration of DSS potently reduced fibrosis, inhibited IDO1 expression and STAT3 activity both in vitro and in vivo. Using molecular docking and molecular dynamics analysis, DSS was identified as a novel IDO1 inhibitor. Mechanistic studies indicated that DSS inhibited JAK2-STAT3 signaling, it reduced IDO1 expression, STAT3 phosphorylation and STAT3 nuclear localization. More importantly, overexpression of IDO1 diminished DSS's anti-HF effects. CONCLUSION Our findings provide a pharmacological justification for the clinical use of DSS in treating HF, and suggest that DSS has the potential to be developed as a modern alternative and/or complimentary agent for HF treatment and prevention.
Collapse
Affiliation(s)
- Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruyi Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Jiang
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dongxin Tang
- First Affiliated Hospital of Guiyang College of Traditional Chinese Medicine, Guiyang, China
| | - Hiu Yee Kwan
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Tao Su
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
41
|
Song S, Chu L, Liang H, Chen J, Liang J, Huang Z, Zhang B, Chen X. Protective Effects of Dioscin Against Doxorubicin-Induced Hepatotoxicity Via Regulation of Sirt1/FOXO1/NF-κb Signal. Front Pharmacol 2019; 10:1030. [PMID: 31572199 PMCID: PMC6753638 DOI: 10.3389/fphar.2019.01030] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022] Open
Abstract
Doxorubicin (Dox), an antitumor antibiotic, has therapeutic effects on many kinds of tumors. However, Dox can produce some serious side effects that limit its clinical application. Thus, exploration of effective drug targets or active lead compounds against Dox-induced organ damage is necessary. Dioscin, one natural product, has potent effects against Dox-induced renal injury and cardiotoxicity. However, the effects of dioscin on Dox-induced hepatotoxicity have not been reported. In this study, the results showed that dioscin significantly ameliorated Dox-induced cell injury, reduced reactive oxygen species (ROS) level, and suppressed cell apoptosis in alpha mouse liver 12 (AML-12) cells caused by Dox. In vivo, dioscin evidently decreased the levels of alanine transaminase (ALT), aspartate transaminase (AST), malondialdehyde (MDA); increased the levels of superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GSH-Px); and alleviated liver injury. Mechanism study showed that dioscin remarkably up-regulated the expression levels of silent information regulator 1 (Sirt1) and heme oxygenase-1 (HO-1) via increase of the nuclear translocation of NF-E2-related factor 2 (Nrf2) and suppressed the expression levels of forkhead box protein O1 (FOXO1) and kelch-like ECH-associated protein-1 (Keap1) to inhibit oxidative stress. Furthermore, dioscin obviously decreased the nuclear translocation of nuclear factor κB (NF-κB) and the mRNA levels of tumor necrosis factor alpha (TNF-α), interleukin 1β (IL-1β), and interleukin 6 (IL-6) to suppress inflammation. Meanwhile, dioscin significantly regulated tumor suppressor P53 (P53) expression level and BCL-2-associated X (BAX)/BCL-2 apoptosis regulator (BCL-2) ratio to inhibit cell apoptosis. These results were further validated by knockdown of Sirt1 using siRNA silencing in AML-12 cells, which confirmed that the target of dioscin against Dox-induced hepatotoxicity was Sirt1/FOXO1/NF-κB signal. In short, our findings showed that dioscin exhibited protective effects against Dox-induced liver damage via suppression of oxidative stress, inflammation, and apoptosis, which should be developed as one new candidate for the prevention of Dox-induced liver injury in the future.
Collapse
Affiliation(s)
- Shasha Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, China
| | - Jin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, China
| | - Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, China
| | - Zhao Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, China
| |
Collapse
|
42
|
Wu ZL, Wang J. Dioscin attenuates Bleomycin-Induced acute lung injury via inhibiting the inflammatory response in mice. Exp Lung Res 2019; 45:236-244. [PMID: 31452411 DOI: 10.1080/01902148.2019.1652370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhao-Li Wu
- Department of Integrated Chinese and Western Medicine, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Hunan Normal University, Changsha, China
| | - Jia Wang
- Scientific Research Office, Hunan Provincial People's Hospital (the First Affiliated Hospital of Hunan Normal University), Hunan Normal University, Changsha, China
| |
Collapse
|
43
|
Yang L, Ren S, Xu F, Ma Z, Liu X, Wang L. Recent Advances in the Pharmacological Activities of Dioscin. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5763602. [PMID: 31511824 PMCID: PMC6710808 DOI: 10.1155/2019/5763602] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/28/2019] [Indexed: 02/07/2023]
Abstract
Dioscin is a typical saponin with multiple pharmacological activities. The past few years have seen an emerging interest in and growing research on this pleiotropic saponin. Here, we review the emerging pharmacological activities reported recently, with foci on its antitumor, antimicrobial, anti-inflammatory, antioxidative, and tissue-protective properties. The potential use of dioscin in therapies of diverse clinical disorders is also discussed.
