1
|
Liu L, Zheng W, Wei Y, Li Q, Chen N, Xia Q, Wang L, Hu J, Zhou X, Sun Y, Li B. Mechanical stress-induced autophagy is cytoskeleton dependent. Cell Prolif 2024:e13728. [PMID: 39155403 DOI: 10.1111/cpr.13728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
The cytoskeleton is essential for mechanical signal transduction and autophagy. However, few studies have directly demonstrated the contribution of the cytoskeleton to mechanical stress-induced autophagy. We explored the role of the cytoskeleton in response to compressive force-induced autophagy in human cell lines. Inhibition and activation of cytoskeletal polymerization using small chemical molecules revealed that cytoskeletal microfilaments are required for changes in the number of autophagosomes, whereas microtubules play an auxiliary role in mechanical stress-induced autophagy. The intrinsic mechanical properties and special intracellular distribution of microfilaments may account for a large proportion of compression-induced autophagy. Our experimental data support that microfilaments are core components of mechanotransduction signals.
Collapse
Affiliation(s)
- Lin Liu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wei Zheng
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuhui Wei
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Qian Li
- Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Chen
- School of Chemistry and Materials Sciences, Shanghai Normal University, Shanghai, China
| | - Qinglin Xia
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lihua Wang
- Institute of Materiobiology, College of Science, Shanghai University, Shanghai, China
| | - Jun Hu
- Institute of Materiobiology, College of Science, Shanghai University, Shanghai, China
| | - Xingfei Zhou
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Zhejiang, China
| | - Yanhong Sun
- Institute of Materiobiology, College of Science, Shanghai University, Shanghai, China
| | - Bin Li
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Oh JY, Lee H, Jang SY, Kim H, Park G, Serikov A, Jang JH, Kim J, Yang S, Sa M, Lee SE, Han YE, Hwang TY, Jung SJ, Kim HY, Lee SE, Oh SJ, Kim J, Kim J, Kim J, McHugh TJ, Lee CJ, Nam MH, Park HJ. Central Role of Hypothalamic Circuits for Acupuncture's Anti-Parkinsonian Effects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403245. [PMID: 39119926 DOI: 10.1002/advs.202403245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/30/2024] [Indexed: 08/10/2024]
Abstract
Despite clinical data stretching over millennia, the neurobiological basis of the effectiveness of acupuncture in treating diseases of the central nervous system has remained elusive. Here, using an established model of acupuncture treatment in Parkinson's disease (PD) model mice, we show that peripheral acupuncture stimulation activates hypothalamic melanin-concentrating hormone (MCH) neurons via nerve conduction. We further identify two separate neural pathways originating from anatomically and electrophysiologically distinct MCH neuronal subpopulations, projecting to the substantia nigra and hippocampus, respectively. Through chemogenetic manipulation specifically targeting these MCH projections, their respective roles in mediating the acupuncture-induced motor recovery and memory improvements following PD onset are demonstrated, as well as the underlying mechanisms mediating recovery from dopaminergic neurodegeneration, reactive gliosis, and impaired hippocampal synaptic plasticity. Collectively, these MCH neurons constitute not only a circuit-based explanation for the therapeutic effectiveness of traditional acupuncture, but also a potential cellular target for treating both motor and non-motor PD symptoms.
Collapse
Affiliation(s)
- Ju-Young Oh
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Studies of Translational Acupuncture Research (STAR), Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyowon Lee
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sun-Young Jang
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Studies of Translational Acupuncture Research (STAR), Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyunjin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Geunhong Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Almas Serikov
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jae-Hwan Jang
- Studies of Translational Acupuncture Research (STAR), Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Junyeop Kim
- Laboratory of Stem Cells & Cell Reprogramming, Department of Chemistry, Dongguk University, Seoul, 04629, Republic of Korea
| | - Seulkee Yang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Moonsun Sa
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Sung Eun Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Young-Eun Han
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Tae-Yeon Hwang
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Studies of Translational Acupuncture Research (STAR), Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sharon Jiyoon Jung
- Technological Convergence Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hee Young Kim
- Department of Physiology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seung Eun Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
- Research Animal Resource Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Soo-Jin Oh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jeongjin Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jeongyeon Kim
- Emotion, Cognition & Behavior Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Jongpil Kim
- Laboratory of Stem Cells & Cell Reprogramming, Department of Chemistry, Dongguk University, Seoul, 04629, Republic of Korea
| | - Thomas J McHugh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Laboratory for Circuit and Behavioral Physiology, RIKEN, Wako-shi Saitama, 351-0198, Japan
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Min-Ho Nam
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hi-Joon Park
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
- Studies of Translational Acupuncture Research (STAR), Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of KHU-KIST Convergence Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
3
|
Chen H, Yang X, Gao Y, Jiang H, Guo M, Zhou Y, Li C, Tan Y, Zhang Y, Xue W. Electroacupuncture ameliorates cognitive impairment in APP/PS1 mouse by modulating TFEB levels to relieve ALP dysfunction. Brain Res 2024; 1823:148683. [PMID: 37992796 DOI: 10.1016/j.brainres.2023.148683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
Recently, the underlying mechanisms of acupuncture on the effects of Alzheimer's disease (AD) treatment have not been fully elucidated. Defects in ALP (autophagy-lysosomal pathway) and TFEB (transcription factor EB) play critical roles in AD. Our previous studies have demonstrated that electroacupuncture (EA) can ameliorate both β-amyloid (Aβ) pathology and cognitive function in APP/PS1 mice. However, the effects of EA on the expression of ALP and TFEB and their potential mechanisms require further investigation. Twenty-eight male APP/PS1 mice were randomly divided into Tg and Tg + EA groups, and 14 C57BL/6 mice served as the wild-type (WT) group. After 1 week of adaptation to the living environment, mice in the Tg + EA group were restrained in mouse bags and received manual acupuncture at Baihui (GV20) acupoint and EA stimulation at bilateral Yongquan (KI1) acupoints, using the same restraint method for WT and Tg groups. The intervention was applied for 15 min each time, every other day, lasting for six weeks. After intervention, the spatial learning and memory of the mice was assessed using the Morris water maze test. Hippocampal Aβ expression was detected by immunohistochemistry and ELISA. Transmission electron microscopy (TEM) was used to observe autophagic vacuoles and autolysosomes in the hippocampus. Immunofluorescence method was applied to examine the expression of TFEB in CA1 region of the hippocampus and the co-localization of CTSD or LAMP1 with Aβ. Western blot analysis was performed to evaluate the changes of LC3, p62, CTSD, LAMP1, TFEB and n-TFEB (nuclear TFEB) in the hippocampus. The findings of behavioral assessment indicated that EA alleviated the cognitive impairment of APP/PS1 mice. Compared with the WT group, the Tg group showed significant cognitive decline and abnormalities in ALP and TFEB function (P < 0.01 or P < 0.05). However, these abnormal changes were alleviated in the Tg + EA group (P < 0.01 or P < 0.05). The Tg group also showed more senile plaques and ALP dysfunction features, compared with the WT group, and these changes were alleviated by EA. In conclusion, this study highlights that EA ameliorated Aβ pathology-related cognitive impairments in the APP/PS1 model associated with ALP and TFEB dysfunction.
