1
|
In vitro single molecule and bulk phase studies reveal the AP-1 transcription factor cFos binds to DNA without its partner cJun. J Biol Chem 2022; 298:102229. [PMID: 35787376 PMCID: PMC9364023 DOI: 10.1016/j.jbc.2022.102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
The AP-1 transcription factor family crucially regulates progression of the cell cycle, as well as playing roles in proliferation, differentiation, and the stress response. The two best described AP-1 family members, cFos and cJun, are known to dimerize to form a functional AP-1 heterodimer that binds to a consensus response element sequence. Although cJun can also homodimerize and bind to DNA, the canonical view is that cFos cannot bind DNA without heterodimerizing with cJun. Here, we show that cFos can actually bind to DNA in the absence of cJun in vitro. Using dual color single molecule imaging of cFos alone, we directly visualize binding to and movement on DNA. Of all these DNA-bound proteins, detailed analysis suggested 30 to 46% were homodimers. Furthermore, we constructed fluorescent protein fusions of cFos and cJun for Förster resonance energy transfer experiments. These constructs indicated complete dimerization of cJun, but although cFos could dimerize, its extent was reduced. Finally, to provide orthogonal confirmation of cFos binding to DNA, we performed bulk-phase circular dichroism experiments that showed clear structural changes in DNA; these were found to be specific to the AP-1 consensus sequence. Taken together, our results clearly show cFos can interact with DNA both as monomers and dimers independently of its archetypal partner, cJun.
Collapse
|
2
|
Smith QM, Inchingolo AV, Mihailescu MD, Dai H, Kad NM. Single-molecule imaging reveals the concerted release of myosin from regulated thin filaments. eLife 2021; 10:69184. [PMID: 34569933 PMCID: PMC8476120 DOI: 10.7554/elife.69184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/11/2021] [Indexed: 11/13/2022] Open
Abstract
Regulated thin filaments (RTFs) tightly control striated muscle contraction through calcium binding to troponin, which enables tropomyosin to expose myosin-binding sites on actin. Myosin binding holds tropomyosin in an open position, exposing more myosin-binding sites on actin, leading to cooperative activation. At lower calcium levels, troponin and tropomyosin turn off the thin filament; however, this is antagonised by the high local concentration of myosin, questioning how the thin filament relaxes. To provide molecular details of deactivation, we used single-molecule imaging of green fluorescent protein (GFP)-tagged myosin-S1 (S1-GFP) to follow the activation of RTF tightropes. In sub-maximal activation conditions, RTFs are not fully active, enabling direct observation of deactivation in real time. We observed that myosin binding occurs in a stochastic step-wise fashion; however, an unexpectedly large probability of multiple contemporaneous detachments is observed. This suggests that deactivation of the thin filament is a coordinated active process.
