1
|
Nabi F, Ahmad O, Khan A, Hassan MN, Hisamuddin M, Malik S, Chaari A, Khan RH. Natural compound plumbagin based inhibition of hIAPP revealed by Markov state models based on MD data along with experimental validations. Proteins 2024; 92:1070-1084. [PMID: 38497314 DOI: 10.1002/prot.26682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024]
Abstract
Human islet amyloid polypeptide (amylin or hIAPP) is a 37 residue hormone co-secreted with insulin from β cells of the pancreas. In patients suffering from type-2 diabetes, amylin self-assembles into amyloid fibrils, ultimately leading to the death of the pancreatic cells. However, a research gap exists in preventing and treating such amyloidosis. Plumbagin, a natural compound, has previously been demonstrated to have inhibitory potential against insulin amyloidosis. Our investigation unveils collapsible regions within hIAPP that, upon collapse, facilitates hydrophobic and pi-pi interactions, ultimately leading to aggregation. Intriguingly plumbagin exhibits the ability to bind these specific collapsible regions, thereby impeding the aforementioned interactions that would otherwise drive hIAPP aggregation. We have used atomistic molecular dynamics approach to determine secondary structural changes. MSM shows metastable states forming native like hIAPP structure in presence of PGN. Our in silico results concur with in vitro results. The ThT assay revealed a striking 50% decrease in fluorescence intensity at a 1:1 ratio of hIAPP to Plumbagin. This finding suggests a significant inhibition of amyloid fibril formation by plumbagin, as ThT fluorescence directly correlates with the presence of these fibrils. Further TEM images revealed disappearance of hIAPP fibrils in plumbagin pre-treated hIAPP samples. Also, we have shown that plumbagin disrupts the intermolecular hydrogen bonding in hIAPP fibrils leading to an increase in the average beta strand spacing, thereby causing disaggregation of pre-formed fibrils demonstrating overall disruption of the aggregation machinery of hIAPP. Our work is the first to report a detailed atomistic simulation of 22 μs for hIAPP. Overall, our studies put plumbagin as a potential candidate for both preventive and therapeutic candidate for hIAPP amyloidosis.
Collapse
Affiliation(s)
- Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Owais Ahmad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Adeeba Khan
- Zakir Hussain College of Engineering and Technology, Aligarh Muslim University, Aligarh, India
| | - Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Malik Hisamuddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Ali Chaari
- Premedical Division, Weill Cornell Medicine Qatar, Qatar Foundation, Doha, Qatar
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
2
|
Illes-Toth E, Rempel DL, Gross ML. Exploration of Resveratrol as a Potent Modulator of α-Synuclein Fibril Formation. ACS Chem Neurosci 2024; 15:503-516. [PMID: 38194353 PMCID: PMC10922803 DOI: 10.1021/acschemneuro.3c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
The molecular determinants of amyloid protein misfolding and aggregation are key for the development of therapeutic interventions in neurodegenerative disease. Although small synthetic molecules, bifunctional molecules, and natural products offer a potentially advantageous approach to therapeutics to remodel aggregation, their evaluation requires new platforms that are informed at the molecular level. To that end, we chose pulsed hydrogen/deuterium exchange mass spectrometry (HDX-MS) to discern the phenomena of aggregation modulation for a model system of alpha synuclein (αS) and resveratrol, an antiamyloid compound. We invoked, as a complement to HDX, advanced kinetic modeling described here to illuminate the details of aggregation and to determine the number of oligomeric populations by kinetically fitting the experimental data under conditions of limited proteolysis. The misfolding of αS is most evident within and nearby the nonamyloid-β component region, and resveratrol significantly remodels that aggregation. HDX distinguishes readily a less solvent-accessible, more structured oligomer that coexists with a solvent-accessible, more disordered oligomer during aggregation. A view of the misfolding emerges from time-dependent changes in the fractional species across the protein with or without resveratrol, while details were determined through kinetic modeling of the protected species. A detailed picture of the inhibitory action of resveratrol with time and regional specificity emerges, a picture that can be obtained for other inhibitors and amyloid proteins. Moreover, the model reveals that new states of aggregation are sampled, providing new insights on amyloid formation. The findings were corroborated by circular dichroism and transmission electron microscopy.
Collapse
Affiliation(s)
- Eva Illes-Toth
- Department of Chemistry, Washington University in St Louis, St Louis, Missouri 63130, United States
| | - Don L Rempel
- Department of Chemistry, Washington University in St Louis, St Louis, Missouri 63130, United States
| | - Michael L Gross
- Department of Chemistry, Washington University in St Louis, St Louis, Missouri 63130, United States
| |
Collapse
|
3
|
Yang B, Lu T, Wang S, Li C, Li C, Li F. Interfacial effect on the ability of peptide-modified gold nanoclusters to inhibit hIAPP fibrillation and cytotoxicity. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184202. [PMID: 37541643 DOI: 10.1016/j.bbamem.2023.184202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Deposit of amyloid peptides in the cells is related to various amyloidosis diseases. A variety of nanomaterials have been developed to resist amyloid deposit. Most of the research on the inhibition of nanomaterials against amyloid aggregation are undertaken in solution, while the membranes that may mediate fibrillar aggregation and affect interaction of inhibitors with amyloid peptides in biotic environment are little taken into account. In this study, we synthesized three kinds of gold nanoclusters modified with cysteine (C@AuNCs), glutathione (GSH@AuNCs) and a peptide derived from the core region of hIAPP fibrillation (C-HL-8P@AuNCs), and investigated their inhibitory activities against hIAPP fibrillation in the absence and presence of lipid vesicles (POPC/POPG 4:1 LUVs) by the experiments of ThT fluorescence kinetics, AFM and CD. We also explored the inhibitions of hIAPP-induced membrane damage and cytotoxicity by peptide@AuNCs using fluorescent dye leakage and cell viability assays. Our study revealed that the inhibitory efficiency of these peptide@AuNCs against hIAPP fibrillation follows C-HL-8P@AuNCs≅GSH@AuNCs>C@AuNCs in lipid-free solution and C-HL-8P@AuNCs≫GSH@AuNCs>C@AuNCs in lipid membrane environment. Compared with the results obtained in lipid-free solution, the inhibitions of hIAPP fibrillation observed in lipid membrane environment were more associated with the inhibitions of hIAPP-induced damages of lipid vesicles and INS-1 cells (C-HL-8P@AuNCs≫GSH@AuNCs>C@AuNCs). An additional hydrophobic interaction with the homologous core region of hIAPP, which is only provided by C-HL-8P@AuNCs and largely suppressed in lipid-free solution, enhanced in the membrane environment and therefore made C-HL-8P@AuNCs much more powerful than GSH@AuNCs and C@AuNCs in the inhibitions of hIAPP fibrillation and cytotoxicity.
Collapse
Affiliation(s)
- Boqi Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Shuyu Wang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun 130012, PR China
| | - Chengyao Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China
| | - Chen Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, PR China.
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
4
|
Raut B, Upadhyaya SR, Bashyal J, Parajuli N. In Silico and In Vitro Analyses to Repurpose Quercetin as a Human Pancreatic α-Amylase Inhibitor. ACS OMEGA 2023; 8:43617-43631. [PMID: 38027372 PMCID: PMC10666247 DOI: 10.1021/acsomega.3c05082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Human pancreatic α-amylase (HPA), situated at the apex of the starch digestion hierarchy, is an attractive therapeutic approach to precisely regulate blood glucose levels, thereby efficiently managing diabetes. Polyphenols offer a natural and multifaceted approach to moderate postprandial sugar spikes, with their slight modulation in carbohydrate digestion and potential secondary benefits, such as antioxidant and anti-inflammatory effects. Taking into consideration the unfavorable side effects of currently available commercial medications, we aimed to study a library of polyphenols attributed to their remarkable antidiabetic properties and screened the most potent HPA inhibitor via a comprehensive in silico study encompassing molecular docking, molecular mechanics with generalized Born and surface area solvation (MM/GBSA) calculation, molecular dynamics (MD) simulation, density functional theory (DFT) study, and pharmacokinetic properties followed by an in vitro assay. Significant hydrogen bonding with the catalytic triad residues of HPA, prominent MM/GBSA binding energy of -27.03 kcal/mol, and the stable nature of the protein-ligand complex with regard to 100 ns MD simulation screened quercetin as the best HPA inhibitor. Additionally, quercetin showed strong reactivity in the substrate-binding pocket of HPA and exhibited favorable pharmacokinetic properties with a considerable inhibitory concentration (IC50) of 57.37 ± 0.9 μg/mL against α-amylase. This study holds prospects for HPA inhibition and suggests quercetin as an approach to therapy for diabetes; however, it is imperative to conduct further research.
Collapse
Affiliation(s)
- Bimal
K. Raut
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal
| | - Siddha Raj Upadhyaya
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal
| | - Jyoti Bashyal
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal
| | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kirtipur 44600, Kathmandu, Nepal
| |
Collapse
|
5
|
McCalpin SD, Widanage MCD, Fu R, Ramamoorthy A. On-Pathway Oligomer of Human Islet Amyloid Polypeptide Induced and Stabilized by Mechanical Rotation during Magic Angle Spinning Nuclear Magnetic Resonance. J Phys Chem Lett 2023; 14:7644-7649. [PMID: 37602799 PMCID: PMC11559835 DOI: 10.1021/acs.jpclett.3c02009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Intermediates along the fibrillation pathway are generally considered to be the toxic species responsible for the pathologies of amyloid diseases. However, structural studies of these species have been hampered by heterogeneity and poor stability under standard aqueous conditions. Here, we report a novel methodology for producing stable, on-pathway oligomers of the human type-2 diabetes-associated islet amyloid polypeptide (hIAPP or amylin) using the mechanical forces associated with magic angle spinning (MAS). The species were a heterogeneous mixture of globular and short rod-like species with significant β-sheet content and the capability of seeding hIAPP fibrillation. We used MAS nuclear magnetic resonance to demonstrate that the nature of the species was sensitive to sample conditions, including peptide concentration, ionic strength, and buffer. The methodology should be suitable for studies of other aggregating systems.
Collapse
Affiliation(s)
- Samuel D. McCalpin
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Arbor, MI 48109, USA
| | - Malitha C. Dickwella Widanage
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Arbor, MI 48109, USA
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Arbor, MI 48109, USA
| |
Collapse
|
6
|
McCalpin SD, Widanage MCD, Fu R, Ramamoorthy A. On-Pathway Oligomer of Human Islet Amyloid Polypeptide Induced and Stabilized by Mechanical Rotation During MAS NMR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547982. [PMID: 37461639 PMCID: PMC10350039 DOI: 10.1101/2023.07.06.547982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Intermediates along the fibrillation pathway are generally considered to be the toxic species responsible for the pathologies of amyloid diseases. However, structural studies of these species have been hampered by heterogeneity and poor stability in standard aqueous conditions. Here, we report a novel methodology for producing stable, on-pathway oligomers of the human Type-2 Diabetes-associated islet amyloid polypeptide (hIAPP, or amylin) using the mechanical forces associated with magic angle spinning (MAS). The species were a heterogeneous mixture of globular and short rod-like species with significant beta-sheet content and the capability of seeding hIAPP fibrillation. We used MAS NMR to demonstrate that the nature of the species was sensitive to sample conditions including peptide concentration, ionic strength, and buffer. The methodology should be suitable for studies of other aggregating systems.