Collapse
Affiliation(s)
- Haotian Chen
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaokun Yang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yushan Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huili Jiang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mengwei Guo
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yingyi Zhou
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chenlu Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yunxiang Tan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405, China
| | - Yang Zhang
- Guangshui City Hospital of Traditional Chinese Medicine, 432700, China
| | - Weiguo Xue
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
4
|
Song LZX, Xu N, Yu Z, Yang H, Xu CC, Qiu Z, Dai JW, Xu B, Hu XM. The effect of electroacupuncture at ST25 on Parkinson's disease constipation through regulation of autophagy in the enteric nervous system. Anat Rec (Hoboken) 2023; 306:3214-3228. [PMID: 36655864 DOI: 10.1002/ar.25148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 01/20/2023]
Abstract
The effectiveness and safety of electroacupuncture (EA) for constipation have been confirmed by numerous clinical studies and experiments, and there are also studies on the efficacy of EA for Parkinson's disease (PD) motor symptoms. However, there are few researches on EA for PD constipation. Autophagy is thought to be involved in the mechanistic process of EA in the central nervous system (CNS) intervention in Parkinson's pathology. However, whether it has the same effect on the enteric nervous system (ENS) has not been elucidated. Therefore, we investigated whether EA at Tianshu (ST25) acupoint promotes the clearance of α-Syn and damaged mitochondria aggregated in the ENS in a model of rotenone-induced PD constipation. This study evaluated constipation symptoms by stool characteristics, excretion volume, and water content, and the expression levels of colonic ATG5, LC3II, and Parkin were detected by Western Blot (WB) and Real-Time Quantitative PCR (RT-qPCR). The relationship between the location of α-Syn and Parkin in the colonic ENS was observed by immunofluorescence (IF). The results showed that EA intervention significantly relieved the symptoms of rotenone-induced constipation in PD rats, reversed the rotenone-induced down-regulation of colonic ATG5, LC3II, and Parkin expression, and the positional relationship between colonic α-Syn and Parkin proved to be highly correlated. It is suggested that EA might be helpful in treating PD constipation by modulating Parkin-induced mitochondrial autophagy.
Collapse
Affiliation(s)
- Li-Zhe-Xiong Song
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Na Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Yang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cheng-Cheng Xu
- Nanjing Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Zi Qiu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing-Wen Dai
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuan-Ming Hu
- Nanjing Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Ning B, Wang Z, Wu Q, Deng Q, Yang Q, Gao J, Fu W, Deng Y, Wu B, Huang X, Mei J, Fu W. Acupuncture inhibits autophagy and repairs synapses by activating the mTOR pathway in Parkinson's disease depression model rats. Brain Res 2023; 1808:148320. [PMID: 36914042 DOI: 10.1016/j.brainres.2023.148320] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/26/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
Acupuncture is a good treatment for depression in Parkinson's disease (DPD), so the possible mechanism of acupuncture in the treatment of DPD was explored in this study. Firstly, observing the behavioral changes of the DPD rat model, the regulation of monoamine neurotransmitters dopamine (DA) and 5-hydroxytryptamine (5-HT) in the midbrain, the change of α-synuclein (α-syn) in the striatum, the efficacy of acupuncture in the treatment of DPD was discussed. Secondly, autophagy inhibitors and activators were selected to judge the effect of acupuncture on autophagy in the DPD rat model. Finally, an mTOR inhibitor was used to observe the effect of acupuncture on the mTOR pathway in the DPD rat model. The results showed that acupuncture could improve the motor and depressive symptoms of DPD model rats, increase the content of DA and 5-HT, and decrease the content of ɑ-syn in the striatum. Acupuncture inhibited the expression of autophagy in the striatum of DPD model rats. At the same time, acupuncture upregulates p-mTOR expression, inhibits autophagy, and promotes synaptic protein expression. Therefore, we concluded that acupuncture might improve the behavior of DPD model rats by activating the mTOR pathway, inhibiting autophagy from removing α-syn and repairing synapses.
