1
|
Pei G, Lyons H, Li P, Sabari BR. Transcription regulation by biomolecular condensates. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00789-x. [PMID: 39516712 DOI: 10.1038/s41580-024-00789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Biomolecular condensates regulate transcription by dynamically compartmentalizing the transcription machinery. Classic models of transcription regulation focus on the recruitment and regulation of RNA polymerase II by the formation of complexes at the 1-10 nm length scale, which are driven by structured and stoichiometric interactions. These complexes are further organized into condensates at the 100-1,000 nm length scale, which are driven by dynamic multivalent interactions often involving domain-ligand pairs or intrinsically disordered regions. Regulation through condensate-mediated organization does not supersede the processes occurring at the 1-10 nm scale, but it provides regulatory mechanisms for promoting or preventing these processes in the crowded nuclear environment. Regulation of transcription by transcriptional condensates is involved in cell state transitions during animal and plant development, cell signalling and cellular responses to the environment. These condensate-mediated processes are dysregulated in developmental disorders, cancer and neurodegeneration. In this Review, we discuss the principles underlying the regulation of transcriptional condensates, their roles in physiology and their dysregulation in human diseases.
Collapse
Affiliation(s)
- Gaofeng Pei
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Heankel Lyons
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pilong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Chang HW, Park JJ, Lee WH, Kim SH, Lee JC, Nam HY, Kim MR, Han MW, Lee YS, Kim SY, Kim SW. Enhancer of zeste homolog 2 (EZH2)-dependent sirtuin-3 determines sensitivity to glucose starvation in radioresistant head and neck cancer cells. Cell Signal 2024; 115:111029. [PMID: 38163576 DOI: 10.1016/j.cellsig.2023.111029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Sirtuin 3 (SIRT3) regulates mitochondrial function as a mitochondrial deacetylase during oxidative stress. However, the specific regulatory mechanism and function of SIRT3 in radioresistant cancer cells are unclear. In this study, we aim to investigate how SIRT3 determines the susceptibility to glucose deprivation and its regulation in p53-based radioresistant head and neck cancer cells. We observed mitochondrial function using two established isogenic radioresistant subclones (HN3R-A [p53 null] and HN3R-B [p53 R282W]) with intratumoral p53 heterogeneity. Cell counting analysis was performed to evaluate cell proliferation and cell death. The correlation between the regulation of SIRT3 and enhancer of zeste homolog 2 (EZH2) was confirmed by immunoblotting and chromatin immunoprecipitation assay. p53-deficient radioresistant cells (HN3R-A) expression reduced SIRT3 levels and increased sensitivity to glucose deprivation due to mitochondrial dysfunction compared to other cells. In these cells, activation of SIRT3 significantly prevented glucose deprivation-induced cell death, whereas the loss of SIRT3 increased the susceptibility to glucose deficiency. We discovered that radiation-induced EZH2 directly binds to the SIRT3 promoter and represses the expression. Conversely, inhibiting EZH2 increased the expression of SIRT3 through epigenetic changes. Our findings indicate that p53-deficient radioresistant cells with enhanced EZH2 exhibit increased sensitivity to glucose deprivation due to SIRT3 suppression. The regulation of SIRT3 by EZH2 plays a critical role in determining the cell response to glucose deficiency in radioresistant cancer cells. Therefore, EZH2-dependent SIRT3 could be used as a predictive biomarker to select treatment options for patients with radiation-resistance.
Collapse
Affiliation(s)
- Hyo Won Chang
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jung Je Park
- Department of Otolaryngology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Won Hyeok Lee
- Department of Otolaryngology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Song Hee Kim
- Department of Otolaryngology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Jong Cheol Lee
- Department of Otolaryngology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea
| | - Hae Yun Nam
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi Ra Kim
- Department of Otolaryngology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea
| | - Myung Woul Han
- Department of Otolaryngology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Yoon Se Lee
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Mohammad-Jafari K, Naghib SM, Mozafari MR. Cisplatin-based Liposomal Nanocarriers for Drug Delivery in Lung Cancer Therapy: Recent Progress and Future Outlooks. Curr Pharm Des 2024; 30:2850-2881. [PMID: 39051580 DOI: 10.2174/0113816128304923240704113319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/23/2024] [Indexed: 07/27/2024]
Abstract
In order to improve the treatment of lung cancer, this paper looks at the development of cisplatinbased liposomal nanocarriers. It focuses on addressing the drawbacks of conventional cisplatin therapy, including systemic toxicity, inadequate tumor targeting, and drug resistance. Liposomes, or spherical lipid vesicles, offer a potentially effective way to encapsulate cisplatin, enhancing its transport and minimizing harmful effects on healthy tissues. The article discusses many liposomal cisplatin formulations, including pH-sensitive liposomes, sterically stabilized liposomes, and liposomes coupled with specific ligands like EGFR antibodies. These novel formulations show promise in reducing cisplatin resistance, optimizing pharmacokinetics, and boosting therapeutic results in the two in vitro and in vivo models. They also take advantage of the Enhanced Permeability and Retention (EPR) effect in the direction of improved tumor accumulation. The study highlights the need for more investigation to move these liposomal formulations from experimental to clinical settings, highlighting their potential to offer less harmful and more effective cancer therapy alternatives.
Collapse
Affiliation(s)
- Kave Mohammad-Jafari
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
4
|
Entezari M, Taheriazam A, Paskeh MDA, Sabouni E, Zandieh MA, Aboutalebi M, Kakavand A, Rezaei S, Hejazi ES, Saebfar H, Salimimoghadam S, Mirzaei S, Hashemi M, Samarghandian S. The pharmacological and biological importance of EZH2 signaling in lung cancer. Biomed Pharmacother 2023; 160:114313. [PMID: 36738498 DOI: 10.1016/j.biopha.2023.114313] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Up to 18% of cancer-related deaths worldwide are attributed to lung tumor and global burden of this type of cancer is ascending. Different factors are responsible for development of lung cancer such as smoking, environmental factors and genetic mutations. EZH2 is a vital protein with catalytic activity and belongs to PCR2 family. EZH2 has been implicated in regulating gene expression by binding to promoter of targets. The importance of EZH2 in lung cancer is discussed in current manuscript. Activation of EZH2 significantly elevates the proliferation rate of lung cancer. Furthermore, metastasis and associated molecular mechanisms including EMT undergo activation by EZH2 in enhancing the lung cancer progression. The response of lung cancer to therapy can be significantly diminished due to EZH2 upregulation. Since EZH2 increases tumor progression, anti-cancer agents suppressing its expression reduce malignancy. In spite of significant effort in understanding modulatory function of EZH2 on other pathways, it appears that EZH2 can be also regulated and controlled by other factors that are described in current review. Therefore, translating current findings to clinic can improve treatment and management of lung cancer patients.
Collapse
Affiliation(s)
- Maliheh Entezari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Eisa Sabouni
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, university of milan, Italy
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
5
|
Hong SH, Hwang HJ, Son DH, Kim ES, Park SY, Yoon YE. Inhibition of EZH2 exerts antitumorigenic effects in renal cell carcinoma via LATS1. FEBS Open Bio 2023; 13:724-735. [PMID: 36808829 PMCID: PMC10068324 DOI: 10.1002/2211-5463.13579] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023] Open
Abstract
The most common type of kidney cancer in adults is renal cell carcinoma (RCC), which accounts for approximately 90% of cases. RCC is a variant disease with numerous subtypes; the most common subtype is clear cell RCC (ccRCC, 75%), followed by papillary RCC (pRCC, 10%) and chromophobe RCC (chRCC, 5%). To identify a genetic target for all subtypes, we analyzed The Cancer Genome Atlas (TCGA) databases of ccRCC, pRCC, and chromophobe RCC. Enhancer of zeste homolog 2 (EZH2), which encodes a methyltransferase, was observed to be significantly upregulated in tumors. The EZH2 inhibitor tazemetostat induced anticancer effects in RCC cells. TCGA analysis revealed that large tumor suppressor kinase 1 (LATS1), a key tumor suppressor of the Hippo pathway, was significantly downregulated in tumors; the expression of LATS1 was increased by tazemetostat. Through additional experiments, we confirmed that LATS1 plays a crucial role in EZH2 inhibition and has a negative association with EZH2. Therefore, we suggest that epigenetic control could be a novel therapeutic strategy for three subtypes of RCC.
