1
|
Gomes JAP, Azar DT, Baudouin C, Bitton E, Chen W, Hafezi F, Hamrah P, Hogg RE, Horwath-Winter J, Kontadakis GA, Mehta JS, Messmer EM, Perez VL, Zadok D, Willcox MDP. TFOS Lifestyle: Impact of elective medications and procedures on the ocular surface. Ocul Surf 2023; 29:331-385. [PMID: 37087043 DOI: 10.1016/j.jtos.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/24/2023]
Abstract
The word "elective" refers to medications and procedures undertaken by choice or with a lower grade of prioritization. Patients usually use elective medications or undergo elective procedures to treat pathologic conditions or for cosmetic enhancement, impacting their lifestyle positively and, thus, improving their quality of life. However, those interventions can affect the homeostasis of the tear film and ocular surface. Consequently, they generate signs and symptoms that could impair the patient's quality of life. This report describes the impact of elective topical and systemic medications and procedures on the ocular surface and the underlying mechanisms. Moreover, elective procedures performed for ocular diseases, cosmetic enhancement, and non-ophthalmic interventions, such as radiotherapy and bariatric surgery, are discussed. The report also evaluates significant anatomical and biological consequences of non-urgent interventions to the ocular surface, such as neuropathic and neurotrophic keratopathies. Besides that, it provides an overview of the prophylaxis and management of pathological conditions resulting from the studied interventions and suggests areas for future research. The report also contains a systematic review investigating the quality of life among people who have undergone small incision lenticule extraction (SMILE). Overall, SMILE refractive surgery seems to cause more vision disturbances than LASIK in the first month post-surgery, but less dry eye symptoms in long-term follow up.
Collapse
Affiliation(s)
- José Alvaro P Gomes
- Dept. of Ophthalmology and Visual Sciences, Federal University of Sao Paulo/Paulista School of Medicine (UNIFESP/EPM), Sao Paulo, SP, Brazil.
| | - Dimitri T Azar
- University of Illinois College of Medicine, Chicago, IL, USA
| | - Christophe Baudouin
- Quinze-Vingts National Eye Hospital & Vision Institute, IHU FOReSIGHT, Paris, France
| | - Etty Bitton
- Ecole d'optométrie, Université de Montréal, Montréal, Canada
| | - Wei Chen
- Eye Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | - Pedram Hamrah
- Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Ruth E Hogg
- Centre for Public Health, School of Medicine, Dentistry and Biomedical Sciences, Belfast, UK
| | | | | | | | | | - Victor L Perez
- Foster Center for Ocular Immunology, Duke University Eye Center, Durham, NC, USA
| | - David Zadok
- Shaare Zedek Medical Center, Affiliated to the Hebrew University, School of Medicine, Jerusalem, Israel
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
2
|
Kojima T, Dogru M, Kawashima M, Nakamura S, Tsubota K. Advances in the diagnosis and treatment of dry eye. Prog Retin Eye Res 2020; 78:100842. [PMID: 32004729 DOI: 10.1016/j.preteyeres.2020.100842] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/19/2020] [Accepted: 01/24/2020] [Indexed: 02/07/2023]
Abstract
The core mechanism of dry eye is the tear film instability. Tear film-oriented diagnosis (TFOD) is a concept to clarify the cause of tear film instability by tear film, and tear film-oriented treatment (TFOT) is a concept to treat dry eye disease by replacing the lacking components of the tear film layer based on the TFOD. In TFOD, the fluorescein breakup pattern of the tear film is important, and the subtype of dry eye can be judged to some extent from the breakup patterns. Current noninvasive devices related to the dynamic analysis of the tear film and visual acuity enabled the diagnosis of dry eye, subtype analysis, and the extent of severity. In Asian countries, secretagogues represent the main treatment in TFOT. Since meibomian gland dysfunction is a factor that greatly affects the tear breakup time, its treatment is also essential in the dry eye treatment strategy. A newly discovered dry eye subtype is the short breakup time-type (BUT) of dry eye. The only abnormal finding in this disease is the short BUT, suggesting a relationship with ocular neuropathic pain and eye strain. Recently, data from many studies have accumulated which show that dry eye is a life-style disease. In addition to the treatment of dry eyes, it is becoming possible to prevent the onset by intervening with the daily habits, diet, exercise and sleep, etc. It has been pointed out that oxidative stress is also involved in the pathology of dry eye, and intervention is being carried out by improving diet and taking supplements. Future research will be needed to link clinical findings to the molecular biological findings in the tear film.