Collapse
Affiliation(s)
- Baile Ning
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhifang Wang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qian Wu
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiyue Deng
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing Yang
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Gao
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Wen Fu
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ying Deng
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bingxin Wu
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xichang Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jilin Mei
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenbin Fu
- Guangzhou University of Chinese Medicine, Guangzhou, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
6
|
Li K, Xu S, Wang R, Zou X, Liu H, Fan C, Li J, Li G, Wu Y, Ma X, Chen Y, Hu C, Liu X, Yuan C, Ye Q, Dai M, Wu L, Wang Z, Wu H. Electroacupuncture for motor dysfunction and constipation in patients with Parkinson's disease: a randomised controlled multi-centre trial. EClinicalMedicine 2023; 56:101814. [PMID: 36691434 PMCID: PMC9860357 DOI: 10.1016/j.eclinm.2022.101814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Motor disturbances and non-motor disturbances such as constipation are the main factors affecting the quality of life in patients with Parkinson's disease (PD). We investigated the efficacy and safety of electroacupuncture combined with conventional pharmacological treatment on motor dysfunction and constipation in PD. METHODS In this multi-centre randomised controlled trial, we enrolled 166 eligible participants between September 19, 2018 and September 25, 2019 in four hospitals in China. Participants were randomly assigned (1:1) to the electroacupuncture (EA) group and the waitlist control group. Each participant in both groups received the conventional pharmacological treatment, EA group received 3 sessions of electroacupuncture per week for 12 weeks. The primary outcome was the change in the Unified Parkinson's Disease Rating Scale (UPDRS) score from baseline to week 12. The secondary outcomes included the evaluation of functional disability in motor symptoms and constipation, the adherence and adverse events were also recorded. Registered with Chictr.org.cn, ChiCTR1800019517. FINDINGS At week 12, the change in the UPDRS score of the EA group was significantly higher than that of the control group, with a difference of -9.1 points (95% CI, -11.8 to -6.4), and this difference continued into weeks 16 and 24. From baseline to week 12, the 39-item Parkinson Disease Question (PDQ-39) decreased by 10 points (interquartile range, IQR -26.0 to 0.0) in the EA group and 2.5 points (IQR: -11.0 to 4.0) in the control group, the difference was statistically significant. The time and steps for the 20-m walk at week 12, as well as the changes from baseline in the EA group, were comparable with that in the control group. But the EA group had a greater decrease than the control group from baseline in the times for 20-m walks at weeks 16 and 24. From week 4 to week 24, the median values of spontaneous bowel movements (SBMs) per week in the EA group were higher than that in the control group, the differences were all statistically significant. The incidence of EA-related adverse events during treatment was low, and they are mild and transient. INTERPRETATION The findings of our study suggested that compared with conventional pharmacological treatment, conventional pharmacological treatment combined with electroacupuncture significantly enhances motor function and increased bowel movements in patients with PD, electroacupuncture is a safe and effective treatment for PD. FUNDING Shanghai "Science and Technology Innovation Action Plan" Clinical Medicine Field Project (18401970700), Shanghai Special Project on Aging and Women's and Children's Health Research (020YJZX0134), Shanghai Clinical Research Centre for Acupuncture and Moxibustion (20MC1920500).
Collapse
Key Words
- CCS, Chronic constipation severity scale
- Constipation
- EA, Electroacupuncture
- Electroacupuncture
- ITT, Intention-to-treat
- LED, Levodopa equivalent dose
- MMSE, Mini-Mental State Examination
- Motor dysfunction
- PAC-QOL, Patient assessment of constipation quality of life
- PD, Parkinson's disease
- PDQ-39, 39-item Parkinson Disease Question
- Parkinson's disease
- SBMs, Spontaneous bowel movements
- UPDRS, Unified Parkinson’s Disease Rating Scale
- VAS, Visual Analogue Scale
Collapse
Affiliation(s)
- Kunshan Li
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Shifen Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Ruiping Wang
- Shanghai Skin Disease Hospital, Tongji University, Shanghai 200443, China
| | - Xuan Zou
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Huirong Liu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Chunhai Fan
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Li
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Guona Li
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yiwen Wu
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaopeng Ma
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yiyi Chen
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Chenfang Hu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiru Liu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Canxing Yuan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Qing Ye
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ming Dai
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Luyi Wu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Corresponding author.
| | - Zhaoqin Wang
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Corresponding author.
| | - Huangan Wu
- Yueyang Hospital of Integrated Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Corresponding author.
| |
Collapse
|
7
|
Electroacupuncture Modulates 5-HT 4R-Mediated cAMP/PKA Signaling to Improve Intestinal Motility Disorders in a Thy1- αSyn Parkinson's Mouse Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8659462. [PMID: 36337584 PMCID: PMC9635967 DOI: 10.1155/2022/8659462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/02/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
Constipation is one of the most common nonmotor symptoms in patients with Parkinson's disease (PD) and often occurs before motor symptoms. Electroacupuncture effectively improves the symptoms of constipation in patients with PD. In the present study, we used thymus cell antigen 1-α-synuclein (Thy1-αSyn) transgenic mice as a model of intestinal motility disorders in PD to determine the therapeutic effect of electroacupuncture and the underlying mechanisms. Electroacupuncture significantly improved fecal excretion and accelerated the rate of small-intestinal propulsion in Thy1-αSyn mice by upregulating the serotonin concentration and the expression of the serotonin 4 receptor. Consequently, the downstream cyclic AMP/protein kinase A (cAMP/PKA) pathway was affected, and to upregulate and downregulate, the expression of substance P was upregulated, and the expression of calcitonin gene-related peptide was downregulated. In summary, electroacupuncture improved intestinal motility in PD mice by affecting serotonin levels, serotonin 4 receptor expression, and the cAMP/PKA pathway, providing a potentially effective and promising complementary and alternative therapy for relieving constipation symptoms in patients with PD.
Collapse
|
8
|
Li X, Wei W, Wang Y, Wang Q, Liu Z. Global Trend in the Research and Development of Acupuncture Treatment on Parkinson's Disease From 2000 to 2021: A Bibliometric Analysis. Front Neurol 2022; 13:906317. [PMID: 35873762 PMCID: PMC9305197 DOI: 10.3389/fneur.2022.906317] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/09/2022] [Indexed: 11/27/2022] Open
Abstract
Background Acupuncture has been widely used in the treatment of patients with Parkinson's disease (PD) in the world. Despite we have an in-depth understanding of acupuncture in this field over the past years, there is no available literature on bibliometric analysis on the development of acupuncture on PD. This study was designed to explore the global trend in the research of acupuncture on PD in the recent 20 years by the software CiteSpace (5.8.R3) and VOSviewer (1.6.14). Methods Publications regarding acupuncture therapy for PD from 2000 to 2021 were retrieved from the Web of Science Core Collection database. CiteSpace and VOSviewer were used to analyze the number of publications, the contribution of countries, institutions, journals, authors, references, and keywords. Results A total of 217 studies were extracted from the database. The outputs of the publications in this field showed an upward trend during the past two decades. The country and institutions with the most publications in this field are China, South Korea, and the USA. They were the main contributors to the research. Kyung Hee University and Capital Medical University were the two most productive organizations. Hi-Joon Park had made the greatest contributions to the field. Evidence-based Complementary and Alternative Medicine was the most popular journals in this field. “Electroacupuncture” and “Bee venom acupuncture” were emerging research hotspots. Conclusion The research on acupuncture on PD is potential. Authors from different countries/regions and organizations need to remove the language and academic barriers to enhance global cooperation and communications. Scholars in this field need to publish their research findings in high-quality journals to gain more attention worldwide. This study indicated that the mechanism leading to the non-motor symptoms of PD, the establishment of appropriate models that fully reflects the non-motor features of human PD, and the efficacy and safety of promising therapies for patients with PD will remain research frontiers in the future.