Collapse
Affiliation(s)
- Samuel D. McCalpin
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Arbor, MI 48109, USA
| | - Malitha C. Dickwella Widanage
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Arbor, MI 48109, USA
| | - Riqiang Fu
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Arbor, MI 48109, USA
| |
Collapse
|
7
|
Přáda Brichtová E, Krupová M, Bouř P, Lindo V, Gomes Dos Santos A, Jackson SE. Glucagon-like peptide 1 aggregates into low-molecular-weight oligomers off-pathway to fibrillation. Biophys J 2023; 122:2475-2488. [PMID: 37138517 PMCID: PMC10323027 DOI: 10.1016/j.bpj.2023.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/04/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
The physical stability of peptide-based drugs is of great interest to the pharmaceutical industry. Glucagon-like peptide 1 (GLP-1) is a 31-amino acid peptide hormone, the analogs of which are frequently used in the treatment of type 2 diabetes. We investigated the physical stability of GLP-1 and its C-terminal amide derivative, GLP-1-Am, both of which aggregate into amyloid fibrils. While off-pathway oligomers have been proposed to explain the unusual aggregation kinetics observed previously for GLP-1 under specific conditions, these oligomers have not been studied in any detail. Such states are important as they may represent potential sources of cytotoxicity and immunogenicity. Here, we identified and isolated stable, low-molecular-weight oligomers of GLP-1 and GLP-1-Am, using size-exclusion chromatography. Under the conditions studied, isolated oligomers were shown to be resistant to fibrillation or dissociation. These oligomers contain between two and five polypeptide chains and they have a highly disordered structure as indicated by a variety of spectroscopic techniques. They are highly stable with respect to time, temperature, or agitation despite their noncovalent character, which was established using liquid chromatography-mass spectrometry and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These results provide evidence of stable, low-molecular-weight oligomers that are formed by an off-pathway mechanism which competes with amyloid fibril formation.
Collapse
Affiliation(s)
- Eva Přáda Brichtová
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Monika Krupová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Prague 6, Czech Republic; Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Prague 6, Czech Republic
| | - Viv Lindo
- AstraZeneca, Cambridge, United Kingdom
| | | | - Sophie E Jackson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
8
|
Wang Y, Xu J, Huang F, Yan J, Fan X, Zou Y, Wang C, Ding F, Sun Y. SEVI Inhibits Aβ Amyloid Aggregation by Capping the β-Sheet Elongation Edges. J Chem Inf Model 2023; 63:3567-3578. [PMID: 37246935 PMCID: PMC10363411 DOI: 10.1021/acs.jcim.3c00414] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Inhibiting the aggregation of amyloid peptides with endogenous peptides has broad interest due to their intrinsically high biocompatibility and low immunogenicity. Here, we investigated the inhibition mechanism of the prostatic acidic phosphatase fragment SEVI (semen-derived enhancer of viral infection) against Aβ42 fibrillization using atomistic discrete molecular dynamic simulations. Our result revealed that SEVI was intrinsically disordered with dynamic formation of residual helices. With a high positive net charge, the self-aggregation tendency of SEVI was weak. Aβ42 had a strong aggregation propensity by readily self-assembling into β-sheet-rich aggregates. SEVI preferred to interact with Aβ42, rather than SEVI themselves. In the heteroaggregates, Aβ42 mainly adopted β-sheets buried inside and capped by SEVI in the outer layer. SEVI could bind to various Aβ aggregation species─including monomers, dimers, and proto-fibrils─by capping the exposed β-sheet elongation edges. The aggregation processes Aβ42 from the formation of oligomers to conformational nucleation into fibrils and fibril growth should be inhibited as their β-sheet elongation edges are being occupied by the highly charged SEVI. Overall, our computational study uncovered the molecular mechanism of experimentally observed inhibition of SEVI against Aβ42 aggregation, providing novel insights into the development of therapeutic strategies against Alzheimer's disease.
Collapse
Affiliation(s)
- Ying Wang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Jia Xu
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
| | - Jiajia Yan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Xinjie Fan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yu Zou
- Department of Sport and Exercise Science, Zhejiang University, Hangzhou 310058, China
| | - Chuang Wang
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), Ningbo Medical Center Lihuili Hospital, Ningbo 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
9
|
Barrea L, Vetrani C, Verde L, Frias-Toral E, Ceriani F, Cernea S, Docimo A, Graziadio C, Tripathy D, Savastano S, Colao A, Muscogiuri G. Comprehensive Approach to Medical Nutrition Therapy in Patients with Type 2 Diabetes Mellitus: From Diet to Bioactive Compounds. Antioxidants (Basel) 2023; 12:904. [PMID: 37107279 PMCID: PMC10135374 DOI: 10.3390/antiox12040904] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
In the pathogenesis of type 2 diabetes mellitus (T2DM), diet plays a key role. Individualized medical nutritional therapy, as part of lifestyle optimization, is one of the cornerstones for the management of T2DM and has been shown to improve metabolic outcomes. This paper discusses major aspects of the nutritional intervention (including macro- and micronutrients, nutraceuticals, and supplements), with key practical advice. Various eating patterns, such as the Mediterranean-style, low-carbohydrate, vegetarian or plant-based diets, as well as healthy eating plans with caloric deficits have been proven to have beneficial effects for patients with T2DM. So far, the evidence does not support a specific macronutrient distribution and meal plans should be individualized. Reducing the overall carbohydrate intake and replacing high glycemic index (GI) foods with low GI foods have been shown as valid options for patients with T2DM to improve glycemic control. Additionally, evidence supports the current recommendation to reduce the intake of free sugars to less than 10% of total energy intake, since their excessive intake promotes weight gain. The quality of fats seems to be rather important and the substitution of saturated and trans fatty acids with foods rich in monounsaturated and polyunsaturated fats lowers cardiovascular risk and improves glucose metabolism. There is no benefit of supplementation with antioxidants, such as carotene, vitamins E and C, or other micronutrients, due to the lack of consistent evidence showing efficacy and long-term safety. Some studies suggest possible beneficial metabolic effects of nutraceuticals in patients with T2DM, but more evidence about their efficacy and safety is still needed.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Via Porzio, Centro Isola F2, 80143 Napoli, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Claudia Vetrani
- Dipartimento di Scienze Umanistiche, Università Telematica Pegaso, Via Porzio, Centro Isola F2, 80143 Napoli, Italy
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Ludovica Verde
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Evelyn Frias-Toral
- School of Medicine, Universidad Católica Santiago de Guayaquil, Av. Pdte. Carlos Julio Arosemena Tola, Guayaquil 090615, Ecuador
| | - Florencia Ceriani
- Nutrition School, Universidad de la Republica (UdelaR), Montevideo 11100, Uruguay
| | - Simona Cernea
- Department M3/Internal Medicine I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 540146 Târgu Mureş, Romania
- Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, 540146 Târgu Mureş, Romania
| | - Annamaria Docimo
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Chiara Graziadio
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Devjit Tripathy
- Division of Diabetes UT Health and ALM VA Hospital, San Antonio, TX 78229, USA
| | - Silvia Savastano
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Annamaria Colao
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Cattedra Unesco “Educazione Alla Salute e Allo Sviluppo Sostenibile”, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Giovanna Muscogiuri
- Centro Italiano per la Cura e il Benessere del Paziente con Obesità (C.I.B.O), Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Unità di Endocrinologia, Diabetologia e Andrologia, Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
- Cattedra Unesco “Educazione Alla Salute e Allo Sviluppo Sostenibile”, Università degli Studi di Napoli Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
10
|
Andrikopoulos N, Li Y, Nandakumar A, Quinn JF, Davis TP, Ding F, Saikia N, Ke PC. Zinc-Epigallocatechin-3-gallate Network-Coated Nanocomposites against the Pathogenesis of Amyloid-Beta. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7777-7792. [PMID: 36724494 PMCID: PMC10037301 DOI: 10.1021/acsami.2c20334] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The aggregation of amyloid beta (Aβ) is a hallmark of Alzheimer's disease (AD), a major cause of dementia and an unmet challenge in modern medicine. In this study, we constructed a biocompatible metal-phenolic network (MPN) comprising a polyphenol epigallocatechin gallate (EGCG) scaffold coordinated by physiological Zn(II). Upon adsorption onto gold nanoparticles, the MPN@AuNP nanoconstruct elicited a remarkable potency against the amyloid aggregation and toxicity of Aβ in vitro. The superior performance of MPN@AuNP over EGCG@AuNP was attributed to the porosity and hence larger surface area of the MPN in comparison with that of EGCG alone. The atomic detail of Zn(II)-EGCG coordination was unraveled by density functional theory calculations and the structure and dynamics of Aβ aggregation modulated by the MPN were further examined by discrete molecular dynamics simulations. As MPN@AuNP also displayed a robust capacity to cross a blood-brain barrier model through the paracellular pathway, and given the EGCG's function as an anti-amyloidosis and antioxidation agent, this MPN-based strategy may find application in regulating the broad AD pathology beyond protein aggregation inhibition.
Collapse
Affiliation(s)
- Nicholas Andrikopoulos
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Yuhuan Li
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Aparna Nandakumar
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - John F. Quinn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Thomas P. Davis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Nabanita Saikia
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Pu Chun Ke
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Nanomedicine Center, The Great Bay Area National Institute for Nanotechnology Innovation, 136 Kaiyuan Avenue, Guangzhou, 510700, China
| |
Collapse
|
11
|
Dimitrova YN, Gutierrez JA, Huard K. It's ok to be outnumbered - sub-stoichiometric modulation of homomeric protein complexes. RSC Med Chem 2023; 14:22-46. [PMID: 36760737 PMCID: PMC9890894 DOI: 10.1039/d2md00212d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
An arsenal of molecular tools with increasingly diversified mechanisms of action is being developed by the scientific community to enable biological interrogation and pharmaceutical modulation of targets and pathways of ever increasing complexity. While most small molecules interact with the target of interest in a 1 : 1 relationship, a noteworthy number of recent examples were reported to bind in a sub-stoichiometric manner to a homomeric protein complex. This approach requires molecular understanding of the physiologically relevant protein assemblies and in-depth characterization of the compound's mechanism of action. The recent literature examples summarized here were selected to illustrate methods used to identify and characterize molecules with such mechanisms. The concept of one small molecule targeting a homomeric protein assembly is not new but the subject deserves renewed inspection in light of emerging technologies and increasingly diverse target biology, to ensure relevant in vitro systems are used and valuable compounds with potentially novel sub-stoichiometric mechanisms of action aren't overlooked.
Collapse
Affiliation(s)
| | | | - Kim Huard
- Genentech 1 DNA Way South San Francisco CA 94080 USA
| |
Collapse
|
12
|
Mahboob A, Senevirathne DKL, Paul P, Nabi F, Khan RH, Chaari A. An investigation into the potential action of polyphenols against human Islet Amyloid Polypeptide aggregation in type 2 diabetes. Int J Biol Macromol 2023; 225:318-350. [PMID: 36400215 DOI: 10.1016/j.ijbiomac.2022.11.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes (T2D), a chronic metabolic disease characterized by hyperglycemia, results in significant disease burden and financial costs globally. Whilst the majority of T2D cases seem to have a genetic basis, non-genetic modifiable and non-modifiable risk factors for T2D include obesity, diet, physical activity and lifestyle, smoking, age, ethnicity, and mental stress. In healthy individuals, insulin secretion from pancreatic islet β-cells is responsible for keeping blood glucose levels within normal ranges. T2D patients suffer from multifactorial onset of β-cell dysfunction and/or loss of β-cell mass owing to reactive oxygen species (ROS) production, mitochondrial dysfunction, autophagy, and endoplasmic reticulum (ER) stress. Most predominantly however, and the focus of this review, it is the aggregation and misfolding of human Islet Amyloid Polypeptide (hIAPP, also known as amylin), which is detrimental to β-cell function and health. Whilst hIAPP is found in healthy individuals, its misfolded version is cytotoxic and able to induce β-cell dysfunction and/or death through various mechanisms including membrane changes in β-cell causing influx of calcium ions, arresting complete granule membrane recovery and ER stress. There are several existing therapeutics for T2D. However, there is a need for alternative or adjunct therapies for T2D with milder adverse effects and greater availability. Foremost among the potential natural therapeutics are polyphenols. Extensive data from studies evaluating the potential of polyphenols to inhibit hIAPP aggregation and disassemble aggregated hIAPP are promising. Moreover, in-vivo, and in-silico studies also highlight the potential effects of polyphenols against hIAPP aggregation and mitigation of larger pathological effects of T2D. Whilst there have been some promising clinical studies on the therapeutic potential of polyphenols, extensive further clinical studies and in-vitro studies evaluating the mechanisms of action and ideal doses for many of these compounds are required. The need for these studies is made more important by the postulated link between Alzheimer's disease (AD) and T2D pathophysiology given the similar aggregation process of their respective amyloid proteins, which evokes thoughts of cross-reactive polyphenols which can be effective for both AD and T2D patients.