Collapse
Affiliation(s)
- Takashi Kojima
- Department of Ophthalmology, Keio University School of Medicine, Japan
| | - Murat Dogru
- Department of Ophthalmology, Keio University School of Medicine, Japan
| | - Motoko Kawashima
- Department of Ophthalmology, Keio University School of Medicine, Japan
| | - Shigeru Nakamura
- Department of Ophthalmology, Keio University School of Medicine, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Japan; Tsubota Laboratory, Inc., Tokyo, Japan.
| |
Collapse
|
3
|
Abstract
Mucins, which play important roles on the ocular surface in wettability, lubrication, and barrier function, are classified into two categories: secreted mucins and membrane-associated mucins. The most important secreted mucin on the ocular surface is MUC5AC, which is secreted by the conjunctival goblet cells. In the human conjunctiva, goblet cells are present in higher concentrations in the fornix, inferior nasal bulbar, and the lid wiper on the lid margin. The number of conjunctival goblet cells and MUC5AC expression/secretion are decreased in a patient with dry eye. In Japan, drugs that stimulate mucin secretion or increase the number of conjunctival goblet cells are commercially available. A P2Y2 receptor, diquafosol, stimulates tear fluid secretion from conjunctival epithelial cells and promotes mucin secretion from conjunctival goblet cells. Rebamipide was marketed originally as an oral therapeutic drug to treat gastritis in Japan. Topical rebamipide increases numbers of goblet cells in the bulbar conjunctiva and the lid wiper area of palpebral conjunctiva. Many researchers have reported decreases in the ocular surface mucin expression including MUC5AC secreted by goblet cells in patients with dry eye. However, it is unknown whether changes in mucin expression on the ocular surface cause or result from dry eye. Further study is needed to determine the true mechanism of dry eye disease.
Collapse
Affiliation(s)
- Yuichi Hori
- Department of Ophthalmology, Toho University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Baudouin C, Rolando M, Benitez Del Castillo JM, Messmer EM, Figueiredo FC, Irkec M, Van Setten G, Labetoulle M. Reconsidering the central role of mucins in dry eye and ocular surface diseases. Prog Retin Eye Res 2018; 71:68-87. [PMID: 30471351 DOI: 10.1016/j.preteyeres.2018.11.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 01/16/2023]
Abstract
Mucins are key actors in tear film quality and tear film stability. Alteration of membrane-bound mucin expression on corneal and conjunctival epithelial cells and/or gel-forming mucin secretion by goblet cells (GCs) promotes in ocular surface diseases and dry eye disease (DED). Changes in the mucin layer may lead to enhanced tear evaporation eventually contributing to tear hyperosmolarity which has been associated with ocular surface inflammation. Inflammatory mediators in turn may have a negative impact on GCs differentiation, proliferation, and mucin secretion. This sheds new light on the position of GCs in the vicious circle of DED. As contributor to ocular surface immune homeostasis, GC loss may contribute to impaired ocular surface immune tolerance observed in DED. In spite of this, there are no tools in routine clinical practice for exploring ocular surface mucin deficiency/dysregulation. Therefore, when selecting the most appropriate treatment options, there is a clear unmet need for a better understanding of the importance of mucins and options for their replacement. Here, we comprehensively revisited the current knowledge on ocular surface mucin biology, including functions, synthesis, and secretion as well as the available diagnostic tools and treatment options to improve mucin-associated homeostasis. In particular, we detailed the potential link between mucin dysfunction and inflammation as part of the uncontrolled chronic inflammation which perpetuates the vicious circle in DED.