Collapse
Affiliation(s)
- Xiaoping Li
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wan Wei
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Wang
- Innovation Research Center of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
| | - Qiang Wang
- Innovation Research Center of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
| | - Zhibin Liu
- Innovation Research Center of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
- Shaanxi Key Laboratory of Acupuncture and Medicine, Xianyang, China
- *Correspondence: Zhibin Liu
| |
Collapse
|
9
|
Oh JY, Lee YS, Hwang TY, Cho SJ, Jang JH, Ryu Y, Park HJ. Acupuncture Regulates Symptoms of Parkinson’s Disease via Brain Neural Activity and Functional Connectivity in Mice. Front Aging Neurosci 2022; 14:885396. [PMID: 35774113 PMCID: PMC9237259 DOI: 10.3389/fnagi.2022.885396] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is a multilayered progressive brain disease characterized by motor dysfunction and a variety of other symptoms. Although acupuncture has been used to ameliorate various symptoms of neurodegenerative disorders, including PD, the underlying mechanisms are unclear. Here, we investigated the mechanism of acupuncture by revealing the effects of acupuncture treatment on brain neural responses and its functional connectivity in an animal model of PD. We observed that destruction of neuronal network between many brain regions in PD mice were reversed by acupuncture. Using machine learning analysis, we found that the key region associated with the improvement of abnormal behaviors might be related to the neural activity of M1, suggesting that the changes of c-Fos in M1 could predict the improvement of motor function induced by acupuncture treatment. In addition, acupuncture treatment was shown to significantly normalize the brain neural activity not only in M1 but also in other brain regions related to motor behavior (striatum, substantia nigra pars compacta, and globus pallidus) and non-motor symptoms (hippocampus, lateral hypothalamus, and solitary tract) of PD. Taken together, our results demonstrate that acupuncture treatment might improve the PD symptoms by normalizing the brain functional connectivity in PD mice model and provide new insights that enhance our current understanding of acupuncture mechanisms for non-motor symptoms.
Collapse
Affiliation(s)
- Ju-Young Oh
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Studies of Translational Acupuncture Research (STAR), Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, South Korea
| | - Ye-Seul Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, South Korea
| | - Tae-Yeon Hwang
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Studies of Translational Acupuncture Research (STAR), Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, South Korea
| | - Seong-Jin Cho
- Korean Medicine Fundamental Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, South Korea
| | - Jae-Hwan Jang
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Studies of Translational Acupuncture Research (STAR), Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, South Korea
| | - Yeonhee Ryu
- Korean Medicine Fundamental Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, South Korea
| | - Hi-Joon Park
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Studies of Translational Acupuncture Research (STAR), Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, South Korea
- *Correspondence: Hi-Joon Park
| |
Collapse
|
10
|
Nazarova L, Liu H, Xie H, Wang L, Ding H, An H, Huang D. Targeting gut-brain axis through Scalp-Abdominal electroacupuncture in Parkinson’s disease. Brain Res 2022; 1790:147956. [DOI: 10.1016/j.brainres.2022.147956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/03/2022] [Accepted: 05/25/2022] [Indexed: 11/02/2022]
|
11
|
Fan JQ, Lu WJ, Tan WQ, Feng WC, Zhuang LX. Acupuncture for Parkinson's disease: From theory to practice. Biomed Pharmacother 2022; 149:112907. [PMID: 35366533 DOI: 10.1016/j.biopha.2022.112907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 11/16/2022] Open
Abstract
Advances in molecular biology and biochemistry have improved the treatment of Parkinson's disease (PD). There has been extensive evidence on the benefit of standard treatment (e.g., deep brain stimulation, levodopa, and dopamine agonists) and acupuncture for PD. This article aims to distill the similarities and differences in the treatment concepts between Chinese and Western medicine from the perspective of reinforcing the deficiency and purging the excess, summarize the latest evidence on the benefits of acupuncture for PD from theory to practice, and propose prospective treatment options for PD.
Collapse
Affiliation(s)
- Jing-Qi Fan
- Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong, China
| | - Wei-Jing Lu
- Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong, China
| | - Wei-Qiang Tan
- Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong, China
| | - Wei-Cheng Feng
- Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong, China
| | - Li-Xing Zhuang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong, China.
| |
Collapse
|
12
|
Zuo T, Xie M, Yan M, Zhang Z, Tian T, Zhu Y, Wang L, Sun Y. In situ analysis of acupuncture protecting dopaminergic neurons from lipid peroxidative damage in mice of Parkinson's disease. Cell Prolif 2022; 55:e13213. [PMID: 35274781 PMCID: PMC9055900 DOI: 10.1111/cpr.13213] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022] Open
Abstract
Objectives Acupuncture stimulation has proven to protect dopaminergic neurons from oxidative damage in animal models of Parkinson's disease (PD), but it remains unclear about the in situ information of biochemical components in dopaminergic neurons. Here, we aimed to analyse in situ changes of biochemical components and lipid peroxidation levels in dopaminergic neurons in PD mice treated with acupuncture by synchrotron FTIR micro‐spectroscopy technique. Materials and Methods About 9–10‐week‐old C57BL/6 mice were used to establish PD model by intraperitoneal injection of 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP, 30 mg/kg for 5 days). Acupuncture stimulation was performed once a day for 12 days. Behaviour test was determined using the rotarod instrument. Biochemical compositions of dopaminergic neurons in substantia nigra pars compacta were analysed by synchrotron FTIR micro‐spectroscopy technique. The number and ultrastructure of dopaminergic neurons were respectively observed by immunofluorescence and transmission electron microscopy (TEM). Results We found that the number and protein expression of dopaminergic neurons in MPTP‐treated mice were reduced by about half, while that in the mice treated by acupuncture were significantly restored. Acupuncture treatment also restored the motor ability of PD mice. The results of single cell imaging with synchrotron FTIR micro‐spectroscopy technique showed that the proportion of lipid in MPTP treated mice increased significantly. Especially the ratio of CH2 asymmetric stretching and CH3 asymmetric stretching increased significantly, suggesting that MPTP induced lipid peroxidation damage of dopaminergic neurons. It is also supported by the result of TEM, such as mitochondrial swelling or atrophy, loss of mitochondrial crests and mitochondrial vacuolization. Compared with MPTP treated mice, the proportion of lipid in acupuncture treated mice decreased and the mitochondrial structure was restored. Conclusions Acupuncture can inhibit the level of lipid peroxides in dopaminergic neurons and protect neurons from oxidative damage. The study provides a promising method for in situ analysis of biochemical compositions in PD mice and reveals the mechanism of acupuncture in treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Tingting Zuo
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mo Xie
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Meiling Yan
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zengyan Zhang
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Tian Tian
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Yanhong Sun
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
13
|
Yan M, Zuo T, Zhang J, Wang Y, Zhu Y, Wang L, Zhou Y, Sun Y. A bimodal probe for fluorescence and synchrotron X-ray fluorescence imaging of dopaminergic neurons in the brain. Chem Commun (Camb) 2022; 58:713-715. [PMID: 34981097 DOI: 10.1039/d1cc06475d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bimodal probe, the erythrosine B (EB) conjugated immunoglobulin G complex (EB/IgG), has been developed for the fluorescence and synchrotron X-ray fluorescence (SXRF) imaging of dopaminergic neurons in the brain.