Collapse
Affiliation(s)
- Quentin M Smith
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | | | | | - Hongsheng Dai
- Department of Mathematical Sciences, University of Essex, Colchester, United Kingdom
| | - Neil M Kad
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
3
|
Zhang J, Bellani MA, Huang J, James RC, Pokharel D, Gichimu J, Gali H, Stewart G, Seidman MM. Replication of the Mammalian Genome by Replisomes Specific for Euchromatin and Heterochromatin. Front Cell Dev Biol 2021; 9:729265. [PMID: 34532320 PMCID: PMC8438199 DOI: 10.3389/fcell.2021.729265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 11/26/2022] Open
Abstract
Replisomes follow a schedule in which replication of DNA in euchromatin is early in S phase while sequences in heterochromatin replicate late. Impediments to DNA replication, referred to as replication stress, can stall replication forks triggering activation of the ATR kinase and downstream pathways. While there is substantial literature on the local consequences of replisome stalling-double strand breaks, reversed forks, or genomic rearrangements-there is limited understanding of the determinants of replisome stalling vs. continued progression. Although many proteins are recruited to stalled replisomes, current models assume a single species of "stressed" replisome, independent of genomic location. Here we describe our approach to visualizing replication fork encounters with the potent block imposed by a DNA interstrand crosslink (ICL) and our discovery of an unexpected pathway of replication restart (traverse) past an intact ICL. Additionally, we found two biochemically distinct replisomes distinguished by activity in different stages of S phase and chromatin environment. Each contains different proteins that contribute to ICL traverse.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurosurgery, Institute for Advanced Study, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Marina A. Bellani
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Jing Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha, China
| | - Ryan C. James
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - Durga Pokharel
- Horizon Discovery Group plc, Lafayette, CO, United States
| | - Julia Gichimu
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Himabindu Gali
- Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Grant Stewart
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Science, University of Birmingham, Birmingham, United Kingdom
| | - Michael M. Seidman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
4
|
Grexa I, Fekete T, Molnár J, Molnár K, Vizsnyiczai G, Ormos P, Kelemen L. Single-Cell Elasticity Measurement with an Optically Actuated Microrobot. MICROMACHINES 2020; 11:mi11090882. [PMID: 32972024 PMCID: PMC7570390 DOI: 10.3390/mi11090882] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023]
Abstract
A cell elasticity measurement method is introduced that uses polymer microtools actuated by holographic optical tweezers. The microtools were prepared with two-photon polymerization. Their shape enables the approach of the cells in any lateral direction. In the presented case, endothelial cells grown on vertical polymer walls were probed by the tools in a lateral direction. The use of specially shaped microtools prevents the target cells from photodamage that may arise during optical trapping. The position of the tools was recorded simply with video microscopy and analyzed with image processing methods. We critically compare the resulting Young’s modulus values to those in the literature obtained by other methods. The application of optical tweezers extends the force range available for cell indentations measurements down to the fN regime. Our approach demonstrates a feasible alternative to the usual vertical indentation experiments.
Collapse
Affiliation(s)
- István Grexa
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
- Doctoral School of Interdisciplinary Medicine, University of Szeged, Korányi fasor 10, 6720 Szeged, Hungary
| | - Tamás Fekete
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
- Doctoral School of Multidisciplinary Medicine, Dóm tér 9, Hungary University of Szeged, 6720 Szeged, Hungary
| | - Judit Molnár
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
| | - Kinga Molnár
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
- Doctoral School of Theoretical Medicine, University of Szeged, Korányi fasor 10, 6720 Szeged, Hungary
| | - Gaszton Vizsnyiczai
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
| | - Pál Ormos
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
| | - Lóránd Kelemen
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
- Correspondence: ; Tel.: +36-62-599-600 (ext. 419)
| |
Collapse
|
5
|
Vizsnyiczai G, Búzás A, Lakshmanrao Aekbote B, Fekete T, Grexa I, Ormos P, Kelemen L. Multiview microscopy of single cells through microstructure-based indirect optical manipulation. BIOMEDICAL OPTICS EXPRESS 2020; 11:945-962. [PMID: 32133231 PMCID: PMC7041459 DOI: 10.1364/boe.379233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 05/08/2023]
Abstract
Fluorescent observation of cells generally suffers from the limited axial resolution due to the elongated point spread function of the microscope optics. Consequently, three-dimensional imaging results in axial resolution that is several times worse than the transversal. The optical solutions to this problem usually require complicated optics and extreme spatial stability. A straightforward way to eliminate anisotropic resolution is to fuse images recorded from multiple viewing directions achieved mostly by the mechanical rotation of the entire sample. In the presented approach, multiview imaging of single cells is implemented by rotating them around an axis perpendicular to the optical axis by means of holographic optical tweezers. For this, the cells are indirectly trapped and manipulated with special microtools made with two-photon polymerization. The cell is firmly attached to the microtool and is precisely manipulated with 6 degrees of freedom. The total control over the cells' position allows for its multiview fluorescence imaging from arbitrarily selected directions. The image stacks obtained this way are combined into one 3D image array with a multiview image processing pipeline resulting in isotropic optical resolution that approaches the lateral diffraction limit. The presented tool and manipulation scheme can be readily applied in various microscope platforms.