Collapse
Affiliation(s)
- Anns Mahboob
- Premedical Division Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | | | - Pradipta Paul
- Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| | - Ali Chaari
- Premedical Division Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar.
| |
Collapse
|
13
|
Smith AA, Moore KBE, Ambs PM, Saraswati AP, Fortin JS. Recent Advances in the Discovery of Therapeutics to Curtail Islet Amyloid Polypeptide Aggregation for Type 2 Diabetes Treatment. Adv Biol (Weinh) 2022; 6:e2101301. [PMID: 35931462 DOI: 10.1002/adbi.202101301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 07/04/2022] [Indexed: 01/28/2023]
Abstract
In humans with type 2 diabetes, at least 70% of patients exhibit islet amyloid plaques formed by misfolding islet amyloid polypeptides (IAPP). The oligomeric conformation and accumulation of the IAPP plaques lead to a panoply of cytotoxic effects on the islet β-cells. Currently, no marketed therapies for the prevention or elimination of these amyloid deposits exist, and therefore significant efforts are required to address this gap. To date, most of the experimental treatments are limited to only in vitro stages of testing. In general, the proposed therapeutics use various targeting strategies, such as binding to the N-terminal region of islet amyloid polypeptide on residues 1-19 or the hydrophobic region of IAPP. Other strategies include targeting the peptide self-assembly through π-stacking. These methods are realized by using several different families of compounds, four of which are highlighted in this review: naturally occurring products, small molecules, organometallic compounds, and nanoparticles. Each of these categories holds immense potential to optimize and develop inhibitor(s) of pancreatic amyloidosis in the near future.
Collapse
Affiliation(s)
- Alyssa A Smith
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Kendall B E Moore
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Akella Prasanth Saraswati
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Jessica S Fortin
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
14
|
Ohashi H, Tsuji M, Oguchi T, Momma Y, Nohara T, Ito N, Yamamoto K, Nagata M, Kimura AM, Kiuchi Y, Ono K. Combined Treatment with Curcumin and Ferulic Acid Suppressed the Aβ-Induced Neurotoxicity More than Curcumin and Ferulic Acid Alone. Int J Mol Sci 2022; 23:ijms23179685. [PMID: 36077082 PMCID: PMC9456505 DOI: 10.3390/ijms23179685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that leads to progressive cognitive decline. Several effective natural components have been identified for the treatment of AD. However, it is difficult to obtain conclusive evidence on the safety and effectiveness of natural components, because a variety of factors are associated with the progression of AD pathology. We hypothesized that a therapeutic effect could be achieved by combining multiple ingredients with different efficacies. The purpose of this study was thus to evaluate a combination treatment of curcumin (Cur) and ferulic acid (FA) for amyloid-β (Aβ)-induced neuronal cytotoxicity. The effect of Cur or FA on Aβ aggregation using thioflavin T assay was confirmed to be inhibited in a concentration-dependent manner by Cur single or Cur + FA combination treatment. The effects of Cur + FA on the cytotoxicity of human neuroblastoma (SH-SY5Y) cells induced by Aβ exposure were an increase in cell viability, a decrease in ROS and mitochondrial ROS, and repair of membrane damage. Combination treatment showed an overall higher protective effect than treatment with Cur or FA alone. These results suggest that the combined action mechanisms of Cur and FA may be effective in preventing and suppressing the progression of AD.
Collapse
Affiliation(s)
- Hideaki Ohashi
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
| | - Mayumi Tsuji
- Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
- Correspondence: (M.T.); (K.O.)
| | - Tatsunori Oguchi
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan
- Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Yutaro Momma
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
| | - Tetsuhito Nohara
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
| | - Naohito Ito
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
| | - Ken Yamamoto
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
| | - Miki Nagata
- Department of Hospital Pharmaceutics, School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Atsushi Michael Kimura
- Division of Neurology, Department of Internal Medicine, School of Medicine, Showa University, Tokyo 142-8555, Japan
| | - Yuji Kiuchi
- Division of Medical Pharmacology, Department of Pharmacology, School of Medicine, Showa University, Tokyo 142-8555, Japan
- Pharmacological Research Center, Showa University, Tokyo 142-8555, Japan
| | - Kenjiro Ono
- Department of Neurology, Kanazawa University Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
- Correspondence: (M.T.); (K.O.)
| |
Collapse
|
15
|
Wang Y, Zheng T, Huo Y, Du W. Exploration of Isoquinoline Alkaloids as Potential Inhibitors against Human Islet Amyloid Polypeptide. ACS Chem Neurosci 2022; 13:2164-2175. [PMID: 35797238 DOI: 10.1021/acschemneuro.2c00206] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Type-2 diabetes mellitus (T2DM) is one of the most concerning public health problems because of its high incidence, multiple complications, and difficult treatment. Human islet amyloid polypeptide (hIAPP) is closely linked to T2DM because its abnormal self-assembly causes membrane damage and cell dysfunction. The development of potential inhibitors to prevent hIAPP fibrillation is a promising strategy for the intervention and treatment of diabetes. Natural isoquinoline alkaloids are used as effective medication that targets different biomolecules. Although studies explored the efficacy of berberine, jatrorrhizine, and chelerythrine in diabetes, the underlying mechanism remains unclear. Herein, three isoquinoline alkaloids are selected to reveal their roles in hIAPP aggregation, disaggregation, and cell protection. All three compounds displayed good inhibitory effects on peptide fibrillation, scattered the preformed fibrils into small oligomers and most monomers, and upregulated cell viability by reducing hIAPP oligomerization. Moreover, combined biophysical analyses indicated that the compounds affected the β-sheet structure and hydrophobicity of polypeptides significantly, and the benzo[c]phenanthridine structure of chelerythrine was beneficial to the inhibition of hIAPP aggregation and their hydrophobic interaction, compared with that of berberine and jatrorrhizine. Our work elaborated the effects of these alkaloids on hIAPP fibrillation and reveals a possible mechanism for these compounds against T2DM.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Ting Zheng
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yan Huo
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Weihong Du
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
16
|
King KM, Bevan DR, Brown AM. Molecular Dynamics Simulations Indicate Aromaticity as a Key Factor in the Inhibition of IAPP (20-29) Aggregation. ACS Chem Neurosci 2022; 13:1615-1626. [PMID: 35587203 DOI: 10.1021/acschemneuro.2c00025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Islet amyloid polypeptide (IAPP) is a 37-residue amyloidogenic hormone implicated in the progression of Type II Diabetes (T2D). T2D affects an estimated 422 million people yearly and is a comorbidity with numerous diseases. IAPP forms toxic oligomers and amyloid fibrils that reduce pancreatic β-cell mass and exacerbate the T2D disease state. Toxic oligomer formation is attributed, in part, to the formation of interpeptide β-strands comprised of residues 20-29 (IAPP(20-29)). Flavonoids, a class of polyphenolic natural products, have been found experimentally to inhibit IAPP aggregate formation. Many of these small flavonoids differ structurally only slightly; the influence of functional group placement on inhibiting the aggregation of the IAPP(20-29) has yet to be explored. To probe the role of small-molecule structural features that impede IAPP aggregation, molecular dynamics simulations were performed to observe trimer formation on a model fragment of IAPP(20-29) in the presence of morin, quercetin, dihydroquercetin, epicatechin, and myricetin. Contacts between Phe23 residues were critical to oligomer formation, and small-molecule contacts with Phe23 were a key predictor of β-strand reduction. Structural properties influencing the ability of compounds to disrupt Phe23-Phe23 contacts included aromaticity and carbonyl and hydroxyl group placement. This work provides key information on design considerations for T2D therapeutics that target IAPP aggregation.
Collapse
Affiliation(s)
- Kelsie M King
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - David R Bevan
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Anne M Brown
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Research and Informatics, University Libraries, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
17
|
Modulation of Amyloid β-Induced Microglia Activation and Neuronal Cell Death by Curcumin and Analogues. Int J Mol Sci 2022; 23:ijms23084381. [PMID: 35457197 PMCID: PMC9027876 DOI: 10.3390/ijms23084381] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is not restricted to the neuronal compartment but includes important interactions with immune cells, including microglia. Protein aggregates, common pathological hallmarks of AD, bind to pattern recognition receptors on microglia and trigger an inflammatory response, which contributes to disease progression and severity. In this context, curcumin is emerging as a potential drug candidate able to affect multiple key pathways implicated in AD, including neuroinflammation. Therefore, we studied the effect of curcumin and its structurally related analogues cur6 and cur16 on amyloid-β (Aβ)-induced microglia activation and neuronal cell death, as well as their effect on the modulation of Aβ aggregation. Primary cortical microglia and neurons were exposed to two different populations of Aβ42 oligomers (Aβ42Os) where the oligomeric state had been assigned by capillary electrophoresis and ultrafiltration. When stimulated with high molecular weight Aβ42Os, microglia released proinflammatory cytokines that led to early neuronal cell death. The studied compounds exerted an anti-inflammatory effect on high molecular weight Aβ42O-stimulated microglia and possibly inhibited microglia-mediated neuronal cell toxicity. Furthermore, the tested compounds demonstrated antioligomeric activity during the process of in vitro Aβ42 aggregation. These findings could be investigated further and used for the optimization of multipotent candidate molecules for AD treatment.
Collapse
|
18
|
Roham PH, Save SN, Sharma S. Human islet amyloid polypeptide: A therapeutic target for the management of type 2 diabetes mellitus. J Pharm Anal 2022; 12:556-569. [PMID: 36105173 PMCID: PMC9463490 DOI: 10.1016/j.jpha.2022.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/21/2022] [Accepted: 04/01/2022] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) and other metabolic disorders are often silent and go unnoticed in patients because of the lack of suitable prognostic and diagnostic markers. The current therapeutic regimens available for managing T2DM do not reverse diabetes; instead, they delay the progression of diabetes. Their efficacy (in principle) may be significantly improved if implemented at earlier stages. The misfolding and aggregation of human islet amyloid polypeptide (hIAPP) or amylin has been associated with a gradual decrease in pancreatic β-cell function and mass in patients with T2DM. Hence, hIAPP has been recognized as a therapeutic target for managing T2DM. This review summarizes hIAPP's role in mediating dysfunction and apoptosis in pancreatic β-cells via induction of endoplasmic reticulum stress, oxidative stress, mitochondrial dysfunction, inflammatory cytokine secretion, autophagy blockade, etc. Furthermore, it explores the possibility of using intermediates of the hIAPP aggregation pathway as potential drug targets for T2DM management. Finally, the effects of common antidiabetic molecules and repurposed drugs; other hIAPP mimetics and peptides; small organic molecules and natural compounds; nanoparticles, nanobodies, and quantum dots; metals and metal complexes; and chaperones that have demonstrated potential to inhibit and/or reverse hIAPP aggregation and can, therefore, be further developed for managing T2DM have been discussed. Misfolded species of hIAPP form toxic oligomers in pancreatic β-cells. hIAPP amyloids has been detected in the pancreas of about 90% subjects with T2DM. Inhibitors of hIAPP aggregation can help manage T2DM.
Collapse
|
19
|
Tang H, Sun Y, Ding F. Hydrophobic/Hydrophilic Ratio of Amphiphilic Helix Mimetics Determines the Effects on Islet Amyloid Polypeptide Aggregation. J Chem Inf Model 2022; 62:1760-1770. [PMID: 35311274 PMCID: PMC9123946 DOI: 10.1021/acs.jcim.1c01566] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Amyloid depositions of human islet amyloid polypeptides (hIAPP) are associated with type II diabetes (T2D) impacting millions of people globally. Accordingly, strategies against hIAPP aggregation are essential for the prevention and eventual treatment of the disease. Helix mimetics, which modulate the protein-protein interaction by mimicking the side chain residues of a natural α-helix, were found to be a promising strategy for inhibiting hIAPP aggregation. Here, we applied molecular dynamics simulations to investigate two helix mimetics reported to have opposite effects on hIAPP aggregation in solution, the oligopyridylamide-based scaffold 1e promoted, whereas naphthalimide-appended oligopyridylamide scaffold DM 1 inhibited the aggregation of hIAPP in solution. We found that 1e promoted hIAPP aggregation because of the recruiting effects through binding with the N-termini of hIAPP peptides. In contrast, DM 1 with a higher hydrophobic/hydrophilic ratio effectively inhibited hIAPP aggregation by strongly binding with the C-termini of hIAPP peptides, which competed for the interpeptide contacts between amyloidogenic regions in the C-termini and impaired the fibrillization of hIAPP. Structural analyses revealed that DM 1 formed the core of hIAPP-DM 1 complexes and stabilized the off-pathway oligomers, whereas 1e formed the corona outside the hIAPP-1e complexes and remained active in recruiting free hIAPP peptides. The distinct interaction mechanisms of DM 1 and 1e, together with other reported potent antagonists in the literature, emphasized the effective small molecule-based amyloid inhibitors by disrupting peptide interactions that should reach a balanced hydrophobic/hydrophilic ratio, providing a viable and generic strategy for the rational design of novel anti-amyloid nanomedicine.