Collapse
Affiliation(s)
- Meiling Yan
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Zuo
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jichao Zhang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yiyang Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yi Zhou
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yanhong Sun
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
14
|
Hong H, Xu HX, Meng JZ, Zhu BM. Electroacupuncture altered expression of microRNAs in Stat5 knockout obese mice. Acupunct Med 2021; 40:249-257. [PMID: 34892984 DOI: 10.1177/09645284211056345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Increasing evidence shows that miRNAs contribute to the establishment and development of obesity by affecting many biological and pathological processes, such as adipocyte differentiation, hepatic lipid metabolism, insulin resistance, and neurological regulation of obesity. As a clinical intervention approach, acupuncture has been shown to be effective in the treatment of obesity and other metabolic diseases. Our previous whole genome study in central nervous system (CNS)-specific Stat5 knockout (NKO) obese mice found that electroacupuncture (EA) could reduce body weight and promote white browning. OBJECTIVE To clarify the effect of EA on miRNAs and understand how it regulates gene expression. METHODS Twelve-week-old male Stat5NKO mice with body weight 20% greater than that of Stat5fl/fl (control) mice were divided into a Stat5NKO (model) group and EA-treated Stat5NKO + EA group. A cohort of Stat5fl/fl mice of the same age were included as the control group. EA was administered under isoflurane anesthesia at unilateral ST36 and ST44 daily (left and right sides were treated every other day), 6 times per week for a total of 4 weeks. The miRNA profile was generated and miRNA regulatory networks were analyzed in the Stat5 nestin-cre mice before and after EA treatment. Autophagy-related proteins in adipocytes were detected after over-expression of miR27a. RESULTS EA altered abnormal miRNA expression, including miRNA27a expression, and reduced the autophagy-related proteins ATG5 and ATG12. CONCLUSION We found that EA could regulate miRNA27a-mediated autophagy-related proteins and promote white fat browning, which may contribute to weight loss. To our knowledge, this is the first report of miRNAs potentially driving the effect of EA on white fat browning through the autophagy process.
Collapse
Affiliation(s)
- Hao Hong
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hou-Xi Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Zhong Meng
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Li B, Wei Y, Li Q, Chen N, Li J, Liu L, Zhang J, Wang Y, Sun Y, Shi J, Wang L, Shao Z, Hu J, Fan C. Nanomechanical Induction of Autophagy-Related Fluorescence in Single Cells with Atomic Force Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102989. [PMID: 34708576 PMCID: PMC8693060 DOI: 10.1002/advs.202102989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/10/2021] [Indexed: 05/25/2023]
Abstract
Mechanistic understanding of how living systems sense, transduce, and respond to mechanical cues has important implications in development, physiology, and therapy. Here, the authors use an integrated atomic force microscope (AFM) and brightfield/epifluorescent microscope platform to precisely simulate living single cells or groups of cells under physiological conditions, in real time, concomitantly measuring the single-cell autophagic response and its transmission to neighboring cells. Dual-color fluorescence monitoring of the cellular autophagic response reveals the dynamics of autophagosome formation, degradation, and induction in neighboring contacting and noncontacting cells. Autophagosome formation is dependent on both the applied force and contact area of the AFM tip. More importantly, the enhancement of the autophagic responses in neighboring cells via a gap junction-dependent mechanism is observed. This AFM-based nanoacupuncture platform can serve as a tool for elucidating the primary mechanism underlying mechanical stimulation of living systems and other biomechanical therapeutics.