Collapse
Affiliation(s)
- Seong Hwi Hong
- Department of Urology, Hanyang University College of Medicine, Seoul, Korea
| | - Hyun Ji Hwang
- Department of Urology, Hanyang University College of Medicine, Seoul, Korea
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Korea
| | - Da Hyeon Son
- Department of Urology, Hanyang University College of Medicine, Seoul, Korea
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Korea
| | - Eun Song Kim
- Department of Urology, Hanyang University College of Medicine, Seoul, Korea
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul, Korea
| | - Sung Yul Park
- Department of Urology, Hanyang University College of Medicine, Seoul, Korea
| | - Young Eun Yoon
- Department of Urology, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Shi Q, Han S, Liu X, Wang S, Ma H. Integrated single-cell and transcriptome sequencing analyses determines a chromatin regulator-based signature for evaluating prognosis in lung adenocarcinoma. Front Oncol 2022; 12:1031728. [PMID: 36324565 PMCID: PMC9618736 DOI: 10.3389/fonc.2022.1031728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/28/2022] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Accumulating evidence has highlighted the significance of chromatin regulator (CR) in pathogenesis and progression of cancer. However, the prognostic role of CRs in LUAD remains obscure. We aim to detect the prognostic value of CRs in LUAD and create favorable signature for assessing prognosis and clinical value of LUAD patients. METHODS The mRNA sequencing data and clinical information were obtained from TCGA and GEO databases. Gene consensus clustering analysis was utilized to determine the molecular subtype of LUAD. Cox regression methods were employed to set up the CRs-based signature (CRBS) for evaluating survival rate in LUAD. Biological function and signaling pathways were identified by KEGG and GSEA analyses. In addition, we calculated the infiltration level of immunocyte by CIBERSORT algorithm. The expressions of model hub genes were detected in LUAD cell lines by real-time polymerase chain reaction (PCR). RESULTS KEGG analysis suggested the CRs were mainly involved in histone modification, nuclear division and DNA modification. Consensus clustering analysis identified a novel CRs-associated subtype which divided the combined LUAD cohort into two clusters (C1 = 217 and C2 = 296). We noticed that a remarkable discrepancy in survival rate among two clusters. Then, a total of 120 differentially expressed CRs were enrolled into stepwise Cox analyses. Four hub CRs (CBX7, HMGA2, NPAS2 and PRC1) were selected to create a risk signature which could accurately forecast patient outcomes and differentiate patient risk. GSEA unearthed that mTORC1 pathway, PI3K/Akt/mTOR and p53 pathway were greatly enriched in CRBS-high cohort. Moreover, the infiltration percentages of macrophage M0, macrophage M2, resting NK cells, memory B cells, dendritic cells and mast cells were statistically significantly different in the two groups. PCR assay confirmed the differential expression of four model biomarkers. CONCLUSIONS Altogether, our project developed a robust risk signature based on CRs and offered novel insights into individualized treatment for LUAD cases.
Collapse
Affiliation(s)
- Qingtong Shi
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Thoracic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Song Han
- Department of Thoracic Surgery, Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Xiong Liu
- Department of Thoracic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
- Graduate School of Dalian Medical University, Dalian, China
| | - Saijian Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
- Graduate School of Dalian Medical University, Dalian, China
| | - Haitao Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Huang M, Ding J, Wu X, Peng X, Wu G, Peng C, Zhang H, Mao C, Huang B. EZH2 affects malignant progression and DNA damage repair of lung adenocarcinoma cells by regulating RAI2 expression. Mutat Res 2022; 825:111792. [PMID: 35939884 DOI: 10.1016/j.mrfmmm.2022.111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is featured in high morbidity and mortality. Aberrant activation of the histone methyltransferase EZH2 has close association with cancer progression. This research aimed to deeply dive into the role and possible molecular mechanisms of EZH2 and its downstream genes in malignant progression and DNA damage repair of LUAD cells. METHODS Expression of EZH2 in LUAD cells was analyzed by qRT-PCR, and the effects of EZH2 on proliferation, and apoptosis of LUAD cells were examined by CCK-8, colony formation and flow cytometry assays. The downstream targets of EZH2 were predicted by bioinformatics analysis. Then, the targeting relationship between EZH2 and RAI2 was examined by CHIP and luciferase reporter assays. Rescue assay were used to further validate the effect of EZH2/RAI2 on the malignant progression of LUAD cells. The expression levels of EZH2, RAI2 and p53 were examined by Western blot. RESULTS Upregulation of EZH2 was identified in LUAD tissues and cells. RAI2 was a downstream target gene of EZH2, and the two were negatively correlated. Silencing EZH2 suppressed proliferation of LUAD cells, promoted expression of p53, cell cycle arrest and apoptosis. While silencing RAI2 could reverse the above-mentioned effects caused by EZH2 silencing. CONCLUSION These results demonstrated that EZH2 promoted malignant progression and DNA damage repair of LUAD cells by targeting and negatively regulating RAI2.
Collapse
Affiliation(s)
- Mingjiang Huang
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Jianyang Ding
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Xuhui Wu
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Xuyang Peng
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Gongzhi Wu
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Congxiong Peng
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Huaizhong Zhang
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Chaofan Mao
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Bin Huang
- Department of Cardiothoracic Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China.
| |
Collapse
|
8
|
Shin DS, Park K, Garon E, Dubinett S. Targeting EZH2 to overcome the resistance to immunotherapy in lung cancer. Semin Oncol 2022; 49:306-318. [PMID: 35851153 DOI: 10.1053/j.seminoncol.2022.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 12/22/2022]
Abstract
Unleashing the immune system to fight cancer has been a major breakthrough in cancer therapeutics since 2014 when anti-PD-1 antibodies (pembrolizumab and nivolumab) were approved for patients with metastatic melanoma. Therapeutic indications have rapidly expanded for many types of advanced cancer, including lung cancer. A variety of antibodies targeting the PD-1/PD-L1 checkpoint are contributing to this paradigm shift. The field now confronts two salient challenges: first, to improve the therapeutic outcome given the low response rate across the histologies; second, to identify biomarkers for improved patient selection. Pre-clinical and clinical studies are underway to evaluate combinatorial treatments to improve the therapeutic outcome paired with correlative studies to identify the factors associated with response and resistance. One of the emerging strategies is to combine epigenetic modifiers with immune checkpoint blockade (ICB) based on the evidence that targeting epigenetic elements can enhance anti-tumor immunity by reshaping the tumor microenvironment (TME). We will briefly review pleotropic biological functions of enhancer of zeste homolog 2 (EZH2), the enzymatic subunit of polycomb repressive complex 2 (PRC2), clinical developments of oral EZH2 inhibitors, and potentially promising approaches to combine EZH2 inhibitors and PD-1 blockade for patients with advanced solid tumors, focusing on lung cancer.
Collapse
Affiliation(s)
- Daniel Sanghoon Shin
- Department of Medicine, Division of Hematology/Oncology, University of California Los Angeles, Los Angeles, CA, USA; VA Greater Los Angeles Healthcare System, Division of Hematology/Oncology, CA, USA; Member of Molecular Biology Institute, UCLA, CA, USA; Member of Jonsson Comprehensive Cancer Center, UCLA, CA, USA.
| | - Kevin Park
- Department of Medicine, Division of Hematology/Oncology, University of California Los Angeles, Los Angeles, CA, USA
| | - Edward Garon
- Department of Medicine, Division of Hematology/Oncology, University of California Los Angeles, Los Angeles, CA, USA; Member of Jonsson Comprehensive Cancer Center, UCLA, CA, USA
| | - Steven Dubinett
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of California Los Angeles, Los Angeles, CA, USA; Departments of Pathology, Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology University of California Los Angeles, CA, USA; VA Greater Los Angeles Healthcare System, Division of Hematology/Oncology, CA, USA; Member of Molecular Biology Institute, UCLA, CA, USA; Member of Jonsson Comprehensive Cancer Center, UCLA, CA, USA
| |
Collapse
|
9
|
Su D, Wang W, Hou Y, Wang L, Yi X, Cao C, Wang Y, Gao H, Wang Y, Yang C, Liu B, Chen X, Wu X, Wu J, Yan D, Wei S, Han L, Liu S, Wang Q, Shi L, Shan L. Bimodal regulation of the PRC2 complex by USP7 underlies tumorigenesis. Nucleic Acids Res 2021; 49:4421-4440. [PMID: 33849069 PMCID: PMC8096222 DOI: 10.1093/nar/gkab209] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 12/27/2022] Open
Abstract
Although overexpression of EZH2, a catalytic subunit of the polycomb repressive complex 2 (PRC2), is an eminent feature of various cancers, the regulation of its abundance and function remains insufficiently understood. We report here that the PRC2 complex is physically associated with ubiquitin-specific protease USP7 in cancer cells where USP7 acts to deubiquitinate and stabilize EZH2. Interestingly, we found that USP7-catalyzed H2BK120ub1 deubiquitination is a prerequisite for chromatin loading of PRC2 thus H3K27 trimethylation, and this process is not affected by H2AK119 ubiquitination catalyzed by PRC1. Genome-wide analysis of the transcriptional targets of the USP7/PRC2 complex identified a cohort of genes including FOXO1 that are involved in cell growth and proliferation. We demonstrated that the USP7/PRC2 complex drives cancer cell proliferation and tumorigenesis in vitro and in vivo. We showed that the expression of both USP7 and EZH2 elevates during tumor progression, corresponding to a diminished FOXO1 expression, and the level of the expression of USP7 and EZH2 strongly correlates with histological grades and prognosis of tumor patients. These results reveal a dual role for USP7 in the regulation of the abundance and function of EZH2, supporting the pursuit of USP7 as a therapeutic target for cancer intervention.