Collapse
Affiliation(s)
- Huayuan Tang
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Yunxiang Sun
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States.,Department of Physics, Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
20
|
Al Adem K, Shanti A, Srivastava A, Homouz D, Thomas SA, Khair M, Stefanini C, Chan V, Kim TY, Lee S. Linking Alzheimer’s Disease and Type 2 Diabetes: Characterization and Inhibition of Cytotoxic Aβ and IAPP Hetero-Aggregates. Front Mol Biosci 2022; 9:842582. [PMID: 35372522 PMCID: PMC8968156 DOI: 10.3389/fmolb.2022.842582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022] Open
Abstract
The cytotoxic self-aggregation of β-amyloid (Aβ) peptide and islet amyloid polypeptide (IAPP) is implicated in the pathogenesis of Alzheimer’s disease (AD) and Type 2 diabetes (T2D), respectively. Increasing evidence, particularly the co-deposition of Aβ and IAPP in both brain and pancreatic tissues, suggests that Aβ and IAPP cross-interaction may be responsible for a pathological link between AD and T2D. Here, we examined the nature of IAPP-Aβ40 co-aggregation and its inhibition by small molecules. In specific, we characterized the kinetic profiles, morphologies, secondary structures and toxicities of IAPP-Aβ40 hetero-assemblies and compared them to those formed by their homo-assemblies. We demonstrated that monomeric IAPP and Aβ40 form stable hetero-dimers and hetero-assemblies that further aggregate into β-sheet-rich hetero-aggregates that are toxic (cell viability <50%) to both PC-12 cells, a neuronal cell model, and RIN-m5F cells, a pancreatic cell model for β-cells. We then selected polyphenolic candidates to inhibit IAPP or Aβ40 self-aggregation and examined the inhibitory effect of the most potent candidate on IAPP-Aβ40 co-aggregation. We demonstrated that epigallocatechin gallate (EGCG) form inter-molecular hydrogen bonds with each of IAPP and Aβ40. We also showed that EGCG reduced hetero-aggregate formation and resulted in lower β-sheets content and higher unordered structures in IAPP-Aβ40-EGCG samples. Importantly, we showed that EGCG is highly effective in reducing the toxicity of IAPP-Aβ40 hetero-aggregates on both cell models, specifically at concentrations that are equivalent to or are 2.5-fold higher than the mixed peptide concentrations. To the best of our knowledge, this is the first study to report the inhibition of IAPP-Aβ40 co-aggregation by small molecules. We conclude that EGCG is a promising candidate to prevent co-aggregation and cytotoxicity of IAPP-Aβ40, which in turn, contribute to the pathological link between AD and T2D.
Collapse
Affiliation(s)
- Kenana Al Adem
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Aya Shanti
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Amit Srivastava
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Dirar Homouz
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Physics, University of Houston, Houston, TX, United States
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Sneha Ann Thomas
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mostafa Khair
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Cesare Stefanini
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Vincent Chan
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Tae-Yeon Kim
- Department of Civil Infrastructure and Environmental Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Sungmun Lee
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Khalifa University’s Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- *Correspondence: Sungmun Lee,
| |
Collapse
|
21
|
Zhao L, Wang S, Hu Q, Jia H, Xin Y, Luo L, Meng F. Conformation-reconstructed multivalent antibody mimic for amplified mitigation of human islet amyloid polypeptide amyloidogenesis. NANOSCALE 2022; 14:2802-2815. [PMID: 35133388 DOI: 10.1039/d1nr08090c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The misfolding and aggregation of human islet amyloid polypeptide (IAPP) into β-sheet-enriched amyloid fibrils is linked to type 2 diabetes. Antibodies are potent inhibitors of IAPP amyloidogenesis, but their preparation is usually complicated and expensive. Here we have created a multivalent antibody mimic SPEPS@Au through conformational engineering of the complementary-determining regions (CDRs) of antibodies on gold nanoparticles (AuNPs). By immobilizing both terminals of an IAPP-recognizing CDR loop (PEP) on the surface of AuNPs, the active conformation of PEP can simply recur on the gold-based antibody mimic, significantly enhancing the binding affinity between PEP and IAPP. SPEPS@Au mitigated amyloidogenesis of IAPP at low sub-stoichiometric concentrations, even after IAPP started aggregating, and dramatically reduced the amyloidogenesis-induced toxicity and ROS production both in vitro and in vivo. The conformation-reconstructed multivalent antibody mimic not only renders a facile strategy to approach potent amyloidogenesis inhibitors, but also provides new perspectives to exploit NP-based substitutes for antibodies in various applications.
Collapse
Affiliation(s)
- Liyuan Zhao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Sheng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qigang Hu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Haibo Jia
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yanru Xin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
22
|
Roy R, Paul S. hIAPP-Amyloid-Core Derived d-Peptide Prevents hIAPP Aggregation and Destabilizes Its Protofibrils. J Phys Chem B 2022; 126:822-839. [DOI: 10.1021/acs.jpcb.1c10395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Rituparna Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India, 781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India, 781039
| |
Collapse
|
23
|
Zaidi N, Ajmal MR, Zaidi SA, Khan RH. Mechanistic In Vitro Dissection of the Inhibition of Amyloid Fibrillation by n-Acetylneuraminic Acid: Plausible Implication in Therapeutics for Neurodegenerative Disorders. ACS Chem Neurosci 2022; 13:69-80. [PMID: 34878262 DOI: 10.1021/acschemneuro.1c00556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A variety of neurodegenerative disorders including Parkinson's disease are due to fibrillation in amyloidogenic proteins. The development of therapeutics for these disorders is a topic of extensive research as effective treatments are still unavailable. The present study establishes that n-acetylneuraminic acid (Neu5ac) inhibits the amyloid fibrillation of hen egg-white lysozyme (HEWL) and α-synuclein (SYN), as observed using various biophysical techniques and cellular assays. Neu5ac inhibits the amyloid formation in both proteins, as suggested from the reduction in the ThT fluorescence and remnant structures in transmission electron microscopy micrographs observed in its presence. In HEWL fibrillation, Neu5ac decreases the hydrophobicity and resists the transition of the α-helix to a β-sheet, as observed by an ANS binding assay, circular dichroism (CD) spectra, and Fourier transform infrared measurements, respectively. Neu5ac stabilizes the states that facilitate the amyloid formation in HEWL and SYN, as demonstrated by an enhanced intrinsic fluorescence in its presence, which is further confirmed by an increase in Tm obtained from differential scanning calorimetry thermograms and an increase in the near-UV CD signal for HEWL with Neu5ac. However, the increase in stability is not a manifestation of Neu5ac binding to amyloid facilitating (partially folded or native) states of both proteins, as verified by isothermal titration calorimetry and fluorescence binding measurements. Besides, Neu5ac also attenuates the cytotoxicity of amyloid fibrils, as evaluated by a cell toxicity assay. These findings provide mechanistic insights into the Neu5ac action against amyloid fibrillation and may establish it as a plausible inhibitor molecule against neurodegenerative disorders.
Collapse
Affiliation(s)
- Nida Zaidi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Rehan Ajmal
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Syed Adeel Zaidi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
24
|
Raimundo AF, Ferreira S, Pobre V, Lopes-da-Silva M, Brito JA, dos Santos DJVA, Saraiva N, dos Santos CN, Menezes R. Urolithin B: Two-way attack on IAPP proteotoxicity with implications for diabetes. Front Endocrinol (Lausanne) 2022; 13:1008418. [PMID: 36589826 PMCID: PMC9797523 DOI: 10.3389/fendo.2022.1008418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Diabetes is one of the major metabolic diseases worldwide. Despite being a complex systemic pathology, the aggregation and deposition of Islet Amyloid Polypeptide (IAPP), or amylin, is a recognized histopathological marker of the disease. Although IAPP proteotoxicity represents an important trigger of β-cell dysfunction and ultimately death, its exploitation as a therapeutic tool remains underdeveloped. The bioactivity of (poly)phenols towards inhibition of pathological protein aggregation is well known, however, most of the identified molecules have limited bioavailability. METHODS Using a strategy combining in silico, cell-free and cell studies, we scrutinized a unique in-house collection of (poly)phenol metabolites predicted to appear in the human circulation after (poly)phenols ingestion. RESULTS We identified urolithin B as a potent inhibitor of IAPP aggregation and a powerful modulator of cell homeostasis pathways. Urolithin B was shown to affect IAPP aggregation pattern, delaying the formation of amyloid fibrils and altering their size and morphology. The molecular mechanisms underlying urolithin B-mediated protection include protein clearance pathways, mitochondrial function, and cell cycle ultimately rescuing IAPP-mediated cell dysfunction and death. DISCUSSION In brief, our study uncovered urolithin B as a novel small molecule targeting IAPP pathological aggregation with potential to be exploited as a therapeutic tool for mitigating cellular dysfunction in diabetes. Resulting from the colonic metabolism of dietary ellagic acid in the human body, urolithin B bioactivity has the potential to be explored in nutritional, nutraceutical, and pharmacological perspectives.
Collapse
Affiliation(s)
- Ana F. Raimundo
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA Lisboa, Oeiras, Portugal
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Sofia Ferreira
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- CBIOS – Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Lisboa, Portugal
- Universidad de Alcalá, Escuela de Doctorado, Departamento de Ciencias Biomédicas, Madrid, Spain
| | - Vânia Pobre
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA Lisboa, Oeiras, Portugal
| | - Mafalda Lopes-da-Silva
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - José A. Brito
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA Lisboa, Oeiras, Portugal
| | | | - Nuno Saraiva
- CBIOS – Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Cláudia N. dos Santos
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Regina Menezes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- CBIOS – Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Lisboa, Portugal
- *Correspondence: Regina Menezes,
| |
Collapse
|
25
|
Zhang Y, Liu Y, Zhao W, Sun Y. Hydroxylated single-walled carbon nanotube inhibits β2m 21-31 fibrillization and disrupts pre-formed proto-fibrils. Int J Biol Macromol 2021; 193:1-7. [PMID: 34687758 DOI: 10.1016/j.ijbiomac.2021.10.103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022]
Abstract
Pathological aggregation of amyloid polypeptides is associated with numerous degenerative diseases. Preventing aggregation and clearing amyloid deposits are considered as promising strategies against amyloidosis. With the capacity of crossing the blood-brain barrier and good biocompatibility, the hydroxylated single-walled carbon nanotube (SWCNT-OH) has been shown with excellent anti-amyloid properties. Here, we systematically studied the SWCNT-OH effects on the fibrillization of the β2m21-31 peptides utilizing all-atom discrete molecular dynamics (DMD) simulation. Our results demonstrated the isolated β2m21-31 peptides first nucleated into unstructured oligomers followed by coil-to-sheet conformational conversions in oligomers with at least six peptides. The elongation and lateral surfaces of the preformed β-sheet could catalyze the other unstructured monomers and small oligomers converted into β-sheet formations via dock-lock fibril growth and secondary nucleation processes. Eventually, the β2m21-31 peptides would self-assemble into well-ordered cross-β structures. Regardless of isolated monomers or well-defined cross-β assemblies, the β2m21-31 would attach on the surfaces of SWCNT-OH adopting unstructured formations indicating the SWCNT-OH not only inhibited the fibrillization of β2m21-31 but also destroyed pre-formed proto-fibrils. Overall, our study displays a complete picture of the fibrillization mechanism of β2m21-31 and the amyloid inhibitory mechanism of SWCNT-OH, offering new insight into the de-novo design of anti-amyloid inhibitors.