Collapse
Affiliation(s)
- Bin Li
- CAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- Shanghai Synchrotron Radiation FacilityZhanjiang LaboratoryShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201210China
| | - Yuhui Wei
- CAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- Shanghai Synchrotron Radiation FacilityZhanjiang LaboratoryShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201210China
- University of Chinese Academy of SciencesBeijing100049China
| | - Qian Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative Molecules and National Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Nan Chen
- CAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
| | - Jiang Li
- CAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- Shanghai Synchrotron Radiation FacilityZhanjiang LaboratoryShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201210China
| | - Lin Liu
- CAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
| | - Jinjin Zhang
- CAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- Shanghai Synchrotron Radiation FacilityZhanjiang LaboratoryShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201210China
| | - Ying Wang
- CAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- Shanghai Synchrotron Radiation FacilityZhanjiang LaboratoryShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201210China
| | - Yanhong Sun
- CAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- Shanghai Synchrotron Radiation FacilityZhanjiang LaboratoryShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201210China
| | - Jiye Shi
- CAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
| | - Lihua Wang
- CAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- Shanghai Synchrotron Radiation FacilityZhanjiang LaboratoryShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201210China
| | - Zhifeng Shao
- State Key Laboratory for Oncogenes and Bio‐ID CenterSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Jun Hu
- CAS Key Laboratory of Interfacial Physics and TechnologyShanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China
- Shanghai Synchrotron Radiation FacilityZhanjiang LaboratoryShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201210China
| | - Chunhai Fan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative Molecules and National Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
16
|
Park S, Kim A, Park G, Kwon O, Park S, Yoo H, Jang J. Investigation of Therapeutic Response Markers for Acupuncture in Parkinson's Disease: An Exploratory Pilot Study. Diagnostics (Basel) 2021; 11:diagnostics11091697. [PMID: 34574038 PMCID: PMC8468821 DOI: 10.3390/diagnostics11091697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
In this preliminary pilot study, we investigated the specific genes implicated in the therapeutic response to acupuncture in patients with Parkinson’s disease (PD). Transcriptome alterations following acupuncture in blood samples collected during our previous clinical trial were analyzed along with the clinical data of six patients with PD, of which a representative patient was selected for transcriptomic analysis following acupuncture. We also examined the changes in the expression of PD biomarker genes known to be dysregulated in both the brain and blood of patients with PD. We validated these gene expression changes using quantitative real-time polymerase chain reaction (qPCR) in the blood of the remaining five patients with PD who received acupuncture treatment. Following acupuncture treatment, the transcriptomic alterations in the representative patient were similar to those induced by dopaminergic therapy. Among the PD biomarkers, ankyrin repeat domain 22 (ANKRD22), upregulated following dopaminergic therapy, and synapsin 1 (SYN1), a common gene marker for synaptic dysfunction in PD, were upregulated following acupuncture. These alterations correlated with changes in gait parameters in patients with PD. Our data suggest ANKRD22 and SYN1 as potential biomarkers to predict/monitor therapeutic responses to acupuncture in patients with PD, especially in those with gait disturbance. Further research is needed to confirm these findings in a large sample of patients with PD.
Collapse
Affiliation(s)
- Sangmin Park
- KM Data Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Korea;
| | - Aeyung Kim
- KM Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu 41062, Korea;
| | - Gunhyuk Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 111 Geonjae-ro, Naju-si 58245, Korea;
| | - Ojin Kwon
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Korea;
| | - Sangsoo Park
- Clinical Trial Center, Daejeon Korean Medicine Hospital, 75, Daedeok-Daero 176 Beon-gil, Seo-gu, Daejeon 35235, Korea;
| | - Horyong Yoo
- Clinical Trial Center, Daejeon Korean Medicine Hospital, 75, Daedeok-Daero 176 Beon-gil, Seo-gu, Daejeon 35235, Korea;
- Correspondence: (H.Y.); (J.J.)
| | - Junghee Jang
- KM Science Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Korea;
- Clinical Trial Center, Daejeon Korean Medicine Hospital, 75, Daedeok-Daero 176 Beon-gil, Seo-gu, Daejeon 35235, Korea;
- Correspondence: (H.Y.); (J.J.)
| |
Collapse
|
17
|
Liu H, Zhang B, Li XW, Du J, Feng PP, Cheng C, Zhu ZH, Lou KL, Ruan C, Zhou C, Sun XW. Acupuncture inhibits mammalian target of rapamycin, promotes autophagy and attenuates neurological deficits in a rat model of hemorrhagic stroke. Acupunct Med 2021; 40:59-67. [PMID: 34284645 DOI: 10.1177/09645284211028873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) accounts for approximately 15% of all stroke cases. Previous studies suggested that acupuncture may improve ICH-induced neurological deficits. Therefore, we investigated the effects of acupuncture on neurological deficits in an animal model of ICH. METHODS Adult male Sprague-Dawley rats were injected with autologous blood (50 μL) into the right caudate nucleus. Additional rats underwent sham surgery as controls. ICH rats either received acupuncture (GV20 through GB7 on the side of the lesion) or sham acupuncture (1 cm to the right side of the traditional acupuncture point locations). Some ICH rats received acupuncture plus rapamycin injection into the right lateral ventricle. Neurological deficits in the various groups were assessed based on composite neurological score. The perihemorrhagic penumbra was analyzed by histopathology following hematoxylin-eosin staining. Levels of autophagy-related proteins light chain (LC)3 and p62 as well as of mammalian target of rapamycin (mTOR)-related proteins, and phosphorylated (p)-mTOR and p-S6K1 (ribosomal protein S6 kinase beta-1), were assessed by Western blotting. RESULTS Acupuncture significantly improved composite neurological scores 7 days after ICH (17.7 ± 1.49 vs 14.8 ± 1.32, p < 0.01). Acupuncture augmented autophagosome and autolysosome accumulation based on transmission electron microscopy. Acupuncture significantly increased expression of LC3 (p < 0.01) but decreased expression of p62 (p < 0.01). Acupuncture also reduced levels of p-mTOR and p-S6K1 (both p < 0.01). CONCLUSION Acupuncture improved neurological deficits in a rat model of ICH, possibly by inhibiting the mTOR pathway and activating autophagy.
Collapse
Affiliation(s)
- Hao Liu
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Beng Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China.,First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xin-Wei Li
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Jia Du
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Pei-Pei Feng
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Chen Cheng
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Zhong-Hua Zhu
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Ke-Lang Lou
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Chen Ruan
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Chi Zhou
- Department of Acupuncture and Moxibustion, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Xiao-Wei Sun
- Heilongjiang University of Chinese Medicine, Harbin, China.,First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
18
|
Acupuncture for Parkinson's Disease: Efficacy Evaluation and Mechanisms in the Dopaminergic Neural Circuit. Neural Plast 2021; 2021:9926445. [PMID: 34221005 PMCID: PMC8221898 DOI: 10.1155/2021/9926445] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/10/2021] [Accepted: 05/27/2021] [Indexed: 01/10/2023] Open
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disease caused by degeneration of dopaminergic neurons in the substantia nigra. Existing pharmaceutical treatments offer alleviation of symptoms but cannot delay disease progression and are often associated with significant side effects. Clinical studies have demonstrated that acupuncture may be beneficial for PD treatment, particularly in terms of ameliorating PD symptoms when combined with anti-PD medication, reducing the required dose of medication and associated side effects. During early stages of PD, acupuncture may even be used to replace medication. It has also been found that acupuncture can protect dopaminergic neurons from degeneration via antioxidative stress, anti-inflammatory, and antiapoptotic pathways as well as modulating the neurotransmitter balance in the basal ganglia circuit. Here, we review current studies and reflect on the potential of acupuncture as a novel and effective treatment strategy for PD. We found that particularly during the early stages, acupuncture may reduce neurodegeneration of dopaminergic neurons and regulate the balance of the dopaminergic circuit, thus delaying the progression of the disease. The benefits of acupuncture will need to be further verified through basic and clinical studies.