Collapse
Affiliation(s)
- Christophe Baudouin
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Paris, University Versailles Saint Quentin en Yvelines, Paris, France.
| | - Maurizio Rolando
- Ocular Surface & Dry Eye Center, ISPRE Ophthalmics, Genoa, Italy
| | | | | | - Francisco C Figueiredo
- Department of Ophthalmology, Royal Victoria Infirmary and Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Murat Irkec
- Department of Ophthalmology, Hacettepe Faculty of Medicine, Ankara, Turkey
| | | | - Marc Labetoulle
- Hôpital Bicêtre, APHP, South Paris University, Ophthalmology, Le Kremlin-Bicêtre, France
| |
Collapse
|
5
|
Conjunctival MUC5AC+ goblet cell index: relationship with corneal nerves and dry eye. Graefes Arch Clin Exp Ophthalmol 2018; 256:2249-2257. [PMID: 30043267 DOI: 10.1007/s00417-018-4065-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 06/26/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022] Open
Abstract
PURPOSE To evaluate the relative proportion of conjunctival MUC5AC+ and MUC5AC- goblet cells in a post-LASIK population and their association with dry eye indicators and corneal nerve morphology using a MUC5AC+ Goblet Cell Index. METHODS Twenty subjects who had undergone LASIK > 12 months previously and 20 age-matched controls were recruited. Dry eye symptoms, tear breakup time, osmolarity, meniscus area and corneal nerve morphology were examined. Conjunctival impression cytology samples were collected from inferior-temporal bulbar conjunctiva using Millicell® inserts. Total goblet cell density was determined from positive cytokeratin-7 (CK7) immunolabelling; MUC5AC+ goblet cell density was determined from both CK7+- and MUC5AC+-immunolabelled cells. The ratio of MUC5AC+ to total density was defined as the "MUC5AC+ Goblet Cell Index". Differences in variables between groups and the associations between goblet cell variables and clinical assessments were examined. RESULTS No significant differences in the total and MUC5AC+ goblet cell density and tear film parameters were found between groups, although greater ocular discomfort was reported in the post-LASIK group (P = 0.02). A higher MUC5AC+ Index was associated with worse/greater dry eye symptoms (ρ = 0.55, P = 0.01) and higher nerve tortuosity (ρ = 0.57, P = 0.01) in the post-LASIK group; lower nerve density and thickness was found in controls (ρ > -0.45, P < 0.05), but not associated with tear film parameters. CONCLUSIONS The MUC5AC+ Goblet Cell Index provides an indicator of mucin secretion for assessing the goblet cell function in dry eye. In the post-LASIK participants, we found an increased MUC5AC+ Index associated with worse dry eye symptoms and adverse changes in corneal nerve morphology.
Collapse
|
6
|
Abstract
Supplemental Digital Content is Available in the Text. Purpose: To evaluate the efficacy of sodium hyaluronate (HA) eye drops for the treatment of diabetic ocular surface diseases in mice. Methods: Male 6- to 8-week-old C57BL/6 mice underwent induction of type 1 diabetes with intraperitoneal injections of streptozotocin, with normal mice as the control. Topical 0.3% HA, 0.1% HA, 0.4% polyethylene glycol eye drops, and normal saline were administered to diabetic mice with an intact or debrided corneal epithelium. Normal saline was applied in the controls. Corneal epithelial wound healing rate, corneal sensation, nerve fiber density, conjunctival goblet cell number, and MUC-5AC content were measured and compared. Results: Compared with the controls, topical 0.3% HA use in diabetic mice showed significant improvements in the corneal epithelial wound healing rate (48 hours: 91.5% ± 4.8% vs. 79.8% ± 6.1%; P < 0.05), corneal sensitivity (4.1 ± 0.3 cm vs. 3.5 ± 0.3 cm; P < 0.05), nerve fiber density (12.9% ± 2.3% vs. 6.6% ± 2.4%; P < 0.05), conjunctival goblet cell number (31.0 ± 8.4/100 μm vs. 19.6 ± 7.1/100 μm; P < 0.05), and MUC-5AC content (12.5 ± 1.4 ng/mg vs. 7.8 ± 1.5 ng/mg protein; P < 0.05). The beneficial effects of 0.3% HA were better than those of 0.1% HA and 0.4% polyethylene glycol. Conclusions: Topical 0.3% HA treatment promoted corneal epithelial regeneration, improved corneal sensation, and increased density of corneal nerve fibers and conjunctival goblet cells in mice with diabetic ocular surface diseases.