Collapse
Affiliation(s)
- Yu Zhang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yuying Liu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Wenhui Zhao
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
26
|
Nie T, Cooper GJS. Mechanisms Underlying the Antidiabetic Activities of Polyphenolic Compounds: A Review. Front Pharmacol 2021; 12:798329. [PMID: 34970150 PMCID: PMC8712966 DOI: 10.3389/fphar.2021.798329] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/18/2021] [Indexed: 12/16/2022] Open
Abstract
Polyphenolic compounds are thought to show considerable promise for the treatment of various metabolic disorders, including type 2 diabetes mellitus (T2DM). This review addresses evidence from in vitro, in vivo, and clinical studies for the antidiabetic effects of certain polyphenolic compounds. We focus on the role of cytotoxic human amylin (hA) aggregates in the pathogenesis of T2DM, and how polyphenols can ameliorate this process by suppressing or modifying their formation. Small, soluble amylin oligomers elicit cytotoxicity in pancreatic islet β-cells and may thus cause β-cell disruption in T2DM. Amylin oligomers may also contribute to oxidative stress and inflammation that lead to the triggering of β-cell apoptosis. Polyphenols may exert antidiabetic effects via their ability to inhibit hA aggregation, and to modulate oxidative stress, inflammation, and other pathways that are β-cell-protective or insulin-sensitizing. There is evidence that their ability to inhibit and destabilize self-assembly by hA requires aromatic molecular structures that bind to misfolding monomers or oligomers, coupled with adjacent hydroxyl groups present on single phenyl rings. Thus, these multifunctional compounds have the potential to be effective against the pleiotropic mechanisms of T2DM. However, substantial further research will be required before it can be determined whether a polyphenol-based molecular entity can be used as a therapeutic for type 2 diabetes.
Collapse
Affiliation(s)
- Tina Nie
- School of Biological Sciences, Faculty of Science, the University of Auckland, Auckland, New Zealand
| | - Garth J. S. Cooper
- School of Biological Sciences, Faculty of Science, the University of Auckland, Auckland, New Zealand
- The Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, the University of Auckland, Auckland, New Zealand
- Centre for Advanced Discovery and Experimental Therapeutics, Division of Cardiovascular Sciences, Faculty of Biology Medicine & Health, School of Medical Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
27
|
Saffari B, Amininasab M. Crocin Inhibits the Fibrillation of Human α-synuclein and Disassembles Mature Fibrils: Experimental Findings and Mechanistic Insights from Molecular Dynamics Simulation. ACS Chem Neurosci 2021; 12:4037-4057. [PMID: 34636232 DOI: 10.1021/acschemneuro.1c00379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aggregation of human alpha-synuclein (hαS) is pivotally implicated in the development of most types of synucleinopathies. Molecules that can inhibit or reverse the aggregation process of amyloidogenic proteins have potential therapeutic value. The anti-aggregating activity of multiple carotenoid compounds has been reported over the past decades against a growing list of amyloidogenic polypeptides. Here, we aimed to determine whether crocin, the main carotenoid glycoside component of saffron, would inhibit hαS aggregation or could disassemble its preformed fibrils. By employing a series of biochemical and biophysical techniques, crocin was exhibited to inhibit hαS fibrillation in a dose-dependent fashion by stabilizing very early aggregation intermediates in off-pathway non-toxic conformations with little β-sheet content. We also observed that crocin at high concentrations could efficiently destabilize mature fibrils and disassemble them into seeding-incompetent intermediates by altering their β-sheet conformation and reshaping their structure. Our atomistic molecular dynamics (MD) simulations demonstrated that crocin molecules bind to both the non amyloid-β component (NAC) region and C-terminal domain of hαS. These interactions could thereby stabilize the autoinhibitory conformation of the protein and prevent it from adopting aggregation-prone structures. MD simulations further suggested that ligand molecules prefer to reside longitudinally along the fibril axis onto the edges of the inter-protofilament interface where they establish hydrogen and hydrophobic bonds with steric zipper stabilizing residues. These interactions turned out to destabilize hαS fibrils by altering the interstrand twist angles, increasing the rigidity of the fibril core, and elevating its radius of gyration. Our findings suggest the potential pharmaceutical implication of crocin in synucleinopathies.
Collapse
Affiliation(s)
- Babak Saffari
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Mehriar Amininasab
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| |
Collapse
|
28
|
Mallick T, Karmakar A, Mukhuty A, Fouzder C, Mandal J, Mondal S, Pramanik A, Kundu R, Begum NA. Exploring the Propensities of Fluorescent Carbazole Analogs toward the Inhibition of Amyloid Aggregation in Type 2 Diabetes: An Experimental and Theoretical Endeavor. J Phys Chem B 2021; 125:10481-10493. [PMID: 34498871 DOI: 10.1021/acs.jpcb.1c06161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Amyloid aggregation is a pathological trait observed in many incurable and fatal neurodegenerative and metabolic diseases associated with misfolding and self-assembly of various proteins. Noncovalent interactions between these structural motifs and small molecules can, however, prevent this aggregation. Herein, five structurally different synthetic (Cz1-Cz4) and naturally occurring (Cz5, mahanimbine) fluorescent carbazole analogs are explored for their comparative amyloid aggregation inhibitory activities. Cz3 inhibited the amyloid deposition on the pancreatic β-cells of diabetic mice. Moreover, Cz3 and Cz5 also showed efficacy as the fluorescent cell (MIN6) imaging agents. Further structural modifications of these carbazoles may lead to development of low-cost and non-toxic therapeutic agents for Type 2 diabetes and other amyloidosis-related diseases.
Collapse
Affiliation(s)
- Tamanna Mallick
- Department of Chemistry, Visva-Bharati (Central University), Santiniketan 731235, WB, India
| | - Abhijit Karmakar
- Department of Chemistry, Visva-Bharati (Central University), Santiniketan 731235, WB, India
| | - Alpana Mukhuty
- Department of Zoology, Visva-Bharati (Central University), Santiniketan 731235, WB, India
| | - Chandrani Fouzder
- Department of Zoology, Visva-Bharati (Central University), Santiniketan 731235, WB, India
| | - Jishu Mandal
- Biophysical Laboratory, Indian Institute of Chemical Biology, Kolkata, WB 700032, India
| | - Samiran Mondal
- Department of Chemistry, Rammohan College, Kolkata, WB 700009, India
| | - Anup Pramanik
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, WB 723104, India
| | - Rakesh Kundu
- Department of Zoology, Visva-Bharati (Central University), Santiniketan 731235, WB, India
| | - Naznin Ara Begum
- Department of Chemistry, Visva-Bharati (Central University), Santiniketan 731235, WB, India
| |
Collapse
|
29
|
Sarkar K, Das RK. In Silico study of Rosmarinic Acid Derivatives as Novel Insulin Fibril Inhibitors. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416521500381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The self-assembly of human insulin (HI) plays a crucial role in regulating amyloid fibrils. Therefore, it is a significant problem for the medical management of diabetes therapy and these findings have led us to investigate the amyloid formation and its inhibition. Few potential inhibitors have been identified to inhibit amyloid fibrils. Rosmarinic acid (RA) is one of the things that inhibits amyloid formation completely by increasing the resistivity of the amyloidogenic insulin (dimer) protein to thermal unfolding. Here, we choose different tested derivative compounds for designing amyloid inhibitors by substituting various functional groups of RA. These derivative compounds were subjected to in silico studies to determine the best drug candidates. In comparison to RA, 14 molecules have higher binding affinity and interactions with the target receptor. After frontier molecular orbitals study, ADME and toxicity analysis, the eight best compounds may act as the best inhibitors. The stability of the docked complexes was visualized by molecular dynamics (MD) simulations. This finding opens a new proposal to explore future studies with these best compounds to increase the thermal stability of the insulin dimers.
Collapse
Affiliation(s)
- Kaushik Sarkar
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| | - Rajesh Kumar Das
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, India
| |
Collapse
|
30
|
Wu L, Velander P, Brown AM, Wang Y, Liu D, Bevan DR, Zhang S, Xu B. Rosmarinic Acid Potently Detoxifies Amylin Amyloid and Ameliorates Diabetic Pathology in a Transgenic Rat Model of Type 2 Diabetes. ACS Pharmacol Transl Sci 2021; 4:1322-1337. [PMID: 34423269 PMCID: PMC8369672 DOI: 10.1021/acsptsci.1c00028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Indexed: 11/30/2022]
Abstract
Protein aggregation is associated with a large number of human protein-misfolding diseases, yet FDA-approved drugs are currently not available. Amylin amyloid and plaque depositions in the pancreas are hallmark features of type 2 diabetes. Moreover, these amyloid deposits are implicated in the pathogenesis of diabetic complications such as neurodegeneration. We recently discovered that catechols and redox-related quinones/anthraquinones represent a broad class of protein aggregation inhibitors. Further screening of a targeted library of natural compounds in complementary medicine that were enriched with catechol-containing compounds identified rosmarinic acid (RA) as a potent inhibitor of amylin aggregation (estimated inhibitory concentration IC50 = 200-300 nM). Structure-function relationship analysis of RA showed the additive effects of the two catechol-containing components of the RA molecule. We further showed that RA does not reverse fibrillation back to monomeric amylin but rather lead to nontoxic, remodeled protein aggregates. RA has significant ex vivo efficacy in reducing human amylin oligomer levels in HIP rat sera as well as in sera from diabetic patients. In vivo efficacy studies of RA treatment with the diabetic HIP rat model demonstrated significant reduction in amyloid islet deposition and strong mitigation of diabetic pathology. Our work provides new in vitro molecular mechanisms and in vivo efficacy insights for a model nutraceutical agent against type 2 diabetes and other aging-related protein-misfolding diseases.
Collapse
Affiliation(s)
- Ling Wu
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
- Biomanufacturing
Research Institute & Technology Enterprise (BRITE) and Department
of Pharmaceutical Sciences, North Carolina
Central University, Durham, North Carolina 27707, United States
| | - Paul Velander
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
| | - Anne M. Brown
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
| | - Yao Wang
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
| | - Dongmin Liu
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
| | - David R. Bevan
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
| | - Shijun Zhang
- Department
of Medicinal Chemistry, Virginia Commonwealth
University, Richmond, Virginia 23298, United States
| | - Bin Xu
- Department
of Biochemistry, Center for Drug Discovery, Department of Human Nutrition, Foods,
and Exercise, and School of Neuroscience, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
- Biomanufacturing
Research Institute & Technology Enterprise (BRITE) and Department
of Pharmaceutical Sciences, North Carolina
Central University, Durham, North Carolina 27707, United States
- Affiliated
Program Faculty, Duke Comprehensive Stroke
Center, Durham, North Carolina 27710, United States
| |
Collapse
|
31
|
Radbakhsh S, Barreto GE, Bland AR, Sahebkar A. Curcumin: A small molecule with big functionality against amyloid aggregation in neurodegenerative diseases and type 2 diabetes. Biofactors 2021; 47:570-586. [PMID: 33893674 DOI: 10.1002/biof.1735] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022]
Abstract
Amyloidosis is a concept that implicates disorders and complications that are due to abnormal protein accumulation in different cells and tissues. Protein aggregation-associated diseases are classified according to the type of aggregates and deposition sites, such as neurodegenerative disorders and type 2 diabetes mellitus. Polyphenolic phytochemicals such as curcumin and its derivatives have anti-amyloid effects both in vitro and in animal models; however, the underlying mechanisms are not understood. In this review, we summarized possible mechanisms by which curcumin could interfere with self-assembly processes and reduce amyloid aggregation in amyloidosis. Furthermore, we discuss clinical trials in which curcumin is used as a therapeutic agent for the treatment of diseases linking to protein aggregates.