Collapse
|
19
|
Effects of Acupuncture on Oxidative Stress Amelioration via Nrf2/ARE-Related Pathways in Alzheimer and Parkinson Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6624976. [PMID: 33995547 PMCID: PMC8096560 DOI: 10.1155/2021/6624976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022]
Abstract
Oxidative stress is responsible for the pathogeneses of various diseases. Mitochondrial dysfunction, impaired DNA repair, and cellular damage followed by oxidative stress contribute to neurodegenerative diseases, such as Alzheimer disease (AD) and Parkinson disease (PD). Acupuncture is a traditional therapy that has been practiced for >3000 years in Asia. Many studies have demonstrated that acupuncture has notable antioxidative, anti-inflammatory, and antiapoptotic effects. However, the exact mechanism remains unclear. Nuclear factor erythroid 2-related factor (Nrf2) is crucial in regulating the redox equilibrium. Activated Nfr2 translocates into the nucleus, binds to the antioxidant response element (ARE), and initiates antioxidative enzyme transcription. In this review, we demonstrated the effects of acupuncture on oxidative stress amelioration in AD and PD animal models through Nrf2/ARE pathway activation and Nrf2/ARE-related pathway regulation. Thus, acupuncture could be a therapeutic option for AD and PD.
Collapse
|
20
|
Yu CC, Du YJ, Wang SQ, Liu LB, Shen F, Wang L, Lin YF, Kong LH. Experimental Evidence of the Benefits of Acupuncture for Alzheimer's Disease: An Updated Review. Front Neurosci 2021; 14:549772. [PMID: 33408601 PMCID: PMC7779610 DOI: 10.3389/fnins.2020.549772] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 11/18/2020] [Indexed: 12/15/2022] Open
Abstract
As the global population ages, the prevalence of Alzheimer's disease (AD), the most common form of dementia, is also increasing. At present, there are no widely recognized drugs able to ameliorate the cognitive dysfunction caused by AD. The failure of several promising clinical trials in recent years has highlighted the urgent need for novel strategies to both prevent and treat AD. Notably, a growing body of literature supports the efficacy of acupuncture for AD. In this review, we summarize the previously reported mechanisms of acupuncture's beneficial effects in AD, including the ability of acupuncture to modulate Aβ metabolism, tau phosphorylation, neurotransmitters, neurogenesis, synapse and neuron function, autophagy, neuronal apoptosis, neuroinflammation, cerebral glucose metabolism, and brain responses. Taken together, these findings suggest that acupuncture provides therapeutic effects for AD.
Collapse
Affiliation(s)
- Chao-Chao Yu
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.,The Fourth Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yan-Jun Du
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Shu-Qin Wang
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.,The Fourth Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Le-Bin Liu
- Department of Rehabilitation Medicine, Hubei Rongjun Hospital, Wuhan, China
| | - Feng Shen
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Li Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Yuan-Fang Lin
- Department of Tuina, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China.,The Fourth Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Li-Hong Kong
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| |
Collapse
|
21
|
Jiaji (EX-B2)-Based Electroacupuncture Preconditioning Attenuates Early Ischaemia Reperfusion Injury in the Rat Myocardium. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8854033. [PMID: 33376501 PMCID: PMC7738790 DOI: 10.1155/2020/8854033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/06/2020] [Accepted: 11/21/2020] [Indexed: 12/17/2022]
Abstract
Background Acupuncture preconditioning was able to reduce the extent of ischaemia reperfusion (I/R) injury. Previous studies have shown that electroacupuncture (EA) pretreatment at T4-T5 Jiaji (EX-B2) acupoints had cardioprotective effects against myocardial I/R injury. However, the molecular mechanism remains inconclusive. Methods Wistar rats were pretreated with electroacupuncture for 7 days at the Neiguan (PC6), T4-T5 Jiaji (EX-B2), Yanglingquan (GB34), and Quchi (LI11) acupoints, which belong to different meridians. Then, we investigated the genome-wide gene expression profiles of rats prestimulated at these acupoints after I/R injury. Results Our study revealed previously unknown cardioprotective roles of T4-T5 Jiaji (EX-B2) acupoints in the I/R progression. The extent of myocardial injury was significantly decreased in the Jiaji group compared with the I/R group. In addition, our data are among the first to link the EA preconditioning at Neiguan (PC6) acupoints and circadian rhythm in the I/R model. Also, for the first time, we explored the meridian and acupoint specificity involved in EA pretreatment at the heart meridian, in which Yanglingquan and Quchi acupoints were selected as the control group for heart-divergent-meridian and nonheart-meridian acupoints. Conclusions The present study suggested that EA pretreatment at Jiaji alters genome-wide gene expression and protects the rat myocardium against I/R injury, which are most likely through neurohumoral regulation.
Collapse
|
22
|
Hsu WT, Chen YH, Yang HB, Lin JG, Hung SY. Electroacupuncture Improves Motor Symptoms of Parkinson's Disease and Promotes Neuronal Autophagy Activity in Mouse Brain. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:1651-1669. [PMID: 33202151 DOI: 10.1142/s0192415x20500822] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Autophagic defects are a hallmark of neurodegenerative disorders, such as Parkinson's disorder (PD). Enhancing autophagy to remove impaired mitochondria and toxic protein aggregation is an essential component of PD treatment. In particular, activation of autophagy confers neuroprotection in cellular and preclinical models of neurodegenerative diseases. In this study, we investigated the therapeutic mechanisms of electroacupuncture (EA) treatment in mice with established PD and evaluated the relationship between EA, autophagy, and different neurons in the mouse brain. We report that EA improves PD motor symptoms in mice and enhances (1) autophagy initiation (increased Beclin 1), (2) autophagosome biogenesis (increased Atg5, Atg7, Atg9A, Atg12, Atg16L, Atg3, and LC3-II), (3) autophagy flux/substrate degradation (decreased p62), and (4) mitophagy (increased PINK1 and DJ-1) in neurons of the substantia nigra, striatum, hippocampus, and cortex (affected brain areas of PD, Huntington disease, and Alzheimer's disease). EA enhances autophagy initiation, autophagosome biogenesis, mitophagy, and autophagy flux/substrate degradation in certain brain areas. Our findings are the first to show that EA regulates neuronal autophagy and suggest that this convenient, inexpensive treatment has exciting therapeutic potential in neurodegenerative disorders.