Collapse
Affiliation(s)
- Dongxue Su
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.,State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Wenjuan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yongqiang Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Liyong Wang
- Core Facilities for Molecular Biology, Capital Medical University, Beijing 100069, China
| | - Xianfu Yi
- School of Biomedical Engineering, Tianjin Medical University, Tianjin 300070, China
| | - Cheng Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuejiao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Huan Gao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Chao Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Beibei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xing Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaodi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jiajing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Dong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shuqi Wei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Lulu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Shumeng Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Qian Wang
- Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
10
|
Peng Q, Weng K, Li S, Xu R, Wang Y, Wu Y. A Perspective of Epigenetic Regulation in Radiotherapy. Front Cell Dev Biol 2021; 9:624312. [PMID: 33681204 PMCID: PMC7930394 DOI: 10.3389/fcell.2021.624312] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Radiation therapy (RT) has been employed as a tumoricidal modality for more than 100 years and on 470,000 patients each year in the United States. The ionizing radiation causes genetic changes and results in cell death. However, since the biological mechanism of radiation remains unclear, there is a pressing need to understand this mechanism to improve the killing effect on tumors and reduce the side effects on normal cells. DNA break and epigenetic remodeling can be induced by radiotherapy. Hence the modulation of histone modification enzymes may tune the radiosensitivity of cancer cells. For instance, histone deacetylase (HDAC) inhibitors sensitize irradiated cancer cells by amplifying the DNA damage signaling and inhibiting double-strand DNA break repair to influence the irradiated cells’ survival. However, the combination of epigenetic drugs and radiotherapy has only been evaluated in several ongoing clinical trials for limited cancer types, partly due to a lack of knowledge on the potential mechanisms on how radiation induces epigenetic regulation and chromatin remodeling. Here, we review recent advances of radiotherapy and radiotherapy-induced epigenetic remodeling and introduce related technologies for epigenetic monitoring. Particularly, we exploit the application of fluorescence resonance energy transfer (FRET) biosensors to visualize dynamic epigenetic regulations in single living cells and tissue upon radiotherapy and drug treatment. We aim to bridge FRET biosensor, epigenetics, and radiotherapy, providing a perspective of using FRET to assess epigenetics and provide guidance for radiotherapy to improve cancer treatment. In the end, we discuss the feasibility of a combination of epigenetic drugs and radiotherapy as new approaches for cancer therapeutics.
Collapse
Affiliation(s)
- Qin Peng
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Kegui Weng
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States.,Chongqing Cancer Hospital, Chongqing Cancer Institute, Chongqing University Cancer Hospital, Chongqing, China
| | - Shitian Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Richard Xu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Yongzhong Wu
- Chongqing Cancer Hospital, Chongqing Cancer Institute, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
11
|
Gong H, Li Y, Yuan Y, Li W, Zhang H, Zhang Z, Shi R, Liu M, Liu C, Chen C, Liu H, Chen J. EZH2 inhibitors reverse resistance to gefitinib in primary EGFR wild-type lung cancer cells. BMC Cancer 2020; 20:1189. [PMID: 33276757 PMCID: PMC7716470 DOI: 10.1186/s12885-020-07667-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Background Lung cancer is the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. In traditional anti-cancer therapy, epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKI) have been proven to be beneficial for patients with EGFR mutations. However, patients with EGFR wild-type NSCLC were usually not respond to EGFR-TKIs. Enhancer of zeste homolog 2 (EZH2) is a key molecular in the PRC2 complex and plays an important role in epigenetic regulation and is overexpressed in variant tumors. EZH2 inhibitors have been reported to sensitize variant tumor cells to anticancer drugs. This study aimed to investigate whether the EZH2 inhibitors, GSK343 and DZNep when combined with gefitinib can reverse EGFR-TKIs resistance in EGFR wild-type NSCLC cells. Methods The RNA-sequencing data of patients with NSCLC [502 patients with lung squamous cell carcinoma, including 49 paracancerous lung tissues and 513 patients with lung adenocarcinoma (LUAD), including 59 paracancerous lung tissues] from the Cancer Genome Atlas (TCGA), were analyzed for EZH2 expression. EZH2 expression was verified in 40 NSCLC tissue cancer samples and their corresponding paracancerous tissues from our institute (TJMUGH) via RT-PCR. A549 and H1299 cells treated with siRNA or EZH2 inhibitors were subjected to cell viability and apoptosis analyses as well to EGFR pathway proteins expression analyses via western blotting. Results EZH2 was upregulated in human NSCLC tissues and correlated with poor prognosis in patients with LUAD based on data from both TCGA and TJMUGH. Both GSK343 and DZNep sensitized EGFR wild-type LUAD cells (A549 and H1299) to gefitinib and suppressed cell viability and proliferation in vitro by downregulating the phosphorylation of EGFR and AKT and by inducing cell apoptosis. Co-administration of EZH2 inhibitors (GSK343 or DZNep) with gefitinib exerted a stronger inhibitory effect on tumor activity, cell proliferation and cell migration than single drug administration in vitro and in vivo. Conclusions These data suggest that the combination of EZH2 inhibitors with EGFR-TKIs may be an effective method for treating NSCLC-patients with EGFR-wild type, who do not want to undergo traditional treatment with chemotherapy.
Collapse
Affiliation(s)
- Hao Gong
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Yongwen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, P.R. China
| | - Yin Yuan
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Weiting Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Hongbing Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Zihe Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Ruifeng Shi
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Minghui Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Chao Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | - Chen Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, P.R. China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, P.R. China.
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, P.R. China. .,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052, P.R. China.
| |
Collapse
|
12
|
Küster MM, Schneider MA, Richter AM, Richtmann S, Winter H, Kriegsmann M, Pullamsetti SS, Stiewe T, Savai R, Muley T, Dammann RH. Epigenetic Inactivation of the Tumor Suppressor IRX1 Occurs Frequently in Lung Adenocarcinoma and Its Silencing Is Associated with Impaired Prognosis. Cancers (Basel) 2020; 12:E3528. [PMID: 33256112 PMCID: PMC7760495 DOI: 10.3390/cancers12123528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
Iroquois homeobox (IRX) encodes members of homeodomain containing genes which are involved in development and differentiation. Since it has been reported that the IRX1 gene is localized in a lung cancer susceptibility locus, the epigenetic regulation and function of IRX1 was investigated in lung carcinogenesis. We observed frequent hypermethylation of the IRX1 promoter in non-small cell lung cancer (NSCLC) compared to small cell lung cancer (SCLC). Aberrant IRX1 methylation was significantly correlated with reduced IRX1 expression. In normal lung samples, the IRX1 promoter showed lower median DNA methylation levels (<10%) compared to primary adenocarcinoma (ADC, 22%) and squamous cell carcinoma (SQCC, 14%). A significant hypermethylation and downregulation of IRX1 was detected in ADC and SQCC compared to matching normal lung samples (p < 0.0001). Low IRX1 expression was significantly correlated with impaired prognosis of ADC patients (p = 0.001). Reduced survival probability was also associated with higher IRX1 promoter methylation (p = 0.02). Inhibition of DNA methyltransferase (DNMT) activity reactivated IRX1 expression in human lung cancer cell lines. Induced DNMT3A and EZH2 expression was correlated with downregulation of IRX1. On the cellular level, IRX1 exhibits nuclear localization and expression of IRX1 induced fragmented nuclei in cancer cells. Localization of IRX1 and induction of aberrant nuclei were dependent on the presence of the homeobox of IRX1. By data mining, we showed that IRX1 is negatively correlated with oncogenic pathways and IRX1 expression induces the proapoptotic regulator BAX. In conclusion, we report that IRX1 expression is significantly associated with improved survival probability of ADC patients. IRX1 hypermethylation may serve as molecular biomarker for ADC diagnosis and prognosis. Our data suggest that IRX1 acts as an epigenetically regulated tumor suppressor in the pathogenesis of lung cancer.
Collapse
Affiliation(s)
- Miriam M. Küster
- Faculty of Biology, Institute for Genetics, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (M.M.K.); (A.M.R.)
| | - Marc A. Schneider
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany; (M.A.S.); (S.R.); (T.M.)
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
| | - Antje M. Richter
- Faculty of Biology, Institute for Genetics, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (M.M.K.); (A.M.R.)
| | - Sarah Richtmann
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany; (M.A.S.); (S.R.); (T.M.)
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
| | - Hauke Winter
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
- Department of Surgery, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany
| | - Mark Kriegsmann
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
- Department of Pathology, Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Soni S. Pullamsetti
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Thorsten Stiewe
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
- Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University, 35032 Marburg, Germany
| | - Rajkumar Savai
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
- Department of Lung Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Thomas Muley
- Translational Research Unit, Thoraxklinik at Heidelberg University Hospital, 69126 Heidelberg, Germany; (M.A.S.); (S.R.); (T.M.)
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
| | - Reinhard H. Dammann
- Faculty of Biology, Institute for Genetics, Justus-Liebig-University Giessen, 35392 Giessen, Germany; (M.M.K.); (A.M.R.)
- Marburg Lung Center (UGMLC) and Translational Lung Research Center (TLRC) Heidelberg, German Center for Lung Research (DZL), Universities of Giessen, 35392 Giessen, Germany; (H.W.); (M.K.); (S.S.P.); (T.S.); (R.S.)