Collapse
Affiliation(s)
- Shabnam Radbakhsh
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Abigail R Bland
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Awasthi P, Singh A, Khatun S, Gupta AN, Das S. Fibril growth captured by electrical properties of amyloid-β and human islet amyloid polypeptide. Phys Rev E 2021; 101:062413. [PMID: 32688470 DOI: 10.1103/physreve.101.062413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/22/2020] [Indexed: 11/07/2022]
Abstract
The aggregation of amyloid-β (Aβ) and human islet amyloid polypeptide (hIAPP) proteins have attracted considerable attention because of their involvement in protein misfolding diseases. These proteins have mostly been investigated using atomic force microscopy, transmission electron microscopy, and fluorescence microscopy to study the directional growth of fibrils both perpendicular to and along the fibril axis. Here, we demonstrate the real-time monitoring of the directional growth of fibrils in terms of activation energy of proton transfer using an impedance spectroscopy technique. The activation energy is used to quantify the sensitivity of proton conduction to the different stages of protein aggregation. The decrement (increment) in activation energy is related to the fibril growth along (perpendicular to) the fibril axis in intrinsic protein aggregation. The entire aggregation process shows different phases of the directional growth for Aβ and hIAPP, indicating different pathways for their aggregation. The activation energy for hIAPP is found to be smaller than the activation energy of Aβ during the aggregation process. The oscillatory behavior of the activation energy of hIAPP reflects a rapid change in the directional growth of the protofilaments of hIAPP. The results indicate higher aggregation propensity of Aβ than hIAPP. In the presence of resveratrol, hIAPP exhibits slower aggregation compared to Aβ. Methods of this study may in general be used to reveal the modulated aggregation pathway of proteins in the presence of different ligands.
Collapse
Affiliation(s)
- Prasoon Awasthi
- BioMEMS Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, 721302, India
| | - Anurag Singh
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, 721302, India
| | - Suparna Khatun
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, 721302, India
| | - Amar Nath Gupta
- Biophysics and Soft Matter Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, 721302, India
| | - Soumen Das
- BioMEMS Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, 721302, India
| |
Collapse
|
33
|
Hsu JY, Rao Sathyan A, Hsu KC, Chen LC, Yen CC, Tseng HJ, Wu KC, Liu HK, Huang WJ. Synthesis of Yakuchinone B-Inspired Inhibitors against Islet Amyloid Polypeptide Aggregation. JOURNAL OF NATURAL PRODUCTS 2021; 84:1096-1103. [PMID: 33600175 DOI: 10.1021/acs.jnatprod.0c01162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with pancreatic β-cell dysfunction and insulin resistance. Islet amyloid polypeptide (IAPP) aggregation is found to induce islet β-cell death in T2DM patients. Recently, we demonstrated that yakuchinone B derivative 1 exhibited inhibitory activity against IAPP aggregation. Thus, in this study, a series of synthesized yakuchinone B-inspired compounds were tested for their anti-IAPP aggregation activity. Four of these compounds, 4e-h, showed greater activity than the lead compound 1, in the sub-μM range (IC50 = 0.7-0.8 μM). The molecular docking analysis revealed crucial hydrogen bonds between the compounds and residues S19 and N22 and important hydrophobic interactions with residue I26. Notably, compounds 4g and 4h significantly protected β-cells against IAPP-induced toxicity with EC50 values of 0.1 and 0.2 μM, respectively. In contrast, the protective activities of compounds 4e and 4f were weak. Overall, these results suggest that the compounds exhibiting IAPP aggregation-inhibiting activity have the potential to treat T2DM.
Collapse
Affiliation(s)
- Jui-Yi Hsu
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei 110, Taiwan
| | - Ashish Rao Sathyan
- Ph D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Kai-Cheng Hsu
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei 110, Taiwan
| | - Liang-Chieh Chen
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei 110, Taiwan
| | - Cheng-Chung Yen
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Hui-Ju Tseng
- Ph.D. Program in Drug Discovery and Development Industry, Taipei Medical University, Taipei 110, Taiwan
| | - Kun-Chang Wu
- School of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Hui-Kang Liu
- Ph D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei 110, Taiwan
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
| | - Wei-Jan Huang
- Ph D. Program in the Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
34
|
Roy R, Paul S. Potential of ATP toward Prevention of hIAPP Oligomerization and Destabilization of hIAPP Protofibrils: An In Silico Perspective. J Phys Chem B 2021; 125:3510-3526. [PMID: 33792323 DOI: 10.1021/acs.jpcb.1c00313] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The aggregation of an intrinsically disordered protein, human islet amyloid polypeptide (hIAPP), leads to one of the most prevalent endocrine disorders, type II diabetes mellitus (T2DM). Hence inhibition of hIAPP aggregation provides a possible therapeutic approach for the treatment of T2DM. In this regard, a new aspect of adenosine triphosphate (ATP), which is widely known as the energy source for biological reactions, has recently been discovered, where it can inhibit the formation of protein aggregates and simultaneously dissolve preformed aggregates at a millimolar concentration scale. In this work, we investigate the effect of ATP on the aggregation of an amyloidogenic segment of hIAPP, hIAPP22-28, and also of the full length sequence. Using all-atom classical molecular dynamics simulations, we observe that the tendency of hIAPP to oligomerize into β-sheet conformers is inhibited by ATP, due to which the peptides remain distant, loosely packed random monomers. Moreover, it can also disassemble preformed hIAPP protofibrils. ATP preferentially interacts with the hydrophobic residues of hIAPP22-28 fragment and the terminal and turn residues of the full length peptide. The hydrogen bonding, hydrophobic, π-π, and N-H-π stacking interactions are the driving forces for the ATP induced inhibition of hIAPP aggregation. Interestingly, the hydrophobic adenosine of ATP is found to be more in contact with the peptide residues than the hydrophilic triphosphate moiety. The insight into the inhibitory mechanism of ATP on hIAPP aggregation can prove to be beneficial for the design of novel amyloid inhibitors in the future.
Collapse
Affiliation(s)
- Rituparna Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| |
Collapse
|
35
|
Araújo AR, Araújo AC, Reis RL, Pires RA. Vescalagin and Castalagin Present Bactericidal Activity toward Methicillin-Resistant Bacteria. ACS Biomater Sci Eng 2021; 7:1022-1030. [PMID: 33596039 DOI: 10.1021/acsbiomaterials.0c01698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polyphenols have been extensively exploited in the biomedical field because of their wide range of bioactive properties and historical use as traditional medicines. They typically present antioxidant, antimicrobial, antiamyloidogenic, and/or antitumor activities. In particular, cork water extracts and their components, have been previously reported to present antioxidant and antiamyloidogenic properties. On the basis of this knowledge, we tested cork water extract (CWE), cork water enriched extract (CWE-E), vescalagin/castalagin (two of the main polyphenols present in CWE and CWE-E) for their antibacterial activity against four bacterial strains, namely, methicillin-resistant Staphylococcus epidermidis (MRSE), Staphylococcus aureus (SA), methicillin-resistant Staphylococcus aureus (MRSA), and Pseudomonas aeruginosa (PA). Vescalagin and castalagin presented bactericidal activity against all the tested bacterial strains, in particular toward the methicillin-resistant ones, i.e., MRSA and MRSE, as well as the ability to inhibit the formation of biofilms and to disrupt preformed ones. Moreover, vescalagin/castalagin seem to modulate the normal assembly of the peptidoglycans at the bacteria surface, promoting the disruption of their cell wall, leading to bacterial cell death. We also demonstrate that vescalagin/castalagin can be loaded into alginate hydrogels to generate antibacterial biomaterials that are not toxic to eukaryotic cells.
Collapse
Affiliation(s)
- Ana R Araújo
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Avepark, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
| | - Ana C Araújo
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Avepark, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Avepark, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
| | - Ricardo A Pires
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Avepark, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
| |
Collapse
|
36
|
Poirier A, Stocco A, Kapel R, In M, Ramos L, Banc A. Sunflower Proteins at Air-Water and Oil-Water Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2714-2727. [PMID: 33599128 DOI: 10.1021/acs.langmuir.0c03441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The adsorption of a sunflower protein extract at two air-water and oil-water interfaces is investigated using tensiometry, dilational viscoelasticity, and ellipsometry. For both interfaces, a three step mechanism was evidenced thanks to master curve representations of the data taken at different aging times and protein concentrations. At short times, a diffusion limited adsorption of proteins at interfaces is demonstrated. First, a two-dimensional protein film is formed with a partition of the polypeptide chains in the two phases that depends strongly on the nature of the hydrophobic phase: most of the film is in the aqueous phase at the air-water interface, while it is mostly in the organic phase at the oil-water interface. Then a three-dimensional saturated monolayer of proteins is formed. At short times, adsorption mechanisms are analogous to those found with typical globular proteins, while strong divergences are observed at longer adsorption times. Following the saturation step, a thick layer expands in the aqueous phase and appears associated with the release of large objects in the bulk. The kinetic evolution of this second layer is compatible with a diffusion limited adsorption of the minor population of polymeric complexes with hydrodynamic radius RH ∼ 80 nm, evidenced in equilibrium with hexameric globulins (RH ∼ 6 nm) in solution. These complexes could result from the presence of residual polyphenols in the extract and raise the question of the role of these compounds in the interfacial properties of plant protein extracts.
Collapse
Affiliation(s)
- Alexandre Poirier
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Antonio Stocco
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
- Institut Charles Sadron (ICS), CNRS-UPR22, 23 rue du Loess BP 84047, 67034 Cedex 2 Strasbourg, France
| | - Romain Kapel
- Site Plateforme Sciences du Vivant et de la Santé, Laboratoire Réactions et Génie des Procédés (LRGP), 54500 Vandoeuvre-les-Nancy, France
| | - Martin In
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Laurence Ramos
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| | - Amélie Banc
- Laboratoire Charles Coulomb (L2C), Univ. Montpellier, CNRS, Montpellier, France
| |
Collapse
|
37
|
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem Rev 2021; 121:2545-2647. [PMID: 33543942 PMCID: PMC8836097 DOI: 10.1021/acs.chemrev.0c01122] [Citation(s) in RCA: 418] [Impact Index Per Article: 139.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Molecular Biology, University of Naples Federico II, Naples 80138, Italy
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Mara Chiricotto
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - James McCarty
- Chemistry Department, Western Washington University, Bellingham, Washington 98225, United States
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Carol Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yifat Miller
- Department of Chemistry and The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Stepan Timr
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Jiaxing Chen
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Brianna Hnath
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, and Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sylvain Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Fabio Sterpone
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Philippe Derreumaux
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|
38
|
Paul A, Viswanathan GK, Huber A, Arad E, Engel H, Jelinek R, Gazit E, Segal D. Inhibition of tau amyloid formation and disruption of its preformed fibrils by Naphthoquinone-Dopamine hybrid. FEBS J 2021; 288:4267-4290. [PMID: 33523571 DOI: 10.1111/febs.15741] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/02/2021] [Accepted: 01/28/2021] [Indexed: 01/10/2023]
Abstract
Misfolding and aggregation of tau protein, into pathological amyloids, are hallmarks of a group of neurodegenerative diseases collectively termed tauopathies and their modulation may be therapeutically valuable. Herein, we describe the synthesis and characterization of a dopamine-based hybrid molecule, naphthoquinone-dopamine (NQDA). Using thioflavin S assay, CD, transmission electron microscopy, dynamic light scattering, Congo Red birefringence, and large unilamellar vesicle leakage assays, we demonstrated its efficacy in inhibiting the in vitro aggregation of key tau-derived amyloidogenic fragments, PHF6 (VQIVYK) and PHF6* (VQIINK), prime drivers of aggregation of full-length tau in disease pathology. Isothermal titration calorimetry analysis revealed that the interaction between NQDA and PHF6 is spontaneous and has significant binding efficiency driven by both entropic and enthalpic processes. Furthermore, NQDA efficiently disassembled preformed fibrils of PHF6 and PHF6* into nontoxic species. Molecular dynamic simulations supported the in vitro results and provided a plausible mode of binding of NQDA with PHF6 fibril. NQDA was also capable of inhibiting the aggregation of full-length tau protein and disrupting its preformed fibrils in vitro in a dose-dependent manner. In a comparative study, the IC50 value (50% inhibition of fibril formation) of NQDA in inhibiting the aggregation of PHF6 (25 µm) was ~ 17 µm, which is lower than for other bona fide amyloid inhibitors, naphthoquinone-tryptophan, rosmarinic acid, epigallocatechin gallate, ~ 21, ~ 77, or ~ 19 µm, respectively. Comparable superiority of NQDA was observed for inhibition of PHF6*. These findings suggest that NQDA can be a useful scaffold for designing new therapeutics for Alzheimer's disease and other tauopathies.