Collapse
Affiliation(s)
- Gaszton Vizsnyiczai
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Physics, Faculty of Science and Informatics, University of Szeged, Dugonics square 13, Szeged, 6720, Hungary
| | - András Búzás
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Physics, Faculty of Science and Informatics, University of Szeged, Dugonics square 13, Szeged, 6720, Hungary
| | - Badri Lakshmanrao Aekbote
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- School of Engineering, James Watt South Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Tamás Fekete
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, Faculty of Medicine, University of Szeged, Dugonics square 13, Szeged, 6720, Hungary
| | - István Grexa
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Interdisciplinary Medicine, Faculty of Medicine, University of Szeged, Dugonics square 13, Szeged, 6720, Hungary
| | - Pál Ormos
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Lóránd Kelemen
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, Szeged, 6726, Hungary
| |
Collapse
|
6
|
Indirect optical trapping using light driven micro-rotors for reconfigurable hydrodynamic manipulation. Nat Commun 2019; 10:1215. [PMID: 30872572 PMCID: PMC6418258 DOI: 10.1038/s41467-019-08968-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/01/2019] [Indexed: 01/05/2023] Open
Abstract
Optical tweezers are a highly versatile tool for exploration of the mesoscopic world, permitting non-contact manipulation of nanoscale objects. However, direct illumination with intense lasers restricts their use with live biological specimens, and limits the types of materials that can be trapped. Here we demonstrate an indirect optical trapping platform which circumvents these limitations by using hydrodynamic forces to exert nanoscale-precision control over aqueous particles, without directly illuminating them. Our concept is based on optically actuated micro-robotics: closed-loop control enables highly localised flow-fields to be sculpted by precisely piloting the motion of optically-trapped micro-rotors. We demonstrate 2D trapping of absorbing particles which cannot be directly optically trapped, stabilise the position and orientation of yeast cells, and demonstrate independent control over multiple objects simultaneously. Our work expands the capabilities of optical tweezers platforms, and represents a new paradigm for manipulation of aqueous mesoscopic systems. Optical tweezing with intense lasers can be harmful to biological specimens and limits the types of materials that can be trapped. Here, the authors demonstrate an indirect optical trapping approach which uses hydrodynamic forces to exert nanoscale-precision control over aqueous particles, without directly illuminating them.
Collapse
|
7
|
Falk M, Falková I, Kopečná O, Bačíková A, Pagáčová E, Šimek D, Golan M, Kozubek S, Pekarová M, Follett SE, Klejdus B, Elliott KW, Varga K, Teplá O, Kratochvílová I. Chromatin architecture changes and DNA replication fork collapse are critical features in cryopreserved cells that are differentially controlled by cryoprotectants. Sci Rep 2018; 8:14694. [PMID: 30279538 PMCID: PMC6168476 DOI: 10.1038/s41598-018-32939-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/17/2018] [Indexed: 11/22/2022] Open
Abstract
In this work, we shed new light on the highly debated issue of chromatin fragmentation in cryopreserved cells. Moreover, for the first time, we describe replicating cell-specific DNA damage and higher-order chromatin alterations after freezing and thawing. We identified DNA structural changes associated with the freeze-thaw process and correlated them with the viability of frozen and thawed cells. We simultaneously evaluated DNA defects and the higher-order chromatin structure of frozen and thawed cells with and without cryoprotectant treatment. We found that in replicating (S phase) cells, DNA was preferentially damaged by replication fork collapse, potentially leading to DNA double strand breaks (DSBs), which represent an important source of both genome instability and defects in epigenome maintenance. This induction of DNA defects by the freeze-thaw process was not prevented by any cryoprotectant studied. Both in replicating and non-replicating cells, freezing and thawing altered the chromatin structure in a cryoprotectant-dependent manner. Interestingly, cells with condensed chromatin, which was strongly stimulated by dimethyl sulfoxide (DMSO) prior to freezing had the highest rate of survival after thawing. Our results will facilitate the design of compounds and procedures to decrease injury to cryopreserved cells.