| |
Collapse
|
13
|
Prognostic Value of EZH2 in Non-Small-Cell Lung Cancers: A Meta-Analysis and Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2380124. [PMID: 33299862 PMCID: PMC7705440 DOI: 10.1155/2020/2380124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/20/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022]
Abstract
Background The prognosis of non-small-cell lung cancer (NSCLC) has not been significantly improved. In the past several years, research on epigenetics is in full swing. There is a focus on the gene EZH2; however, its role as a predictor of the prognosis of NSCLC is in the debate. Objective To clarify if the expression level of EZH2 can influence the prognosis of NSCLC and explain its prognostic value. Methods We have systematically searched PubMed, Web of Science, and Cochrane library, screened relevant articles, and conducted a meta-analysis on the expression level of EZH2 in NSCLC. We collected the hazard ratio (HR) and the 95% confidence interval (CI) and used STATA 12.0 to calculate the combined result of EZH2 overall survival. In addition, we conducted subgroup analyses, a sensitivity analysis, and a funnel plot to test the reliability of the results. We further validated these meta-analysis results using the Kaplan-Meier plotter database and The Cancer Genome Atlas (TCGA) database. In addition, we have investigated the correlation between EZH2 expression and EGFR expression, KRAS expression, BRAF expression, and smoking in TCGA database to further explore the mechanism behind the influence of high EZH2 expression on lung cancer prognosis. Results 13 studies including 2180 participants were included in the meta-analysis. We found that high expression of EZH2 indicates a poor prognosis of NSCLC (HR = 1.65 and 95% CI 1.16-2.35; p ≤ 0.001). Subgroup analyses showed high heterogeneity in stages I-IV (I 2 = 85.1% and p ≤ 0.001) and stages I-III (I 2 = 66.9% and p = 0.029) but not in stage I (I 2 = 0.00% and p = 0.589). In the Kaplan-Meier plotter database, there was a high expression in 963 cases and low expression in 964 cases (HR = 1.31 and 95% CI 1.15-1.48; p < 0.05). Further analysis found that the high expression of EZH2 was statistically significant in lung adenocarcinoma (HR = 1.27and 95% CI 1.01-1.6; p = 0.045), but not in lung squamous cell carcinoma (HR = 1.03 and 95% CI 0.81-1.3; p = 0.820). The results of the TCGA database showed that the expression of EZH2 in normal tissues was lower than that in lung cancer tissues (p < 0.05). Smoking was associated with high expression of EZH2 (p < 0.001). EZH2 was also highly expressed in lung cancers with positive KRAS expression, and the correlation was positive in lung adenocarcinoma (r = 0.3129 and p < 0.001). The correlation was also positive in lung squamous cell carcinoma (r = 0.3567 and p < 0.001). EZH2 expression was positively correlated with BRAF expression (r = 0.2397 and p < 0.001), especially in lung squamous cell carcinoma (r = 0.3662 and p < 0.001). In lung squamous cell carcinoma, a positive yet weak correlation was observed between EZH2 expression and EGFR expression (r = 0.1122 and p < 0.001). Conclusions The high expression of EZH2 indicates a poor prognosis of NSCLC, which may be related to tumor stage or cancer type. EZH2 may be an independent prognostic factor for NSCLC. EZH2 high expression or its synergistic action with KRAS and BRAF mutations affects the prognosis of non-small-cell lung cancer.
Collapse
|
14
|
Qian Y, Li Y, Zheng C, Lu T, Sun R, Mao Y, Yu S, Fan H, Zhang Z. High methylation levels of histone H3 lysine 9 associated with activation of hypoxia-inducible factor 1α (HIF-1α) predict patients' worse prognosis in human hepatocellular carcinomas. Cancer Genet 2020; 245:17-26. [PMID: 32534446 DOI: 10.1016/j.cancergen.2020.04.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/02/2020] [Accepted: 04/23/2020] [Indexed: 12/28/2022]
Abstract
Although it is becoming increasingly apparent that histone methyltransferases and histone demethylases play crucial roles in the cellular response to hypoxia, the impact of hypoxic environments on global patterns of histone methylation is not well demonstrated. In this study, we try to detect the global levels of histone lysine methylation in HCC cases and analyze the correlation between these modifications and the activation of hypoxia-inducible factor 1α (HIF-1α). Immunohistochemistry was used to detect the global levels of histone H3 lysine 9 dimethylation (H3K9me2), histone H3 lysine 9 trimethylation (H3K9me3), histone H3 lysine 27 trimethylation (H3K27me3) and the nuclear expression of HIF-1α in tissue arrays from 111 paraffin-embedded HCC samples. Our analyses revealed that the global levels of H3K9me2, H3K9me3 and the nuclear expression of HIF-1α were distinctly higher in HCC tissues than in peritumoral tissues. Both H3K9me2 and H3K9me3 were positively correlated with the degree of tumor differentiation and the patients' prognosis. Analysis based on the Pearson's correlation coefficient indicated a positive correlation between H3K9me2 and the nuclear expression of HIF-1α, and meanwhile, a significant correlation between the expression of H3K9me2 and H3K9me3 was also found. In addition, the combination of H3K9me2, H3K9me3 and HIF-1α, rather than one single histone modification or molecular maker, is a better prognostic maker for HCC patients. These findings provide new insights on the complex networks underlying cellular and genomic regulation in response to hypoxia and may provide novel targets for future therapies.
Collapse
Affiliation(s)
- Yanyan Qian
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, 210009, China
| | - Yiping Li
- Department of Pathology, Medical School, Southeast University, Nanjing, 210009, China
| | - Chuqian Zheng
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, 210009, China
| | - Tianyu Lu
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, 210009, China
| | - Rui Sun
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, 210009, China
| | - Yuhang Mao
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, 210009, China
| | - Shenling Yu
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, 210009, China
| | - Hong Fan
- Department of Medical Genetics and Developmental Biology, Medical School of Southeast University, The Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Southeast University, Nanjing, 210009, China.
| | - Zhihong Zhang
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, P. R. China.
| |
Collapse
|
15
|
Wei S, Liu J, Li X, Liu X. Repression of lncRNA-SVUGP2 mediated by EZH2 contributes to the development of non-small cell lung cancer via brisking Wnt/β-catenin signal. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3400-3409. [PMID: 31401873 DOI: 10.1080/21691401.2019.1648279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To grab the possible impact of lncRNA-SVUGP2 in the biology and process of non-small cell lung cancer (NSCLC). Sixty paired NSCLC tumour and the adjacent non-tumour lung tissues were collected for detection of lncRNA-SVUGP2. lncRNA-SVUGP2 expression in NSCLC cells (SK-MES-1, A549, SPC-A1, and NCI-H1975) was also detected. lncRNA-SVUGP2 was overexpressed and depressed in A549 and H1975 cells, and the effects of lncRNA-SVUGP2 dysregulation on cell biological performances including viability, colony formation, apoptosis, migration and invasion were grabbed. Furthermore, the regulatory association of lncRNA-SVUGP2 vs. EZH2 in H1975 cells, as well as the association between lncRNA-SVUGP2 and Wnt/β-catenin pathway, was explored. lncRNA-SVUGP2 was depressed in NSCLC tissues and cells. Overexpression of lncRNA-SVUGP2 depressed proliferation, induced apoptosis, and suppressed migration and invasion of A549 and H1975 cells. In addition, lncRNA-SVUGP2 was repressed by EZH2 and was inversely correlated with EZH2 levels in H1975 cells. Repression of lncRNA-SVUGP2 potentially participated in the oncogenic function of EZH2. Besides, overexpression of lncRNA-SVUGP2 depressed the briskness of Wnt/β-catenin signal in H1975 cells. Our data reveal that lncRNA-SVUGP2 is under-expressed in NSCLC cells and the reduced expression of lncRNA-SVUGP2 may enhance the development and process of NSCLC by interacting with EZH2 and activating Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Sen Wei
- a Department of Lung Cancer Surgery, General Hospital of Tianjin Medical University , Tianjin 300052 , China
| | - Jinghao Liu
- a Department of Lung Cancer Surgery, General Hospital of Tianjin Medical University , Tianjin 300052 , China
| | - Xin Li
- a Department of Lung Cancer Surgery, General Hospital of Tianjin Medical University , Tianjin 300052 , China
| | - Xingyu Liu
- a Department of Lung Cancer Surgery, General Hospital of Tianjin Medical University , Tianjin 300052 , China
| |
Collapse
|
16
|
Long noncoding RNA DANCR regulates proliferation and migration by epigenetically silencing FBP1 in tumorigenesis of cholangiocarcinoma. Cell Death Dis 2019; 10:585. [PMID: 31383847 PMCID: PMC6683119 DOI: 10.1038/s41419-019-1810-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Recently, long noncoding RNAs (lncRNAs) have been shown to play significant regulatory roles in human tumorigenesis. However, the biological function of lncRNAs in cholangiocarcinoma (CCA) remains largely unknown. In this study, DANCR was shown to be significantly upregulated in CCA. DANCR regulated the proliferation and migration of CCA cells in vitro. Moreover, downregulation of DANCR suppressed CCA cells proliferation in vivo. RNA-seq revealed that DANCR knockdown preferentially affected genes linked with cell proliferation and cell differentiation. Furthermore, mechanistic investigation validated that DANCR could bind EZH2 and modulate the histone methylation of promoter of FBP1, thereby regulating CCA cells growth and migration. Taken together, these results demonstrated the significant roles of DANCR in CCA and may provide a theoretical basis for clinical diagnosis and treatment of CCA.
Collapse
|
17
|
Abstract
Epigenetic reprogramming plays a crucial role in the tumorigenicity and maintenance of tumor-specific gene expression that especially occurs through DNA methylation and/or histone modifications. It has well-defined mechanisms. It is known that alterations in the DNA methylation pattern and/or the loss of specific histone acetylation/methylation markers are related to several hallmarks of cancer, such as drug resistance, stemness, epithelial-mesenchymal transition, and metastasis. It has also recently been highlighted that epigenetic alterations are critical for the regulation of the stemlike properties of cancer cells (tumor-initiating cells; cancer stem cells). Cancer stem cells are thought to be responsible for the recurrence of cancer which makes the patient return to the clinic with metastatic tumor tissue. Hence, the dysregulation of epigenetic machinery represents potential new therapeutic targets. Therefore, compounds with epigenetic activities have become crucial for developing new therapy regimens (e.g., antimetastatic agents) in the fight against cancer. Here, we review the epigenetic modifiers that have already been used in the clinic and/or in clinical trials, related preclinical studies in cancer therapy, and the smart combination strategies that target cancer stem cells along with the other cancer cells. The emerging role of epitranscriptome (RNA epigenetic) in cancer therapy has also been included in this review as a new avenue and potential target for the better management of cancer-beneficial epigenetic machinery.