Collapse
Affiliation(s)
- Ashim Paul
- Department of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Israel
| | - Guru KrishnaKumar Viswanathan
- Department of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Israel
| | - Adi Huber
- Department of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Israel
| | - Elad Arad
- Ilse Katz Institute for Nanoscale Science and Technology & Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Hamutal Engel
- Blavatnik Center for Drug Discovery, Tel Aviv University, Israel
| | - Raz Jelinek
- Ilse Katz Institute for Nanoscale Science and Technology & Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Israel.,Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Israel
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Israel.,Sagol Interdisciplinary School of Neuroscience, Tel Aviv University, Israel
| |
Collapse
|
39
|
Milardi D, Gazit E, Radford SE, Xu Y, Gallardo RU, Caflisch A, Westermark GT, Westermark P, Rosa CL, Ramamoorthy A. Proteostasis of Islet Amyloid Polypeptide: A Molecular Perspective of Risk Factors and Protective Strategies for Type II Diabetes. Chem Rev 2021; 121:1845-1893. [PMID: 33427465 PMCID: PMC10317076 DOI: 10.1021/acs.chemrev.0c00981] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The possible link between hIAPP accumulation and β-cell death in diabetic patients has inspired numerous studies focusing on amyloid structures and aggregation pathways of this hormone. Recent studies have reported on the importance of early oligomeric intermediates, the many roles of their interactions with lipid membrane, pH, insulin, and zinc on the mechanism of aggregation of hIAPP. The challenges posed by the transient nature of amyloid oligomers, their structural heterogeneity, and the complex nature of their interaction with lipid membranes have resulted in the development of a wide range of biophysical and chemical approaches to characterize the aggregation process. While the cellular processes and factors activating hIAPP-mediated cytotoxicity are still not clear, it has recently been suggested that its impaired turnover and cellular processing by proteasome and autophagy may contribute significantly toward toxic hIAPP accumulation and, eventually, β-cell death. Therefore, studies focusing on the restoration of hIAPP proteostasis may represent a promising arena for the design of effective therapies. In this review we discuss the current knowledge of the structures and pathology associated with hIAPP self-assembly and point out the opportunities for therapy that a detailed biochemical, biophysical, and cellular understanding of its aggregation may unveil.
Collapse
Affiliation(s)
- Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, 95126 Catania, Italy
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Gunilla T Westermark
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 41809-1055, United States
| |
Collapse
|
40
|
Chen D, Zhu X, Ilavsky J, Whitmer T, Hatzakis E, Jones OG, Campanella OH. Polyphenols Weaken Pea Protein Gel by Formation of Large Aggregates with Diminished Noncovalent Interactions. Biomacromolecules 2021; 22:1001-1014. [PMID: 33494594 DOI: 10.1021/acs.biomac.0c01753] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyphenols are well-known native cross-linkers and gel strengthening agents for many animal proteins. However, their role in modifying plant protein gels remains unclear. In this study, multiple techniques were applied to unravel the influence of green tea polyphenols (GTP) on pea protein gels and the underlying mechanisms. We found that the elasticity and viscosity of pea protein gels decreased with increased GTP. The protein backbone became less rigid when GTP was present based on shortened T1ρH in relaxation solid-state NMR measurements. Electron microscopy and small-angle X-ray scattering showed that gels weakened by GTP possessed disrupted networks with the presence of large protein aggregates. Solvent extraction and molecular dynamic simulation revealed a reduction in hydrophobic interactions and hydrogen bonds among proteins in gels containing GTP. The current findings may be applicable to other plant proteins for greater control of gel structures in the presence of polyphenols, expanding their utilization in food and biomedical applications.
Collapse
Affiliation(s)
- Da Chen
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Rd, Columbus, Ohio 43210, United States
| | - Xiao Zhu
- Research Computing, Information Technology at Purdue (ITaP), Purdue University, 155 South Grant Street, West Lafayette, Indiana 47907, United States
| | - Jan Ilavsky
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Tanya Whitmer
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Emmanuel Hatzakis
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Rd, Columbus, Ohio 43210, United States
| | - Owen G Jones
- Department of Food Science, Purdue University, 745 Agriculture Mall Dr, West Lafayette, Indiana 47907, United States
| | - Osvaldo H Campanella
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Rd, Columbus, Ohio 43210, United States
| |
Collapse
|
41
|
Bloch DN, Ben Zichri S, Kolusheva S, Jelinek R. Tyrosine carbon dots inhibit fibrillation and toxicity of the human islet amyloid polypeptide. NANOSCALE ADVANCES 2020; 2:5866-5873. [PMID: 36133854 PMCID: PMC9419576 DOI: 10.1039/d0na00870b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/09/2020] [Indexed: 05/04/2023]
Abstract
Misfolding and aggregation of the human islet amyloid polypeptide (hIAPP) are believed to play key roles in the pathophysiology of type-II diabetes. Here, we demonstrate that carbon dots (C-dots) prepared from the amino acid tyrosine inhibit fibrillation of hIAPP, reduce hIAPP-induced cell toxicity and block membrane disruption by the peptide. The pronounced inhibitory effect is traced to the display of ubiquitous aromatic residues upon the C-dots' surface, mimicking the anti-fibril and anti-toxic activity of natural polyphenolic compounds. Notably, spectroscopy and thermodynamics analysis demonstrated different hIAPP interactions and fibril inhibition effects induced by tyrosine-C-dots displaying phenolic residues and C-dots prepared from phenylalanine which exhibited phenyl units on their surface, underscoring the significance of hydrogen bonding mediated by the phenolic hydroxide moieties for the fibril modulation activity. The presented experiments attest to the potential of tyrosine-C-dots as a therapeutic vehicle for protein misfolding diseases, interfering in both π-π interactions as well as hydrogen bonding involving aromatic residues of amyloidogenic peptides.
Collapse
Affiliation(s)
- Daniel Nir Bloch
- Department of Chemistry, Ben Gurion University of the Negev Beer Sheva 84105 Israel
| | - Shani Ben Zichri
- Department of Chemistry, Ben Gurion University of the Negev Beer Sheva 84105 Israel
| | - Sofiya Kolusheva
- Ilse Katz Institute for Nano-Science and Technology (IKI), Ben Gurion University of the Negev Beer Sheva 84105 Israel
| | - Raz Jelinek
- Department of Chemistry, Ben Gurion University of the Negev Beer Sheva 84105 Israel
- Ilse Katz Institute for Nano-Science and Technology (IKI), Ben Gurion University of the Negev Beer Sheva 84105 Israel
| |
Collapse
|
42
|
Chen P, Ding F, Cai R, Javed I, Yang W, Zhang Z, Li Y, Davis TP, Ke PC, Chen C. Amyloidosis Inhibition, a New Frontier of the Protein Corona. NANO TODAY 2020; 35:100937. [PMID: 32728376 PMCID: PMC7388636 DOI: 10.1016/j.nantod.2020.100937] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The protein corona has served as a central dogma and a nuisance to the applications of nanomedicine and nanobiotechnology for well over a decade. Here we introduce the emerging field of amyloidosis inhibition, which aims to understand and harness the interfacial phenomena associated with a nanoparticle interacting with pathogenic amyloid proteins. Much of this interaction correlates with our understanding of the protein corona, and yet much differs, as elaborated for the first time in this Perspective. Specifically, we examine the in vitro, in silico and in vivo features of the new class of "amyloid protein corona", and discuss how the interactions with nanoparticles may halt the self-assembly of amyloid proteins. As amyloidosis is driven off pathway by the nanoparticles, the oligomeric and protofibrillar populations are suppressed to ameliorate their cytotoxicity. Furthermore, as amyloid proteins spread via the transport of bodily fluids or cross seeding, amyloidosis is inherently associated with dynamic proteins and ligands to evoke the immune system. Accordingly, we ponder the structural and medical implications of the amyloid protein corona in the presence of their stimulated cytokines. Understanding and exploiting the amyloid protein corona may facilitate the development of new theranostics against a range of debilitating amyloid diseases.
Collapse
Affiliation(s)
- Pengyu Chen
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Rong Cai
- CAS Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
| | - Ibrahim Javed
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Wen Yang
- Materials Research and Education Center, Auburn University, Auburn, AL 36849, United States
| | - Zhenzhen Zhang
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yuhuan Li
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China
| | - Thomas P. Davis
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Pu Chun Ke
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China
| | - Chunying Chen
- CAS Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100039, China
| |
Collapse
|
43
|
Saghir AE, Farrugia G, Vassallo N. The human islet amyloid polypeptide in protein misfolding disorders: Mechanisms of aggregation and interaction with biomembranes. Chem Phys Lipids 2020; 234:105010. [PMID: 33227292 DOI: 10.1016/j.chemphyslip.2020.105010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/06/2020] [Accepted: 11/09/2020] [Indexed: 02/09/2023]
Abstract
Human islet amyloid polypeptide (hIAPP), otherwise known as amylin, is a 37-residue peptide hormone which is reported to be a common factor in protein misfolding disorders such as type-2 diabetes mellitus, Alzheimer's disease and Parkinson's disease, due to deposition of insoluble hIAPP amyloid in the pancreas and brain. Multiple studies point to the importance of the peptide's interaction with biological membranes and the cytotoxicity of hIAPP species. Here, we discuss the aggregation pathways of hIAPP amyloid fibril formation and focus on the complex interplay between membrane-mediated assembly of hIAPP and the associated mechanisms of membrane damage caused by the peptide species. Mitochondrial membranes, which are unique in their lipid composition, are proposed as prime targets for the early intracellular formation of hIAPP toxic entities. We suggest that future studies should include more physiologically-relevant and in-cell studies to allow a more accurate model of in vivo interactions. Finally, we underscore an urgent need for developing effective therapeutic strategies aimed at hindering hIAPP-phospholipid interactions.
Collapse
Affiliation(s)
- Adam El Saghir
- Dept. of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Gianluca Farrugia
- Dept. of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Neville Vassallo
- Dept. of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta.
| |
Collapse
|
44
|
Roy R, Paul S. Theoretical Investigation of the Inhibitory Mechanism of Norepinephrine on hIAPP Amyloid Aggregation and the Destabilization of Protofibrils. J Phys Chem B 2020; 124:10913-10929. [DOI: 10.1021/acs.jpcb.0c07830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rituparna Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
45
|
Sun Y, Ding F. αB-Crystallin Chaperone Inhibits Aβ Aggregation by Capping the β-Sheet-Rich Oligomers and Fibrils. J Phys Chem B 2020; 124:10138-10146. [PMID: 33119314 DOI: 10.1021/acs.jpcb.0c07256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inhibiting the cytotoxicity of amyloid aggregation by endogenous proteins is a promising strategy against degenerative amyloid diseases due to their intrinsically high biocompatibility and low immunogenicity. In this study, we investigated the inhibition mechanism of the structured core region of αB-crystallin (αBC) against Aβ fibrillization using discrete molecular dynamics simulations. Our computational results recapitulated the experimentally observed Aβ binding sites in αBC and suggested that αBC could bind to various Aβ aggregate species during the aggregation process-including monomers, dimers, and likely other high molecular weight oligomers, protofibrils, and fibrils-by capping the exposed β-sheet elongation surfaces. Thus, the nucleation of Aβ oligomers into fibrils and the fibril growth could be inhibited. Mechanistic insights obtained from our systematic computational studies may aid in the development of novel therapeutic strategies to modulate the aggregation of pathological, amyloidogenic protein in degenerative diseases.