Collapse
|
7
|
Rodríguez-Pomar C, Pintor J, Colligris B, Carracedo G. Therapeutic inhibitors for the treatment of dry eye syndrome. Expert Opin Pharmacother 2017; 18:1855-1865. [PMID: 29115899 DOI: 10.1080/14656566.2017.1403584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Dry eye disease (DED), defined as a multifactorial disease of tears and ocular surface, results in symptoms of discomfort, ocular irritation, visual disturbance and tear film instability. This syndrome is accompanied of ocular surface inflammation and it is produced by a deficient activity of the lacrimal functional unit. In addition, it is associated with systemic autoimmune diseases such as Sjögren´s Syndrome, rheumatoid arthritis, systemic lupus erythematosus and some drug administration. The treatment of dry eye disease is based on the typical signs and symptoms of dry eye, which are associated with hyperosmolarity, ocular surface inflammation, discomfort, visual disturbance, and tear film instability. Areas covered: This review is focused on synthetic drugs currently used in clinical practice, from phase III development onwards to treat the ocular surface signs and symptoms of dry eye disease. Expert opinion: The multifactorial disease and the lack of correlation between signs and symptoms imply that not all the pharmacological approaches will be successful for dry eye. The correct design of the clinical trials, with appropriate endpoints, and the type of dry eye under study are complicated but mandatory. The anti-inflammatory and secretagogues drugs are both the main compounds to currently treat the dry eye disease.
Collapse
Affiliation(s)
- Candela Rodríguez-Pomar
- a Department of Optics II (Optometry and Vision), Faculty of Optic and Optometry , Universidad Complutense de Madrid , Madrid , Spain.,b Ocupharm Group Research; Department of Biochemistry and Molecular Biology IV, Faculty of Optic and Optometry , Universidad Complutense de Madrid , Madrid , Spain
| | - Jesus Pintor
- b Ocupharm Group Research; Department of Biochemistry and Molecular Biology IV, Faculty of Optic and Optometry , Universidad Complutense de Madrid , Madrid , Spain
| | - Basilio Colligris
- b Ocupharm Group Research; Department of Biochemistry and Molecular Biology IV, Faculty of Optic and Optometry , Universidad Complutense de Madrid , Madrid , Spain
| | - Gonzalo Carracedo
- a Department of Optics II (Optometry and Vision), Faculty of Optic and Optometry , Universidad Complutense de Madrid , Madrid , Spain.,b Ocupharm Group Research; Department of Biochemistry and Molecular Biology IV, Faculty of Optic and Optometry , Universidad Complutense de Madrid , Madrid , Spain
| |
Collapse
|
8
|
Kato K, Miyake K, Kondo N, Asano S, Takeda J, Takahashi A, Takashima Y, Kondo M. Conjunctival Goblet Cell Density Following Cataract Surgery With Diclofenac Versus Diclofenac and Rebamipide: A Randomized Trial. Am J Ophthalmol 2017; 181:26-36. [PMID: 28669778 DOI: 10.1016/j.ajo.2017.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/14/2017] [Accepted: 06/19/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE To determine the effects of topical diclofenac or betamethasone with concomitant application of topical rebamipide on the conjunctival goblet cell density in eyes after cataract surgery. DESIGN Randomized clinical trial. PARTICIPANTS Eighty patients who were scheduled for cataract surgery. METHODS Patients were randomized into 4 groups according to the postoperative topical drugs to be given; Group A, diclofenac alone; Group B, diclofenac and rebamipide; Group C, betamethasone alone; and Group D, betamethasone and rebamipide. Impression cytology was performed before and at 1 month after the surgery, and the mean density of goblet cells was determined. RESULTS The mean (± SD) density of goblet cells before the surgery in Group A was 257.0 ± 188.7 cells/mm2, and it decreased significantly to 86.5 ± 76.7 cells/mm2 at 1 month after the surgery (P = .002). In Group B, the goblet cell density was not statistically different between before (238.5 ± 116.6 cells/mm2) and at 1 month after the surgery (211.3 ± 184.4 cells/mm2, P = .55). In Groups C and D, the mean density of goblet cells was decreased at 1 month after the surgery, but the decreases were not significant (P = .11 and P = .52, respectively). CONCLUSION After cataract surgery with postoperative topical diclofenac, the conjunctival goblet cell density was significantly reduced, and this reduction was blocked by the concomitant use of topical rebamipide. These results suggest that the concomitant use of topical rebamipide with nonsteroidal anti-inflammatory drugs is beneficial, especially in cases with postoperative dry eyes.