Collapse
Affiliation(s)
- Remzi Okan Akar
- Department of Cancer Biology and Pharmacology, Institute of Health Sciences, İstinye University, İstanbul, Turkey
| | - Selin Selvi
- Department of Cancer Biology and Pharmacology, Institute of Health Sciences, İstinye University, İstanbul, Turkey
| | - Engin Ulukaya
- Department of Medical Biochemistry, Faculty of Medicine, İstinye University, İstanbul, Turkey
| | - Nazlıhan Aztopal
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, İstinye University, İstanbul, Turkey
| |
Collapse
|
18
|
Increased expression of EZH2 indicates aggressive potential of urothelial carcinoma of the bladder in a Chinese population. Sci Rep 2018; 8:17792. [PMID: 30542123 PMCID: PMC6290761 DOI: 10.1038/s41598-018-36164-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/16/2018] [Indexed: 12/25/2022] Open
Abstract
Here, we attempt to better define the long-term outcomes of radical cystectomy (RC) for urothelial carcinoma (UC) in a Chinese population and to investigate the relationship between EZH2 protein expression levels and the clinicopathological parameters and outcomes in patients with UC. We detected the relative EZH2 protein expression levels by immunohistochemistry in tumour specimens from a cohort of 189 Chinese UC patients. In patients who underwent RC, the 5-year cancer-specific survival (CSS) and overall survival (OS) were 69% and 61% respectively. EZH2 expression was increased in UC compared with normal urothelium. The expression levels of EZH2 were elevated in parallel with tumour stage (p = 0.001) and tumour grade (p = 0.001) and were increased in cases with lymph node metastasis compared with node-negative cases (p = 0.018). Kaplan-Meier analyses showed that higher EZH2 expression was related to significantly shorter CSS and OS in patients who underwent RC. High EZH2 expression was associated with worse CSS (HR = 3.51; p = 0.037) and OS (HR = 2.15; p = 0.047) in the univariate analysis, but only lymph node invasion maintained its predictive value for CSS in a multivariate model. This contemporary and homogeneous single-centre series found acceptable outcomes for Chinese UC patients who underwent RC. Clinically, our retrospective studies suggest that EZH2 levels can be used to identify more aggressive phenotypes in UC patients, thereby improving our prognostic knowledge.
Collapse
|
19
|
Correlation between EZH2 and CEP55 and lung adenocarcinoma prognosis. Pathol Res Pract 2018; 215:292-301. [PMID: 30527357 DOI: 10.1016/j.prp.2018.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/08/2018] [Accepted: 11/23/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Recently, accumulated evidence indicates that the enhancer of zeste homologue 2 (EZH2) is highly expressed in a wide range of cancer types, including NSCLC. The downstream genes regulated by EZH2 were screened using bioinformatics analysis. This study aimed to analyse the correlation between the downstream genes of EZH2 and the prognosis of lung adenocarcinoma. METHODS Expression and methylation data of lung adenocarcinoma were downloaded from The Cancer Genome Atlas (TCGA) (https://cancergenome.nih.gov/) database, and data were categorized into EZH2 overexpression and EZH2 downregulation groups according to EZH2 expression. The genes that showed opposite trends of methylation and expression changes were screened, and the association of gene expression was calculated. Based on the String database, a protein association analysis was conducted to identify genes related to EZH2, which are referred to as EZH2 regulation candidate genes. According to gene expression (GSE27262) and methylation (GSE66836) chip data in the Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) database, the genes with differential expression and methylation in lung adenocarcinoma tissues were analysed, and the trends of EZH2 regulation candidate gene expression and methylation were verified to identify the EZH2 regulation candidate genes. Subsequently, MethHC (http://methhc.mbc.nctu.edu.tw/php/index.php) and UALCAN (http://ualcan.path.uab.edu/index.html) were employed to verify changes in the expression and methylation of EZH2 downstream regulation candidate genes and to analyse the correlation between these genes and the prognosis of lung adenocarcinoma. RESULTS Expression and methylation data of lung adenocarcinoma were downloaded from TCGA database and categorized into EZH2 overexpression and EZH2 downregulation groups according to EZH2 expression. A total of 337 genes that showed opposite trends of methylation and expression changes were obtained. The protein association analysis using the String (https://string-db.org/) database showed that 61 genes interact with EZH2 and 61 genes represent EZH2 downstream regulation candidate genes. Moreover, 222 genes obtained from GSE27262 and GSE66836 chip data were negatively correlated with methylation and expression changes, and centrosomal protein 55 (CEP55) was identified as the EZH2 downstream regulation candidate gene. CEP55 was upregulated in lung adenocarcinoma tissues and showed low methylation. According to gene expression data from TCGA database, CEP55 and EZH2 exhibit higher levels in lung adenocarcinoma tissue than in adjacent normal tissue. Finally, the survival analysis revealed that EZH2 is not associated with the prognosis of lung adenocarcinoma, while CEP55 is related to lung adenocarcinoma prognosis. CONCLUSION Taken together, these results indicate that changes in EZH2 expression lead to changes in CEP55 expression in lung adenocarcinoma, and these changes are associated with its prognosis.
Collapse
|
20
|
Mochizuki D, Misawa Y, Kawasaki H, Imai A, Endo S, Mima M, Yamada S, Nakagawa T, Kanazawa T, Misawa K. Aberrant Epigenetic Regulation in Head and Neck Cancer Due to Distinct EZH2 Overexpression and DNA Hypermethylation. Int J Mol Sci 2018; 19:ijms19123707. [PMID: 30469511 PMCID: PMC6320890 DOI: 10.3390/ijms19123707] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/09/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023] Open
Abstract
Enhancer of Zeste homologue 2 (EZH2) overexpression is associated with tumor proliferation, metastasis, and poor prognosis. Targeting and inhibition of EZH2 is a potentially effective therapeutic strategy for head and neck squamous cell carcinoma (HNSCC). We analyzed EZH2 mRNA expression in a well-characterized dataset of 230 (110 original and 120 validation cohorts) human head and neck cancer samples. This study aimed to investigate the effects of inhibiting EZH2, either via RNA interference or via pharmacotherapy, on HNSCC growth. EZH2 upregulation was significantly correlated with recurrence (p < 0.001) and the methylation index of tumor suppressor genes (p < 0.05). DNMT3A was significantly upregulated upon EZH2 upregulation (p = 0.043). Univariate analysis revealed that EZH2 upregulation was associated with poor disease-free survival (log-rank test, p < 0.001). In multivariate analysis, EZH2 upregulation was evaluated as a significant independent prognostic factor of disease-free survival (hazard ratio: 2.085, 95% confidence interval: 1.390–3.127; p < 0.001). Cells treated with RNA interference and DZNep, an EZH2 inhibitor, showed the most dramatic changes in expression, accompanied with a reduction in the growth and survival of FaDu cells. These findings suggest that EZH2 upregulation is correlated with tumor aggressiveness and adverse patient outcomes in HNSCC. Evaluation of EZH2 expression might help predict the prognosis of HNSCC patients.
Collapse
Affiliation(s)
- Daiki Mochizuki
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Yuki Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Hideya Kawasaki
- Department of Regenerative and Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Atsushi Imai
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Shiori Endo
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Masato Mima
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Satoshi Yamada
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| | - Takuya Nakagawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan.
| | - Takeharu Kanazawa
- Department of Otolaryngology, Tokyo Voice Center, International University of Health and Welfare, Tokyo 107-0052, Japan.
| | - Kiyoshi Misawa
- Department of Otolaryngology/Head and Neck Surgery, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan.
| |
Collapse
|
21
|
Nakagawa M, Kitabayashi I. Oncogenic roles of enhancer of zeste homolog 1/2 in hematological malignancies. Cancer Sci 2018; 109:2342-2348. [PMID: 29845708 PMCID: PMC6113435 DOI: 10.1111/cas.13655] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 12/27/2022] Open
Abstract
Polycomb group (PcG) proteins regulate the expression of target genes by modulating histone modifications and are representative epigenetic regulators that maintain the stemness of embryonic and hematopoietic stem cells. Histone methyltransferases enhancer of zeste homolog 1 and 2 (EZH1/2), which are subunits of polycomb repressive complexes (PRC), are recurrently mutated or highly expressed in many hematological malignancies. EZH2 has a dual function in tumorigenesis as an oncogene and tumor suppressor gene, and targeting PRC2, in particular EZH1/2, for anticancer therapy has been extensively developed in the clinical setting. Here, we review the oncogenic function of EZH1/2 and introduce new therapeutic drugs targeting these enzymes.