Collapse
Affiliation(s)
- Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.,Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
46
|
Parveen R, Tarannum Z, Ali S, Fatima S. Nanoclay based study on protein stability and aggregation and its implication in human health. Int J Biol Macromol 2020; 166:385-400. [PMID: 33122071 DOI: 10.1016/j.ijbiomac.2020.10.197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/09/2020] [Accepted: 10/24/2020] [Indexed: 10/23/2022]
Abstract
Protein aggregation is the major cause of several acute amyloid diseases such as Parkinson's, Huntington's, Alzheimer's, Lysozyme Systemic amyloidosis, Diabetes-II etc. While these diseases have attracted much attention but the cure is still unavailable. In the present study, Human Serum Albumin (HSA) and Human Lysozyme (HL) were used as the model proteins to investigate their aggregations. Nanoclays are hydrous silicates found in clay fraction of soil and known as natural nanomaterials. They have long been used in several applications in health-related products. In the present paper, the different types of nanoclays (MMT K-10, MMT K-30, Halloysite, Bentonite) were used to inhibit the process of HSA and HL aggregation. Aggregation experiments were evaluated using several biophysical tools such as Turbidity measurements, Intrinsic fluorescence, 1-anilino-8-naphthalene sulfonate (ANS), Thioflavin T (Th T), congo red (CR) binding assays and Circular dichroism. Results demonstrated that all the nanoclays inhibit the DTT-induced aggregation. However, bentonite and MMT K-10 were progressively intense and potent as they slowed down nucleation stage which can be perceived using several biophysical techniques. Hence, nanoclays can be used as an artificial chaperone and might provide effective treatment against several protein aggregation related disorders.
Collapse
Affiliation(s)
- Romana Parveen
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Zeba Tarannum
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
| | - Sher Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sadaf Fatima
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
47
|
Araújo AR, Reis RL, Pires RA. Natural Polyphenols as Modulators of the Fibrillization of Islet Amyloid Polypeptide. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1250:159-176. [PMID: 32601944 DOI: 10.1007/978-981-15-3262-7_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Diabetes mellitus type 2 (type-2 diabetes) is a metabolic disorder characterized by the increased blood glucose concentration and insulin resistance in peripheral tissues (e.g., muscles and adipose tissue). The initiation of the pathological cascade of events that lead to type-2 diabetes has been subject of debate; however, it has been commonly accepted that the oversecretion of human islet amyloid polypeptide (hIAPP, a hormone co-secreted with insulin) by the pancreatic 𝛽-cells is the main trigger of type-2 diabetes. In fact, 90% of the type-2 diabetes patients present hIAPP deposits in the extracellular space of the 𝛽-cells. These hIAPP supramolecular arrangements (both fibrillar and oligomeric) have been reported to be the origin of cytotoxicity, which leads to 𝛽-cell dysfunction through a series of different mechanisms, including the interaction of hIAPP oligomers with the cell membrane that leads to the influx of Ca2+ and increase in the cellular oxidative stress, among others. This overview shows the importance of developing type-2 diabetes treatment strategies able to (1) remodel of the secondary structure of cytotoxic hIAPP oligomers entrapping them into off-pathway nontoxic species and (2) reestablish physiological levels of oxidative stress. Natural polyphenols are a class of antioxidant compounds that are able to perform both functions. Herein we review the published literature of the most studied polyphenols, in particular for their ability to remodel the hIAPP aggregation pathway, to rescue the in vitro pancreatic 𝛽-cell viability and function, as well as to perform under a complex biological environment, i.e., in vivo animal models and clinical trials. Overall, natural polyphenols are able to control the cytotoxic hIAPP aggregation and minimize hIAPP-mediated cellular dysfunction and can be considered as important lead compounds for the treatment of type-2 diabetes.
Collapse
Affiliation(s)
- Ana R Araújo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Ricardo A Pires
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães, Portugal. .,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal.
| |
Collapse
|
48
|
Altamirano-Bustamante NF, Garrido-Magaña E, Morán E, Calderón A, Pasten-Hidalgo K, Castillo-Rodríguez RA, Rojas G, Lara-Martínez R, Leyva-García E, Larralde-Laborde M, Domíguez G, Murata C, Margarita-Vazquez Y, Payro R, Barbosa M, Valderrama A, Montesinos H, Domínguez-Camacho A, García-Olmos VH, Ferrer R, Medina-Bravo PG, Santoscoy F, Revilla-Monsalve C, Jiménez-García LF, Morán J, Villalobos-Alva J, Villalobos MJ, Calzada-León R, Altamirano P, Altamirano-Bustamante MM. Protein-conformational diseases in childhood: Naturally-occurring hIAPP amyloid-oligomers and early β-cell damage in obesity and diabetes. PLoS One 2020; 15:e0237667. [PMID: 32833960 PMCID: PMC7446879 DOI: 10.1371/journal.pone.0237667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/30/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND AIMS This is the first time that obesity and diabetes mellitus (DM) as protein conformational diseases (PCD) are reported in children and they are typically diagnosed too late, when β-cell damage is evident. Here we wanted to investigate the level of naturally-ocurring or real (not synthetic) oligomeric aggregates of the human islet amyloid polypeptide (hIAPP) that we called RIAO in sera of pediatric patients with obesity and diabetes. We aimed to reduce the gap between basic biomedical research, clinical practice-health decision making and to explore whether RIAO work as a potential biomarker of early β-cell damage. MATERIALS AND METHODS We performed a multicentric collaborative, cross-sectional, analytical, ambispective and blinded study; the RIAO from pretreated samples (PTS) of sera of 146 pediatric patients with obesity or DM and 16 healthy children, were isolated, measured by sound indirect ELISA with novel anti-hIAPP cytotoxic oligomers polyclonal antibody (MEX1). We carried out morphological and functional studied and cluster-clinical data driven analysis. RESULTS We demonstrated by western blot, Transmission Electron Microscopy and cell viability experiments that RIAO circulate in the blood and can be measured by ELISA; are elevated in serum of childhood obesity and diabetes; are neurotoxics and works as biomarkers of early β-cell failure. We explored the range of evidence-based medicine clusters that included the RIAO level, which allowed us to classify and stratify the obesity patients with high cardiometabolic risk. CONCLUSIONS RIAO level increases as the number of complications rises; RIAOs > 3.35 μg/ml is a predictor of changes in the current indicators of β-cell damage. We proposed a novel physio-pathological pathway and shows that PCD affect not only elderly patients but also children. Here we reduced the gap between basic biomedical research, clinical practice and health decision making.
Collapse
MESH Headings
- Adolescent
- Animals
- Cell Line
- Cell Survival
- Cells, Cultured
- Child
- Child, Preschool
- Cross-Sectional Studies
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/pathology
- Humans
- Insulin-Secreting Cells/pathology
- Islet Amyloid Polypeptide/blood
- Islet Amyloid Polypeptide/metabolism
- Islet Amyloid Polypeptide/toxicity
- Islet Amyloid Polypeptide/ultrastructure
- Microscopy, Electron, Transmission
- Neurons/drug effects
- Obesity/blood
- Obesity/complications
- Obesity/pathology
- Pilot Projects
- Primary Cell Culture
- Protein Multimerization
- Protein Structure, Quaternary
- Rats
- Toxicity Tests, Acute
Collapse
Affiliation(s)
| | - Eulalia Garrido-Magaña
- UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Eugenia Morán
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Aurora Calderón
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Karina Pasten-Hidalgo
- Instituto Nacional de Pediatría, Mexico City, Mexico
- Cátedras Conacyt, Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
| | - Rosa Angélica Castillo-Rodríguez
- Instituto Nacional de Pediatría, Mexico City, Mexico
- Cátedras Conacyt, Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico
| | - Gerardo Rojas
- UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Edgar Leyva-García
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Mateo Larralde-Laborde
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | | | | - Rafael Payro
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Manuel Barbosa
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | | | | | | - Regina Ferrer
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Fernanda Santoscoy
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Cristina Revilla-Monsalve
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Julio Morán
- Instituto de Fisiología Celular, UNAM, Mexico City, Mexico
| | - Jalil Villalobos-Alva
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Mario Javier Villalobos
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - Perla Altamirano
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Myriam M. Altamirano-Bustamante
- Unidad de Investigación en Enfermedades Metabólicas, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
49
|
Maity D, Kumar S, AlHussein R, Gremer L, Howarth M, Karpauskaite L, Hoyer W, Magzoub M, Hamilton AD. Sub-stoichiometric inhibition of IAPP aggregation: a peptidomimetic approach to anti-amyloid agents. RSC Chem Biol 2020; 1:225-232. [PMID: 34458762 PMCID: PMC8341728 DOI: 10.1039/d0cb00086h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/03/2020] [Indexed: 11/21/2022] Open
Abstract
Membrane-catalysed misfolding of islet amyloid polypeptide is associated with the death of β-cells in type II diabetes (T2D). Most active compounds so far reported require high doses for inhibition of membrane bound IAPP fibrillation. Here, we describe a naphthalimide-appended oligopyridylamide-based α-helical mimetic, DM 1, for targeting membrane bound IAPP. DM 1 completely inhibits the aggregation of IAPP at doses of 0.2 equivalents. DM 1 is also effective at similarly low doses for inhibition of seed-catalyzed secondary nucleation. An NMR based study demonstrates that DM 1 modulates IAPP self-assembly by stabilizing and/or perturbing the N-terminus helix conformation. DM 1 at substoichiometric doses rescues rat insulinoma cells from IAPP-mediated cytotoxicity. Most importantly, 0.2 equivalents of DM 1 disaggregate preformed oligomers and fibrils and can reverse cytotoxicity by modulating toxic preformed oligomers and fibrils of IAPP into non-toxic conformations.
Collapse
Affiliation(s)
- Debabrata Maity
- Department of Chemistry, New York University New York New York 10003 USA
| | - Sunil Kumar
- Department of Chemistry, New York University New York New York 10003 USA
| | - Ruyof AlHussein
- Department of Chemistry, New York University New York New York 10003 USA
| | - Lothar Gremer
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Germany.,Institute of Complex Systems, Structural Biochemistry (ICS-6) Forschungszentrum Jülich 52425 Jülich Germany
| | - Madeline Howarth
- Biology Program, New York University Abu Dhabi P.O. Box 129188, Saadiyat Island Campus Abu Dhabi United Arab Emirates
| | - Laura Karpauskaite
- Biology Program, New York University Abu Dhabi P.O. Box 129188, Saadiyat Island Campus Abu Dhabi United Arab Emirates
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Germany.,Institute of Complex Systems, Structural Biochemistry (ICS-6) Forschungszentrum Jülich 52425 Jülich Germany
| | - Mazin Magzoub
- Biology Program, New York University Abu Dhabi P.O. Box 129188, Saadiyat Island Campus Abu Dhabi United Arab Emirates
| | - Andrew D Hamilton
- Department of Chemistry, New York University New York New York 10003 USA
| |
Collapse
|
50
|
Chaari A, Abdellatif B, Nabi F, Khan RH. Date palm (Phoenix dactylifera L.) fruit's polyphenols as potential inhibitors for human amylin fibril formation and toxicity in type 2 diabetes. Int J Biol Macromol 2020; 164:1794-1808. [PMID: 32795580 DOI: 10.1016/j.ijbiomac.2020.08.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/28/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND β-Cell death is the key feature of type 2 diabetes mellitus (T2DM). The misfolding of human Islet Amyloid Polypeptide (hIAPP) is regarded as one of the causative factors of T2DM. Recent studies suggested that a diet based on date fruits presents various health benefits, as these fruits are naturally enriched in plant polyphenols. METHOD In this study, we used a broad biophysical approach, using cell biology techniques and bioinformatic tools, to demonstrate that various polyphenols from date palm (Phoenix dactylifera L.) fruit significantly inhibited hIAPP aggregation and cytotoxicity. RESULT Our results suggest that all of the polyphenols showed inhibitory effects, albeit varied, on the formation of toxic hIAPP amyloids. Correlation between cell viability assay, permeabilization of synthetic phospholipid vesicles tests, and ANS florescence measurements, revealed that both classes of polyphenols protected INS-1E cells from the toxicity of amylin aggregates. Docking results showed that the used polyphenols physically interacted with both hIAPP amyloidogenic region (residues Ser20-Ser29) and the non-amyloidogenic regions via hydrophobic and hydrogen interactions, thus reducing aggregation levels. CONCLUSION These findings highlight the benefits of consuming dates and the great potential of its polyphenols as a potential therapy for the prevention and treatment of T2DM as well as for many other amyloid-related diseases.
Collapse
Affiliation(s)
- Ali Chaari
- Premedical Division, Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar.
| | - Basma Abdellatif
- Premedical Division, Weill Cornell Medicine Qatar, Qatar Foundation, Education City, P.O. Box 24144, Doha, Qatar
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202001, India
| |
Collapse
|