Collapse
Affiliation(s)
- Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shengnan Ren
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Fei Xu
- Department of Acupuncture and Moxibustion, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun 130024, China
| | - Lufei Wang
- Eye Center, The Second Hospital of Jilin University, Changchun 130024, China
| |
Collapse
|
44
|
Wang Y, Jiang Y, Zhao L. miRNA-200b improves hepatic fibrosis induced by CCL 4 by regulating toll-like receptor 4 in mice. J Cell Biochem 2019; 120:13254-13261. [PMID: 30924172 DOI: 10.1002/jcb.28599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/09/2019] [Accepted: 01/14/2019] [Indexed: 01/08/2023]
Abstract
To study the effect of miRNA-200b on hepatic fibrosis induced by CCl4 in mice. The C59BL/6 mice were randomly divided into three groups (normal control [NC], CCLR model [Model], and CCl 4 + miRNA-200b [miRNA]). The hepatic fibrosis was induced by CCl 4 injected subcutaneously twice per week in Model and miRNA groups. After 6 weeks building model, the mice of miRNA group were injected the miRNA-200b from caudal vein twice per week. The mice of Model and miRNA groups were continuously fed for 3 weeks. The IL-1β, IL-6, and TNF-α concentrations of serum were measured by enzyme-linked immunosorbent assay. The hepatic tissues of difference groups were observed by hematoxylin and eosin (H&E) staining, sirius red staining, Masson staining, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay and measured toll-like receptor 4 (TLR4) and nuclear factor-κB (NF-κB) proteins expressions by western blot assay. The correlation between miRNA-200b and TLR4 were analyzed by dual luciferase target assay. Compared with NC group, the interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) concentrations of Model group were significantly upregulated (P < 0.05, respectively). With miRNA-200b overexpression, the IL-1β, IL-6, and TNF-α concentrations were significantly suppressed (P < 0.05, respectively). The pathologies were improved by H&E staining, sirius red staining, and Masson staining; meanwhile, the hepatic cell apoptosis rate was significantly suppressed (P < 0.05). The TLR4 and NF-κB protein expressions of miRNA group were significantly suppressed compared with the Model group (P < 0.05, respectively). By dual luciferase target assay, the TLR4 was a target gene of miRNA-200b. The miRNA-200b upregulation improved hepatic fibrosis induced by CCl 4 via regulation of TLR4 in vivo.
Collapse
Affiliation(s)
- Yan Wang
- Department of Infectious Diseases, Binzhou Central Hospital of Shandong Province, Binzhou, Shandong, China
| | - Ying Jiang
- Department of Infectious Diseases, Binzhou Central Hospital of Shandong Province, Binzhou, Shandong, China
| | - Lianfeng Zhao
- Department of Infectious Diseases, Binzhou Central Hospital of Shandong Province, Binzhou, Shandong, China
| |
Collapse
|
45
|
Validation and functional analysis of the critical proteins in combination with taurine, epigallocatechin gallate and genistein against liver fibrosis in rats. Biomed Pharmacother 2019; 115:108975. [DOI: 10.1016/j.biopha.2019.108975] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/22/2022] Open
|
46
|
Li X, Liu Y, Yue W, Tan Y, Wang H, Zhang L, Chen J. A Compound of Chinese Herbs Protects against Alcoholic Liver Fibrosis in Rats via the TGF- β1/Smad Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:9121347. [PMID: 31118972 PMCID: PMC6500606 DOI: 10.1155/2019/9121347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/11/2019] [Accepted: 03/31/2019] [Indexed: 02/06/2023]
Abstract
Alcoholic liver fibrosis (ALF) has become a major public health concern owing to its health impacts and the lack of effective treatment strategies for the disease. In this study, we investigated the effect of a compound composed of Chinese herbs Pueraria lobata (Willd.), Salvia miltiorrhiza, Schisandra chinensis, and Silybum marianum on ALF. An ALF model was established. Rats were fed with modified Lieber-Decarli alcohol liquid diet and injected with trace CCl4 at late stage. The rats were then treated with several doses of the compound. Biochemical and fibrosis-relevant parameters were measured from the sera obtained from the rats. Liver tissues were obtained for hematoxylin and eosin and Masson's trichrome staining. Matrix metalloproteinase-13 and tissue inhibitor of metalloproteinase-1 were determined by immunohistochemistry assays. The mRNA and protein expression levels of transforming growth factor-β1 (TGF-β1), Smad2, Smad3, and Smad7 on the livers were also measured by quantitative polymerase chain reaction and Western blot. Results showed that the compound treatment alleviated pathological lesions in the liver, decreased the serum levels of hyaluronan, laminin, and hydroxyproline, and diminished the expression of hepatic tissue inhibitor of metalloproteinase-1. Compound treatment also increased hepatic matrix metalloproteinase-13 expression and inhibited the TGF-β1/Smad signaling pathway. In conclusion, the compound has a protective effect against ALF in rats, and an underlying mechanism is involved in the TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Xiaomeng Li
- West China School of Public Health and West China fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yunjie Liu
- West China School of Public Health and West China fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Wuyang Yue