Collapse
Affiliation(s)
- Makoto Nakagawa
- Division of Hematological MalignancyNational Cancer Center Research InstituteTokyoJapan
- Department of Orthopaedic SurgeryGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Issay Kitabayashi
- Division of Hematological MalignancyNational Cancer Center Research InstituteTokyoJapan
| |
Collapse
|
22
|
Wang X, Huang Y, Chen Y, Ma Y, Yang F, Qian Y, Dai X, Tao L, Wang H, Guo R, Liu Y. Efficacy of extracts of Celastrus orbiculatus in suppressing migration and invasion by inhibiting the EZH2/ROCK1 signaling pathway in human nasopharyngeal carcinoma. Oncol Lett 2018; 15:6695-6700. [PMID: 29725411 DOI: 10.3892/ol.2018.8149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 03/23/2017] [Indexed: 11/06/2022] Open
Abstract
Celastrus orbiculatus extract (COE) has been used in folk medicine in China for the treatment of a number of diseases. In the laboratory, COE exhibits a variety of anticancer functions, including inhibition of metastasis. However, the underlying molecular anti-metastatic mechanism in nasopharyngeal carcinoma (NPC) cells remains unclear. The aim of the present study was to determine whether the anti-metastatic effect of COE was involved in inhibiting migration and invasion of human NPC cells. In vitro, cell viability and apoptosis of 5-8F cells were analyzed using an MTS assay and flow cytometry, respectively. Invasion and migration of 5-8F cells were analyzed using a Transwell assay. Protein and mRNA expression levels of 5-8F cells were analyzed by western blot analysis and the reverse transcription-quantitative polymerase chain reaction, respectively. COE significantly decreased cell viability in 5-8F cells and inhibited enhancer of zeste homolog 2 (EZH2) and Rho-associated coiled coil-containing protein kinase 1 (ROCK1) expression at the mRNA and protein levels. Furthermore, COE decreased the migration and invasion of 5-8F cells in a dose-dependent manner. The results of the present study suggested that COE prevents migration and invasion by suppressing the EZH2/ROCK1 signaling pathway in NPC cells. On the basis of the results of the present study, COE may be a novel anticancer agent for the treatment of metastasis in NPC.
Collapse
Affiliation(s)
- Xuanyi Wang
- Department of Rheumatology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China.,School of Medicine, Institute of Traditional Chinese Medicine and Western Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Yuxiang Huang
- Department of Oncology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Yong Chen
- Department of Function Examination, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Yong Ma
- Department of Function Examination, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Fei Yang
- Department of Function Examination, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Yayun Qian
- School of Medicine, Institute of Traditional Chinese Medicine and Western Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Xiaojun Dai
- Department of Oncology, TCM Clinical Medical College of Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Lede Tao
- School of Medicine, Institute of Traditional Chinese Medicine and Western Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Haibo Wang
- School of Medicine, Institute of Traditional Chinese Medicine and Western Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Renhua Guo
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yanqing Liu
- School of Medicine, Institute of Traditional Chinese Medicine and Western Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| |
Collapse
|
23
|
Rajabi H, Hiraki M, Kufe D. MUC1-C activates polycomb repressive complexes and downregulates tumor suppressor genes in human cancer cells. Oncogene 2018; 37:2079-2088. [PMID: 29379165 PMCID: PMC5908737 DOI: 10.1038/s41388-017-0096-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/19/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022]
Abstract
The PRC2 and PRC1 complexes are aberrantly expressed in human cancers and have been linked to decreases in patient survival. MUC1-C is an oncoprotein that is also overexpressed in diverse human cancers and is associated with a poor prognosis. Recent studies have supported a previously unreported function for MUC1-C in activating PRC2 and PRC1 in cancer cells. In the regulation of PRC2, MUC1-C (i) drives transcription of the EZH2 gene, (ii) binds directly to EZH2, and (iii) enhances occupancy of EZH2 on target gene promoters with an increase in H3K27 trimethylation. Regarding PRC1, which is recruited to PRC2 sites in the hierarchical model, MUC1-C induces BMI1 transcription, forms a complex with BMI1, and promotes H2A ubiquitylation. MUC1-C thereby contributes to the integration of PRC2 and PRC1-mediated repression of tumor suppressor genes, such as CDH1, CDKN2A, PTEN and BRCA1. Like PRC2 and PRC1, MUC1-C is associated with the epithelial-mesenchymal transition (EMT) program, cancer stem cell (CSC) state, and acquisition of anticancer drug resistance. In concert with these observations, targeting MUC1-C downregulates EZH2 and BMI1, inhibits EMT and the CSC state, and reverses drug resistance. These findings emphasize the significance of MUC1-C as a therapeutic target for inhibiting aberrant PRC function and reprogramming the epigenome in human cancers.
Collapse
Affiliation(s)
- Hasan Rajabi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Masayuki Hiraki
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Christofides A, Karantanos T, Bardhan K, Boussiotis VA. Epigenetic regulation of cancer biology and anti-tumor immunity by EZH2. Oncotarget 2018; 7:85624-85640. [PMID: 27793053 PMCID: PMC5356764 DOI: 10.18632/oncotarget.12928] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022] Open
Abstract
Polycomb group proteins regulate chromatin structure and have an important regulatory role on gene expression in various cell types. Two polycomb group complexes (Polycomb repressive complex 1 (PRC1) and 2 (PRC2)) have been identified in mammalian cells. Both PRC1 and PRC2 compact chromatin, and also catalyze histone modifications. PRC1 mediates monoubiquitination of histone H2A, whereas PRC2 catalyzes methylation of histone H3 on lysine 27. These alterations of histones can lead to altered gene expression patterns by regulating chromatin structure. Numerous studies have highlighted the role of the PRC2 catalytic component enhancer of zeste homolog 2 (EZH2) in neoplastic development and progression, and EZH2 mutations have been identified in various malignancies. Through modulating the expression of critical genes, EZH2 is actively involved in fundamental cellular processes such as cell cycle progression, cell proliferation, differentiation and apoptosis. In addition to cancer cells, EZH2 also has a decisive role in the differentiation and function of T effector and T regulatory cells. In this review we summarize the recent progress regarding the role of EZH2 in human malignancies, highlight the molecular mechanisms by which EZH2 aberrations promote the pathogenesis of cancer, and discuss the anti-tumor effects of EZH2 targeting via activating direct anti-cancer mechanisms and anti-tumor immunity.
Collapse
Affiliation(s)
- Anthos Christofides
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Theodoros Karantanos
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,General Internal Medicine Section, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Kankana Bardhan
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Identification of novel prognosis-related genes associated with cancer using integrative network analysis. Sci Rep 2018; 8:3233. [PMID: 29459674 PMCID: PMC5818516 DOI: 10.1038/s41598-018-21691-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/08/2018] [Indexed: 12/28/2022] Open
Abstract
Prognosis identifies the seriousness and the chances of survival of a cancer patient. However, it remains a challenge to identify the key cancer genes in prognostic studies. In this study, we collected 2064 genes that were related to prognostic studies by using gene expression measurements curated from published literatures. Among them, 1820 genes were associated with copy number variations (CNVs). The further functional enrichment on 889 genes with frequent copy number gains (CNGs) revealed that these genes were significantly associated with cancer pathways including regulation of cell cycle, cell differentiation and mitogen-activated protein kinase (MAPK) cascade. We further conducted integrative analyses of CNV and their target genes expression using the data from matched tumour samples of The Cancer Genome Atlas (TCGA). Ultimately, 95 key prognosis-related genes were extracted, with concordant CNG events and increased up-regulation in at least 300 tumour samples. These genes, and the number of samples in which they were found, included: ACTL6A (399), ATP6V1C1 (425), EBAG9 (412), FADD (308), MTDH (377), and SENP5 (304). This study provides the first observation of CNV in prognosis-related genes across pan-cancer. The systematic concordance between CNG and up-regulation of gene expression in these novel prognosis-related genes may indicate their prognostic significance.
Collapse
|
26
|
EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis. Oncotarget 2018; 7:56338-56354. [PMID: 27472460 PMCID: PMC5302918 DOI: 10.18632/oncotarget.10841] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/09/2016] [Indexed: 01/14/2023] Open
Abstract
Polycomb group (PcG) proteins are highly conserved epigenetic effectors that maintain the silenced state of genes. EZH2 is the catalytic core and one of the most important components of the polycomb repressive complex 2 (PRC2). In non-small cell lung cancer (NSCLC) cells and primary lung tumors, we found that PRC2 components, including EZH2, are overexpressed. High levels of EZH2 protein were associated with worse overall survival rate in NSCLC patients. RNA interference mediated attenuation of EZH2 expression blunted the malignant phenotype in this setting, exerting inhibitory effects on cell proliferation, anchorage-independent growth, and tumor development in a xenograft mouse model. Unexpectedly, we discovered that, in the suppression of EZH2, p53 upregulated modulator of apoptosis (PUMA) expression was concomitantly induced. This is achieved through EZH2 directly binds to the Puma promoter thus epigenetic repression of PUMA expression. Furthermore, cisplatin-induced apoptosis of EZH2-knocking down NSCLC cells was elevated as a consequence of increased PUMA expression. Our work reveals a novel epigenetic regulatory mechanism controlling PUMA expression and suggests that EZH2 offers a candidate molecular target for NSCLC therapy and EZH2-regulated PUMA induction would synergistically increase the sensitivity to platinum agents in non-small cell lung cancers.
Collapse
|
27
|
Abstract
Lung cancer is the leading cause of cancer-related deaths in the world. Despite significant advances in the early detection and treatment of the disease, the prognosis remains poor, with an overall 5-year survival rate ranging from 15% to 20%. This poor prognosis results largely from early micrometastatic spread of cancer cells to nearby lymph nodes or tissues and partially from early recurrence after curative surgical resection. Recently, precision medicines that target potential oncogenic driver mutations have been approved to treat lung cancer. However, some lung cancer patients do not have targetable mutations, and many patients develop resistance to targeted therapy. Tumor heterogeneity and mutational density are also challenges in treating lung cancer, which underscores the need for developing alternative therapeutic strategies for treating lung cancer. Epigenetic therapy may circumvent the problems of tumor heterogeneity and drug resistance by affecting the expression of several hundred target genes. This review highlights precision medicine using an innovative approach of epigenetic priming prior to conventional standard therapy or targeted cancer therapy in lung cancer.