Collapse
Affiliation(s)
- Martin Falk
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, CZ-612 65, Brno, Czech Republic.
| | - Iva Falková
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, CZ-612 65, Brno, Czech Republic
| | - Olga Kopečná
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, CZ-612 65, Brno, Czech Republic
| | - Alena Bačíková
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, CZ-612 65, Brno, Czech Republic
| | - Eva Pagáčová
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, CZ-612 65, Brno, Czech Republic
| | - Daniel Šimek
- The Czech Academy of Sciences, Institute of Physics, Na Slovance 2, CZ-182 21, Prague 8, Czech Republic
| | - Martin Golan
- The Czech Academy of Sciences, Institute of Physics, Na Slovance 2, CZ-182 21, Prague 8, Czech Republic
- Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, Prague 2, CZ-121 16, Czech Republic
| | - Stanislav Kozubek
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, CZ-612 65, Brno, Czech Republic
| | - Michaela Pekarová
- The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, CZ-612 65, Brno, Czech Republic
| | - Shelby E Follett
- Department of Chemistry, University of Wyoming, 1000 E. University Ave, WY 82071, Laramie, USA
| | - Bořivoj Klejdus
- Institute of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, CZ-613 00, Czech Republic
- CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00, Brno, Czech Republic
| | - K Wade Elliott
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH, 03824, USA
| | - Krisztina Varga
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH, 03824, USA
| | - Olga Teplá
- ISCARE IVF a.s, Jankovcova 1692, CZ-160 00, Praha 6, Czech Republic
- VFN Gynekologicko-porodnická klinika, Apolinářská 18, CZ-120 00, Czech Republic
| | - Irena Kratochvílová
- The Czech Academy of Sciences, Institute of Physics, Na Slovance 2, CZ-182 21, Prague 8, Czech Republic.
| |
Collapse
|
8
|
Optical fiber tips for biological applications: From light confinement, biosensing to bioparticles manipulation. Biochim Biophys Acta Gen Subj 2018; 1862:1209-1246. [DOI: 10.1016/j.bbagen.2018.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/26/2018] [Accepted: 02/13/2018] [Indexed: 12/15/2022]
|
9
|
Third EU-US workshop on “Nucleotide excision repair and crosslink repair—From molecules to mankind”, Smolenice Castle, Slovak Republic, May 7th–11th 2017. DNA Repair (Amst) 2017. [DOI: 10.1016/j.dnarep.2017.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Wang J, Barnett JT, Pollard MR, Kad NM. Integrating Optical Tweezers, DNA Tightropes, and Single-Molecule Fluorescence Imaging: Pitfalls and Traps. Methods Enzymol 2016; 582:171-192. [PMID: 28062034 DOI: 10.1016/bs.mie.2016.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Fluorescence imaging is one of the cornerstone techniques for understanding how single molecules search for their targets on DNA. By tagging individual proteins, it is possible to track their position with high accuracy. However, to understand how proteins search for targets, it is necessary to elongate the DNA to avoid protein localization ambiguities. Such structures known as "DNA tightropes" are tremendously powerful for imaging target location; however, they lack information about how force and load affect protein behavior. The use of optically trapped microstructures offers the means to apply and measure force effects. Here we describe a system that we recently developed to enable individual proteins to be directly manipulated on DNA tightropes. Proteins bound to DNA can be conjugated with Qdot fluorophores for visualization and also directly manipulated by an optically trapped, manufactured microstructure. Together this offers a new approach to understanding the physical environment of molecules, and the combination with DNA tightropes presents opportunities to study complex biological phenomena.
Collapse
Affiliation(s)
- J Wang
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - J T Barnett
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | | | - N M Kad
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom.
| |
Collapse
|