- West China School of Public Health and West China fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Yuefeng Tan
- West China School of Public Health and West China fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - He Wang
- West China School of Public Health and West China fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Lishi Zhang
- West China School of Public Health and West China fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| | - Jinyao Chen
- West China School of Public Health and West China fourth Hospital, Sichuan University, Chengdu, China
- Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
47
|
Shao Q, Jiang C, Xia Y, Zhao M, Zhang Q, Jin B, Liu J. Dioscin ameliorates peritoneal fibrosis by inhibiting epithelial-to-mesenchymal transition of human peritoneal mesothelial cells via the TLR4/MyD88/NF-κB signaling pathway. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:867-875. [PMID: 31933895 PMCID: PMC6945188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/09/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To investigate the effect of dioscin on lipopolysaccharide (LPS)-induced peritoneal fibrosis and its underlying mechanism. METHODS The human peritoneal mesothelial cell line (HMrSV5) was treated with LPS, followed by treatment with different concentrations of dioscin (0.25, 0.5 or 1.0 μg/ml). Toll-like receptor (TLR) 4 gene transfection was performed and dioscin (0.5 μg/ml) was used in mechanism research. Then morphological observation was carried out, and LPS-related markers of epithelial mesenchymal transition (EMT) as well as fibrosis markers were detected by western blotting. qRT-PCR and ELISA assay were applied to measure inflammatory factors. Furthermore, TLR4/MyD88/NF-κB pathway related proteins were assessed. RESULTS Dioscin inhibited LPS-induced morphologic changes, significantly reduced the levels of markers of EMT including N-cadherin, matrix metalloproteinase-2 (MMP-2), MMP-9 and vimentin, and elevated the levels of E-cadherin and zonula occludens protein 1 (ZO-1). Decreased levels of fibrosis markers α-smooth muscle actin (α-SMA), collagen I and fibronectin were found in dioscin groups. Additionally, dioscin downregulated interleukin-6 (IL-6), IL-1β and tumor necrosis factor alpha (TNF-α). Dioscin inhibited EMT and fibrosis through triggering the TLR4/MyD88/NF-κB signaling pathway by decreasing expressions of TLR4, myeloid differentiation factor 88 (MyD88), nuclear factor κB (NF-κB), transforming growth factor-β1 (TGF-β1), phosphorylated Smad2 (p-Smad2), α-SMA, collagen I and fibronectin. CONCLUSION This study provides a novel and efficient remedy to alleviate PD-associated fibrosis for patients undergoing long-term peritoneal dialysis.
Collapse
Affiliation(s)
- Qiuyuan Shao
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing 210008, Jiangsu Province, China
| | - Chunming Jiang
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing 210008, Jiangsu Province, China
| | - Yangyang Xia
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing 210008, Jiangsu Province, China
| | - Min Zhao
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing 210008, Jiangsu Province, China
| | - Qingyan Zhang
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing 210008, Jiangsu Province, China
| | - Bo Jin
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing 210008, Jiangsu Province, China
| | - Jin Liu
- Department of Nephrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School Nanjing 210008, Jiangsu Province, China
| |
Collapse
|
48
|
Wu B, Wang R, Li S, Wang Y, Song F, Gu Y, Yuan Y. Antifibrotic effects of Fraxetin on carbon tetrachloride-induced liver fibrosis by targeting NF-κB/IκBα, MAPKs and Bcl-2/Bax pathways. Pharmacol Rep 2019; 71:409-416. [PMID: 31003150 DOI: 10.1016/j.pharep.2019.01.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/18/2018] [Accepted: 01/14/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Liver fibrosis is a chronic lesion which ultimately results in cirrhosis and possible death. Although the high incidence and lethality, few therapies are effective for liver fibrosis. Fraxetin (7,8-dihydroxy-6-methoxy coumarin), a natural product extracted from cortex fraxini, has exhibited a significant hepatoprotective and anti-fibrotic properties. However, the underlying mechanism of the anti-hepatic fibrotic property remains unknown. METHODS 48 Male Sprague Dawley rats were divided into four groups at random which were named as normal group, model group, fraxetin 25 mg/kg and 50 mg/kg group. The experimental model of liver fibrosis was founded by carbon tetrachloride (CCl4) rats which were simultaneously treated with fraxetin (25 mg/kg or 50 mg/kg). Normal groups received equal volumes of saline and peanut oil. RESULTS Results showed that fraxetin ameliorated CCl4 induced liver damage and fibrosis. Furthermore, histopathology examinations revealed that fraxetin improved the morphology and alleviated collagen deposition in fibrotic liver. Fraxetin inhibited inflammation and hepatocytes apoptosis by modulating the NF-κB/IκBα, MAPKs and Bcl-2/Bax signaling pathways. CONCLUSION Our findings indicate that fraxetin is effective in preventing liver fibrosis through inhibiting inflammation and hepatocytes apoptosis which is associated with regulating NF-κB/IκBα, MAPKs and Bcl-2/Bax signaling pathways in rats.