Collapse
Affiliation(s)
- Dongho Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Duk-Hwan Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea. .,Samsung Medical Center, Research Institute for Future Medicine, Seoul, South Korea.
| |
Collapse
|
28
|
Yang L, Sun L, Wang W, Xu H, Li Y, Zhao JY, Liu DZ, Wang F, Zhang LY. Construction of a 26‑feature gene support vector machine classifier for smoking and non‑smoking lung adenocarcinoma sample classification. Mol Med Rep 2017; 17:3005-3013. [PMID: 29257283 PMCID: PMC5783520 DOI: 10.3892/mmr.2017.8220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/04/2017] [Indexed: 12/03/2022] Open
Abstract
The present study aimed to identify the feature genes associated with smoking in lung adenocarcinoma (LAC) samples and explore the underlying mechanism. Three gene expression datasets of LAC samples were downloaded from the Gene Expression Omnibus database through pre-set criteria and the expression data were processed using meta-analysis. Differentially expressed genes (DEGs) between LAC samples of smokers and non-smokers were identified using limma package in R. The classification accuracy of selected DEGs were visualized using hierarchical clustering analysis in R language. A protein-protein interaction (PPI) network was constructed using gene interaction data from the Human Protein Reference Database for the DEGs. Betweenness centrality was calculated for each node in the network and genes with the greatest BC values were utilized for the construction of the support vector machine (SVM) classifier. The dataset GSE43458 was used as the training dataset for the construction and the other datasets (GSE12667 and GSE10072) were used as the validation datasets. The classification accuracy of the classifier was tested using sensitivity, specificity, positive predictive value, negative predictive value and area under curve parameters with the pROC package in R language. The feature genes in the SVM classifier were subjected to pathway enrichment analysis using Fisher's exact test. A total of 347 genes were identified to be differentially expressed between samples of smokers and non-smokers. The PPI network of DEGs were comprised of 202 nodes and 300 edges. An SVM classifier comprised of 26 feature genes was constructed to distinguish between different LAC samples, with prediction accuracies for the GSE43458, GSE12667 and GSE10072 datasets of 100, 100 and 94.83%, respectively. Furthermore, the 26 feature genes that were significantly enriched in 9 overrepresented biological pathways, including extracellular matrix-receptor interaction, proteoglycans in cancer, cell adhesion molecules, p53 signaling pathway, microRNAs in cancer and apoptosis, were identified to be smoking-related genes in LAC. In conclusion, an SVM classifier with a high prediction accuracy for smoking and non-smoking samples was obtained. The genes in the classifier may likely be the potential feature genes associated with the development of patients with LAC who smoke.
Collapse
Affiliation(s)
- Lei Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Lu Sun
- The First Cardiac Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Wei Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hao Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yi Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jia-Ying Zhao
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Da-Zhong Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Fei Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Lin-You Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
29
|
Vilorio-Marqués L, Martín V, Diez-Tascón C, González-Sevilla MF, Fernández-Villa T, Honrado E, Davila-Batista V, Molina AJ. The role of EZH2 in overall survival of colorectal cancer: a meta-analysis. Sci Rep 2017; 7:13806. [PMID: 29061982 PMCID: PMC5653815 DOI: 10.1038/s41598-017-13670-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 09/26/2017] [Indexed: 12/13/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is the catalitic subunit of polycomb repressive complex 2 and mediates gene silencing. EZH2 is overexpressed in many cancers and correlates with poor prognosis. The role of the gene EZH2 in colorectal cancer survival is uncertainly, the aim of this study is clear this relationship. Relevant literaure was searched from electronic databases. A meta-analysis was performed with elegible studies which quantitatively evaluated the relationship between EZH2 overexpression and survival of patients with colorectal cancer. Survival data were aggregated and quantitatively analyzed. We performed a meta-analysis of 8 studies (n = 1059 patients) that evaluated the correlation between EZH2 overexpression and survival in patients with colorectal cancer. Combined hazard ratios suggested that EZH2 overexpression was associated with better prognosis of overall survival (OS) HR(hazard ratio) = 0.61 95% CI (0.38-0.84) We performed bias analysis according Egger and Begg,s test and we did not find publication bias. EZH2 overexpression indicates a better prognosis for colorectal cancer.
Collapse
Affiliation(s)
- Laura Vilorio-Marqués
- GIIGAS: Grupo de Investigación en Interacción Gen-Ambiente-Salud, Dpt of Biomedical Sciences, Area of Preventive Medicine and Public Health, Instituto de Biomedicina (IBIOMED), University of León, Leon, Spain
| | - Vicente Martín
- GIIGAS: Grupo de Investigación en Interacción Gen-Ambiente-Salud, Dpt of Biomedical Sciences, Area of Preventive Medicine and Public Health, Instituto de Biomedicina (IBIOMED), University of León, Leon, Spain
- CIBERESP, CIBER de Epidemiología y Salud Pública, Madrid, Spain
| | - Cristina Diez-Tascón
- Banco de Tumores, Servicio de Anatomía Patológica, Complejo Asistencial Universitario de León, Leon, Spain
| | - María Francisca González-Sevilla
- GIIGAS: Grupo en interacción Gen-Ambiente-Salud, Dpt of Biomedical Sciences, Area of Physiology, University of León, Leon, Spain
| | - Tania Fernández-Villa
- GIIGAS: Grupo de Investigación en Interacción Gen-Ambiente-Salud, Dpt of Biomedical Sciences, Area of Preventive Medicine and Public Health, Instituto de Biomedicina (IBIOMED), University of León, Leon, Spain
| | - Emiliano Honrado
- Servicio de Anatomía Patológica, Complejo Asistencial Universitario de León, Leon, Spain
| | - Veronica Davila-Batista
- GIIGAS: Grupo de Investigación en Interacción Gen-Ambiente-Salud, Dpt of Biomedical Sciences, Area of Preventive Medicine and Public Health, Instituto de Biomedicina (IBIOMED), University of León, Leon, Spain
| | - Antonio J Molina
- GIIGAS: Grupo de Investigación en Interacción Gen-Ambiente-Salud, Dpt of Biomedical Sciences, Area of Preventive Medicine and Public Health, Instituto de Biomedicina (IBIOMED), University of León, Leon, Spain.
| |
Collapse
|
30
|
Rajabi H, Hiraki M, Tagde A, Alam M, Bouillez A, Christensen CL, Samur M, Wong KK, Kufe D. MUC1-C activates EZH2 expression and function in human cancer cells. Sci Rep 2017; 7:7481. [PMID: 28785086 PMCID: PMC5547076 DOI: 10.1038/s41598-017-07850-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/30/2017] [Indexed: 01/01/2023] Open
Abstract
The EZH2 histone methyltransferase is a member of the polycomb repressive complex 2 (PRC2) that is highly expressed in diverse human cancers and is associated with a poor prognosis. MUC1-C is an oncoprotein that is similarly overexpressed in carcinomas and has been linked to epigenetic regulation. A role for MUC1-C in regulating EZH2 and histone methylation is not known. Here, we demonstrate that targeting MUC1-C in diverse human carcinoma cells downregulates EZH2 and other PRC2 components. MUC1-C activates (i) the EZH2 promoter through induction of the pRB→E2F pathway, and (ii) an NF-κB p65 driven enhancer in exon 1. We also show that MUC1-C binds directly to the EZH2 CXC region adjacent to the catalytic SET domain and associates with EZH2 on the CDH1 and BRCA1 promoters. In concert with these results, targeting MUC1-C downregulates EZH2 function as evidenced by (i) global and promoter-specific decreases in H3K27 trimethylation (H3K27me3), and (ii) activation of tumor suppressor genes, including BRCA1. These findings highlight a previously unreported role for MUC1-C in activating EZH2 expression and function in cancer cells.
Collapse
Affiliation(s)
- Hasan Rajabi
- Dana-Farber Cancer Institute Harvard Medical School Boston, Boston, MA, 02215, USA
| | - Masayuki Hiraki
- Dana-Farber Cancer Institute Harvard Medical School Boston, Boston, MA, 02215, USA
| | - Ashujit Tagde
- Dana-Farber Cancer Institute Harvard Medical School Boston, Boston, MA, 02215, USA
| | - Maroof Alam
- Dana-Farber Cancer Institute Harvard Medical School Boston, Boston, MA, 02215, USA
| | - Audrey Bouillez
- Dana-Farber Cancer Institute Harvard Medical School Boston, Boston, MA, 02215, USA
| | | | - Mehmet Samur
- Dana-Farber Cancer Institute Harvard Medical School Boston, Boston, MA, 02215, USA
| | - Kwok-Kin Wong
- Dana-Farber Cancer Institute Harvard Medical School Boston, Boston, MA, 02215, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute Harvard Medical School Boston, Boston, MA, 02215, USA.
| |
Collapse
|
31
|
Kim NY, Pyo JS. Clinicopathological significance and prognostic role of EZH2 expression in non-small cell lung cancer. Pathol Res Pract 2017; 213:778-782. [PMID: 28554757 DOI: 10.1016/j.prp.2017.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/22/2017] [Accepted: 04/09/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the clinicopathological characteristics and prognostic role of enhancer of zeste homologue 2 (EZH2) expression in non-small cell lung cancer (NSCLC). METHODS The correlation between EZH2 expression and the clinicopathological characteristics, including sex, smoking history, tumor differentiation, histologic type, tumor stage, and lymph node metastasis, was evaluated through a meta-analysis. In addition, the prognostic value of EZH2 expression was elucidated. This study included 1,932 patients with NSCLC from 11 eligible studies. RESULTS The overall rate of EZH2 expression was 0.548 [95% confidence interval (CI) 0.491-0.604]. There were significant correlations between EZH2 expression and male sex and smoking history. The expression rate of EZH2 was significantly lower in adenocarcinoma than in other histologic types. Furthermore, EZH2 expression rates were higher in NSCLC with moderately and poorly differentiation and nodal disease than in well-differentiated NSCLC without nodal disease. There was a significant correlation between EZH2 expression and worse overall and disease-free survival [hazard ratio (HR) 1.938, 95% CI 1.617-2.323 and HR 1.713, 95% CI 1.366-2.149, respectively]. Subgroup analysis revealed no significant difference for the prognostic effect of EZH2 expression between histologic types or detection methods. CONCLUSION Our data collectively suggest that EZH2 expression is significantly correlated with aggressive tumor behavior and poor prognosis in NSCLC.