Collapse
Affiliation(s)
- Kumiko Kato
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Japan.
| | - Kensaku Miyake
- Shohzankai Medical Foundation Miyake Eye Hospital, Nagoya, Japan
| | - Nagako Kondo
- Shohzankai Medical Foundation Miyake Eye Hospital, Nagoya, Japan
| | - Sayaka Asano
- Shohzankai Medical Foundation Miyake Eye Hospital, Nagoya, Japan
| | - Junko Takeda
- Shohzankai Medical Foundation Miyake Eye Hospital, Nagoya, Japan
| | - Akiko Takahashi
- Shohzankai Medical Foundation Miyake Eye Hospital, Nagoya, Japan
| | - Yuko Takashima
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
9
|
Gomes JAP, Azar DT, Baudouin C, Efron N, Hirayama M, Horwath-Winter J, Kim T, Mehta JS, Messmer EM, Pepose JS, Sangwan VS, Weiner AL, Wilson SE, Wolffsohn JS. TFOS DEWS II iatrogenic report. Ocul Surf 2017; 15:511-538. [PMID: 28736341 DOI: 10.1016/j.jtos.2017.05.004] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 05/02/2017] [Indexed: 01/04/2023]
Abstract
Dry eye can be caused by a variety of iatrogenic interventions. The increasing number of patients looking for eye care or cosmetic procedures involving the eyes, together with a better understanding of the pathophysiological mechanisms of dry eye disease (DED), have led to the need for a specific report about iatrogenic dry eye within the TFOS DEWS II. Topical medications can cause DED due to their allergic, toxic and immuno-inflammatory effects on the ocular surface. Preservatives, such as benzalkonium chloride, may further aggravate DED. A variety of systemic drugs can also induce DED secondary to multiple mechanisms. Moreover, the use of contact lens induces or is associated with DED. However, one of the most emblematic situations is DED caused by surgical procedures such as corneal refractive surgery as in laser-assisted in situ keratomileusis (LASIK) and keratoplasty due to mechanisms intrinsic to the procedure (i.e. corneal nerve cutting) or even by the use of postoperative topical drugs. Cataract surgery, lid surgeries, botulinum toxin application and cosmetic procedures are also considered risk factors to iatrogenic DED, which can cause patient dissatisfaction, visual disturbance and poor surgical outcomes. This report also presents future directions to address iatrogenic DED, including the need for more in-depth epidemiological studies about the risk factors, development of less toxic medications and preservatives, as well as new techniques for less invasive eye surgeries. Novel research into detection of early dry eye prior to surgeries, efforts to establish appropriate therapeutics and a greater attempt to regulate and oversee medications, preservatives and procedures should be considered.
Collapse
Affiliation(s)
- José Alvaro P Gomes
- Dept. of Ophthalmology and Visual Sciences, Federal University of Sao Paulo/Paulista School of Medicine (UNIFESP/EPM), São Paulo, SP, Brazil.
| | - Dimitri T Azar
- University of Illinois College of Medicine, Chicago, IL, USA
| | | | - Nathan Efron
- School of Optometry and Vision Science, Queensland University of Technology, Queensland, Australia
| | - Masatoshi Hirayama
- Department of Ophthalmology, School of Medicine, Keio University, Tokyo, Japan
| | | | - Terry Kim
- Duke University School of Medicine, Durham, NC, USA; Duke University Eye Center, Durham, NC, USA
| | | | - Elisabeth M Messmer
- Department of Ophthalmology, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Jay S Pepose
- Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Steven E Wilson
- Cole Eye Institute, The Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|