Collapse
Affiliation(s)
- Bin Wu
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengnan Li
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuxing Song
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanqiu Gu
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
49
|
Zhang L, Yao Z, Ji G. Herbal Extracts and Natural Products in Alleviating Non-alcoholic Fatty Liver Disease via Activating Autophagy. Front Pharmacol 2018; 9:1459. [PMID: 30618753 PMCID: PMC6297257 DOI: 10.3389/fphar.2018.01459] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease world-wide, and currently therapeutic options for NAFLD are limited. Herbal medicine (HM) may offer an attractive alternative for the treatment of NAFLD. Recent years have witnessed a growing interest in the autophagy-inducing agents, and autophagy activation has been recognized as an efficient strategy in managing NAFLD and related complications. Pharmacological studies have demonstrated certain potential of HM extracts and natural products in inducing autophagy, which might contribute to the efficacy of HM in preventing and treating NAFLD. This review aims to summarize current understanding of mechanisms of HM extracts and natural products in preventing and treating NAFLD. Specially, we focused on mechanisms by which autophagy can target the main pathogenesis events associated with NAFLD, including hepatic steatosis, inflammation, oxidative stress, and apoptosis. It is hoped that this brief review can provide a general understanding of HM extracts and natural products in treating NAFLD, and raise awareness of potential clinical application of HM in general.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zemin Yao
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Guang Ji
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
50
|
Wang Y, Guan M, Zhao X, Li X. Effects of garlic polysaccharide on alcoholic liver fibrosis and intestinal microflora in mice. PHARMACEUTICAL BIOLOGY 2018; 56:325-332. [PMID: 29969576 PMCID: PMC6130653 DOI: 10.1080/13880209.2018.1479868] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
CONTEXT Alcoholic liver fibrosis (ALF) is treatable and reversible consequence of liver disease. Intestinal microflora plays an important role in the progression of liver disease. Garlic (Allium sativum L. [Amaryllidaceae]) has been consumed as a traditional medicine to treat liver injury. OBJECTIVE To investigate the effects of garlic polysaccharide (GP) on ALF and intestinal microflora in mice. MATERIALS AND METHODS KM mice were orally administered with alcohol (56%, 6 mL/kg) for 30 d to establish ALF model, and divided into four groups together with control group (water only). Hugan tablet (60 mg/kg) or GP (250 and 150 mg/kg) were given 5 h after each dose of alcohol. Biochemical markers in serum and liver homogenate were determined with kits. Alteration of intestinal microflora, and protein expressions of TGF-β1, TNF-α and decorin were detected. RESULTS In GP-H group, ALT and AST decreased to 18.85 ± 4.71 U/L and 40.84 ± 7.89 U/L. MDA, TC, TG and LDL-C decreased to 2.32 ± 0.86 mmol/mg, 0.21 ± 0.12 mmol/L, 0.96 ± 0.31 mmol/L and 0.084 ± 0.027 mmol/L. SOD, GSH-Px and GSH increased to 118.32 ± 16.32 U/mg, 523.72 ± 64.20 U/mg and 0.56 ± 0.05 mg/g. Ratios of TGF-β1 and TNF-α decreased to 0.608 ± 0.170 and 1.057 ± 0.058, decorin increased to 2.182 ± 0.129. Lachnospiraceae and Lactobacillus increased, Facklamia and Firmicutes decreased with GP pretreatment. DISCUSSION AND CONCLUSIONS Intestinal microflora provides novel insight into the mechanisms of GP that may be used to treat ALF and intestinal microflora dysbiosis.
Collapse
Affiliation(s)
- Yuchuan Wang
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Min Guan
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, PR China
| | - Xin Zhao
- Department of Biotechonolgy, Dalian Medical University, Dalian, PR China
| | - Xinli Li
- Department of Biotechonolgy, Dalian Medical University, Dalian, PR China
- CONTACT Xinli Li Department of Biotechnology, Dalian Medical University, No. 9, West-Middle Section of Lvshun South Road, Dalian116044, Liaoning, PR China
| |
Collapse
|