Collapse
Affiliation(s)
- Nae Yu Kim
- Department of Internal Medicine, Eulji University Hospital, Eulji University School of Medicine, Daejeon 35233, Republic of Korea; Study Group for Meta-Analysis, Eulji University Hospital, Eulji University School of Medicine, Daejeon 35233, Republic of Korea
| | - Jung-Soo Pyo
- Department of Pathology, Eulji University Hospital, Eulji University School of Medicine, Daejeon 35233, Republic of Korea; Study Group for Meta-Analysis, Eulji University Hospital, Eulji University School of Medicine, Daejeon 35233, Republic of Korea.
| |
Collapse
|
32
|
Abstract
Compelling evidence have demonstrated that bulk tumors can arise from a unique subset of cells commonly termed "cancer stem cells" that has been proposed to be a strong driving force of tumorigenesis and a key mechanism of therapeutic resistance. Recent advances in epigenomics have illuminated key mechanisms by which epigenetic regulation contribute to cancer progression. In this review, we present a discussion of how deregulation of various epigenetic pathways can contribute to cancer initiation and tumorigenesis, particularly with respect to maintenance and survival of cancer stem cells. This information, together with several promising clinical and preclinical trials of epigenetic modulating drugs, offer new possibilities for targeting cancer stem cells as well as improving cancer therapy overall.
Collapse
Affiliation(s)
- Tan Boon Toh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jhin Jieh Lim
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Centre for Translational Medicine, National University of Singapore, 14 Medical Drive #12-01, Singapore, 117599 Singapore
| |
Collapse
|
33
|
Zhang W, Lin J, Wang P, Sun J. miR-17-5p down-regulation contributes to erlotinib resistance in non-small cell lung cancer cells. J Drug Target 2016; 25:125-131. [PMID: 27633093 DOI: 10.1080/1061186x.2016.1207647] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Weihua Zhang
- Department of Oncology, The Fourth Affiliated Hospital of Nanchang University, Jiangxi, P.R. China
| | - Jun Lin
- Department of Pathology, Quzhou People’s Hospital, Quzhou, Zhejiang, P.R. China
| | - Peng Wang
- Department of Thoracic Surgery, The Taian Central Hospitial, Taian, Shandong, P.R. China
| | - Jian Sun
- Department of Oncology, The Fourth Affiliated Hospital of Nanchang University, Jiangxi, P.R. China
| |
Collapse
|
34
|
Li L, Wu J, Zheng F, Tang Q, Wu W, Hann SS. Inhibition of EZH2 via activation of SAPK/JNK and reduction of p65 and DNMT1 as a novel mechanism in inhibition of human lung cancer cells by polyphyllin I. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:112. [PMID: 27421653 PMCID: PMC4947306 DOI: 10.1186/s13046-016-0388-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023]
Abstract
Background Polyphyllin I (PPI), a bioactive phytochemical extracted from the Rhizoma of Paris polyphylla, has been reported to exhibit anti-cancer activity. However, the detailed mechanism underlying this remains to be elucidated. Methods Cell viability and cell cycle distribution were measured using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, respectively. The expression of enhancer of zeste homolog 2 (EZH2) mRNA was measured by quantitative real time PCR (qRT-PCR). Western blot analysis was performed to examine the phosphorylation and protein expression of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), p65, DNA methyltransferase 1 (DNMT1) and EZH2. Exogenous expression of p65, DNMT1, and EZH2 were carried out by transient transfection assays. Promoter activity of EZH2 gene was determined using Secrete-Pair Dual Luminescence Assay Kit. A xenografted tumor model in nude mice and bioluminescent imaging system were used to further test the effect of PPI in vivo. Results We showed that PPI significantly inhibited growth and induced cell cycle arrest of non-small cell lung cancer (NSCLC) cells in a dose-dependent manner. Mechanistically, we found that PPI increased the phosphorylation of SAPK/JNK, reduced protein expression of p65 and DNMT1. The inhibitor of SAPK/JNK (SP600125) blocked the PPI-inhibited p65 and DNMT1 protein expression. Interestingly, exogenously expressed p65 overcame PPI-inhibited protein expression of DNMT1. Moreover, PPI reduced EZH2 protein, mRNA, and promoter activity; overexpression of EZH2 resisted the PPI-inhibited cell growth, and intriguingly, negative feedback regulation of SAPK/JNK signaling. Finally, exogenous expression of DNMT1 antagonized the PPI-suppressed EZH2 protein expression. Consistent with this, PPI inhibited tumor growth, protein expression levels of p65, DNMT1 and EZH2, and increased phosphorylation of SAPK/JNK in vivo. Conclusion Our results show that PPI inhibits growth of NSCLC cells through SAPK/JNK-mediated inhibition of p65 and DNMT1 protein levels, subsequently; this results in the reduction of EZH2 gene expression. The interactions among p65, DNMT1 and EZH2, and feedback regulation of SAPK/JNK by EZH2 converge on the overall responses of PPI. This study reveals a novel mechanism for regulating EZH2 gene in response to PPI and suggests a new strategy for NSCLC associated therapy.
Collapse
Affiliation(s)
- Longmei Li
- Laboratory of Tumor Molecular Biology and Targeted Therapies of TCM, Guangdong Provincial Hospital of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong Province, 510120, China.,Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China
| | - JingJing Wu
- Laboratory of Tumor Molecular Biology and Targeted Therapies of TCM, Guangdong Provincial Hospital of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong Province, 510120, China
| | - Fang Zheng
- Laboratory of Tumor Molecular Biology and Targeted Therapies of TCM, Guangdong Provincial Hospital of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong Province, 510120, China
| | - Qing Tang
- Laboratory of Tumor Molecular Biology and Targeted Therapies of TCM, Guangdong Provincial Hospital of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong Province, 510120, China
| | - WanYin Wu
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| | - Swei Sunny Hann
- Laboratory of Tumor Molecular Biology and Targeted Therapies of TCM, Guangdong Provincial Hospital of Chinese Medicine, No. 111, Dade Road, Guangzhou, Guangdong Province, 510120, China. .,Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
35
|
Song Y, Wu F, Wu J. Targeting histone methylation for cancer therapy: enzymes, inhibitors, biological activity and perspectives. J Hematol Oncol 2016; 9:49. [PMID: 27316347 PMCID: PMC4912745 DOI: 10.1186/s13045-016-0279-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/07/2016] [Indexed: 12/31/2022] Open
Abstract
Post-translational methylation of histone lysine or arginine residues plays important roles in gene regulation and other physiological processes. Aberrant histone methylation caused by a gene mutation, translocation, or overexpression can often lead to initiation of a disease such as cancer. Small molecule inhibitors of such histone modifying enzymes that correct the abnormal methylation could be used as novel therapeutics for these diseases, or as chemical probes for investigation of epigenetics. Discovery and development of histone methylation modulators are in an early stage and undergo a rapid expansion in the past few years. A number of highly potent and selective compounds have been reported, together with extensive preclinical studies of their biological activity. Several compounds have been in clinical trials for safety, pharmacokinetics, and efficacy, targeting several types of cancer. This review summarizes the biochemistry, structures, and biology of cancer-relevant histone methylation modifying enzymes, small molecule inhibitors and their preclinical and clinical antitumor activities. Perspectives for targeting histone methylation for cancer therapy are also discussed.
Collapse
Affiliation(s)
- Yongcheng Song
- Department of Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA. .,Dan L. Duncan Cancer Center, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
| | - Fangrui Wu
- Department of Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Jingyu Wu
- Department of Pharmacology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
36
|
JMJD1A promotes tumorigenesis and forms a feedback loop with EZH2/let-7c in NSCLC cells. Tumour Biol 2016; 37:11237-47. [PMID: 26945572 DOI: 10.1007/s13277-016-4999-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/25/2016] [Indexed: 01/28/2023] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths worldwide, and non-small cell lung cancer (NSCLC) accounts for 80 to 85 % of all lung cancer. Although the standard treatment regimen has been established, long-term survival for NSCLC patients is still generally poor. The histone demethylase Jumonji domain containing 1A (JMJD1A) has been proposed as an oncogene in several types of human cancer, but its clinical significance and functional roles in NSCLC remain largely unclear. In the present study, JMJD1A was frequently upregulated in NSCLC compared with para-carcinoma tissues. JMJD1A knockdown significantly inhibited NSCLC cell growth, migration, and invasion in vitro and tumorigenesis in vivo. Further experiments demonstrated that JMJD1A knockdown could decrease the expression of EZH2, which has been shown to play a crucial role in the carcinogenesis of NSCLC and, in turn, increase the expression of anti-tumor microRNA let-7c. Also, let-7c directly targeted the 3'-untranslated regions of JMJD1A and EZH2. Taken together, JMJD1A could promote NSCLC tumorigenesis. JMJD1A/EZH2/let-7c constituted a feedback loop and might represent a promising therapeutic target for NSCLC.
Collapse
|