Collapse
Affiliation(s)
- Wei-Ti Hsu
- Graduate Institute of Biomedical Sciences, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.,Department of Anesthesiology, China Medical University Hospital, Taichung 40447, Taiwan
| | - Yi-Hung Chen
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.,Chinese Medicine Research Center, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Han-Bin Yang
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.,Department of Life Sciences, Institute of Biomedical Science, National Chung Hsing University, Taichung 40249, Taiwan
| | - Jaung-Geng Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Shih-Ya Hung
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.,Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.,Division of Colorectal Surgery, China Medical University Hospital, Taichung 40447, Taiwan
| |
Collapse
|
23
|
EA Ameliorated Depressive Behaviors in CUMS Rats and Was Related to Its Suppressing Autophagy in the Hippocampus. Neural Plast 2020; 2020:8860968. [PMID: 33029121 PMCID: PMC7527933 DOI: 10.1155/2020/8860968] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagy is confirmed to be involved in the onset and development of depression, and some antidepressants took effect by influencing the autophagic process. Electroacupuncture (EA), as a common complementary treatment for depression, may share the mechanism of influencing autophagy in the hippocampus like antidepressants. To investigate that, sixty Sprague-Dawley rats firstly went through chronic unpredictable mild stress (CUMS) model establishment, and 15 rats were assigned to a control group. After modeling, 45 successfully CUMS-induced rats were randomly divided to 3 groups: CUMS, selective serotonin reuptake inhibitor (SSRI), and EA groups (15 rats per group), to accept different interventions for 2 weeks. A sucrose preference test (SPT), weighing, and open field test (OFT) were measurement for depressive behaviors of rats. Transmission electron microscope (TEM), immunohistochemistry (IHC), and western blot analysis were used to evaluate the autophagic changes. After that, depression-like behaviors were successfully induced in CUMS models and reversed by SSRI and EA treatments (both p < 0.05), but these two therapies had nonsignificant difference between each other (p > 0.05). Autolysosomes observed through TEM in the CUMS group were more than that in the control group. Their number and size in the SSRI and EA groups also decreased significantly. From IHC, the CUMS group showed enhanced positive expression of both Beclin1 and LC3 in CA1 after modeling (p < 0.05), and the LC3 level declined after EA treatments, which was verified by decreased LC3-II/LC3-I in western blot analysis. We speculated that CUMS-induced depression-like behavior was interacted with an autophagy process in the hippocampus, and EA demonstrated antidepressant effects by partly inhibiting autophagy with a decreased number of autolysosomes and level of LC3 along with LC3-II/LC3-I.
Collapse
|
24
|
Huang J, Qin X, Cai X, Huang Y. Effectiveness of Acupuncture in the Treatment of Parkinson's Disease: An Overview of Systematic Reviews. Front Neurol 2020; 11:917. [PMID: 32973668 PMCID: PMC7482669 DOI: 10.3389/fneur.2020.00917] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023] Open
Abstract
Background: The effects of acupuncture on Parkinson's disease (PD) outcomes remain unclear. The aim of this overview was to comprehensively evaluate the methodological quality and applicability of the results of systematic reviews (SRs)/meta-analyses (MAs) that examined the use of acupuncture to treat PD. Methods: Eight databases were searched to retrieve SRs/MAs on the use of acupuncture for the treatment of PD. Two reviewers independently screened and extracted the data using the Assessing the Methodological Quality of Systematic Reviews 2 (AMSTAR-2) checklist to evaluate the methodological quality and using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) criteria to assess the evidence quality of the included reviews. Results: A total of 11 SRs/MAs were included. According to the AMSTAR-2 checklist results, all included SRs/MAs were rated as very-low-quality studies. The GRADE criteria revealed 20 studies with very-low-quality evidence, 9 with low-quality evidence, 3 with moderate-quality evidence, and 0 with high-quality evidence. Descriptive analysis showed that acupuncture appears to be a clinically effective and safe treatment for PD. Conclusions: The use of acupuncture for the treatment of PD may be clinically effective and safe. This conclusion must be interpreted cautiously due to the generally low methodological quality and low quality of evidence of the included studies.
Collapse
Affiliation(s)
- Jinke Huang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohui Qin
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences), Guangzhou, China
| | - Xiaowen Cai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yong Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Zhang Z, Liu Z, Tian Y. A DNA-Based FLIM Reporter for Simultaneous Quantification of Lysosomal pH and Ca 2+ during Autophagy Regulation. iScience 2020; 23:101344. [PMID: 32688287 PMCID: PMC7369617 DOI: 10.1016/j.isci.2020.101344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/24/2020] [Accepted: 07/01/2020] [Indexed: 01/18/2023] Open
Abstract
pH and Ca2+ play important roles in regulating lysosomal activity and lysosome-mediated physiological and pathological processes. However, effective methods for simultaneous determination of pH and Ca2+ is the bottleneck. Herein, a single DNA-based FLIM reporter was developed for real-time imaging and simultaneous quantification of pH and Ca2+ in lysosomes with high affinity, in which a specific probe for recognition of Ca2+ was assembled onto a DNA nanostructure together with pH-responsive and lysosome-targeted molecules. The developed DNA reporter showed excellent biocompatibility and long-term stability up to ∼56 h in lysosomes. Using this powerful tool, it was discovered that pH was closely related to Ca2+ concentration in lysosome, whereas autophagy can be regulated by lysosomal pH and Ca2+. Furthermore, Aβ-induced neuronal death resulted from autophagy abnormal through lysosomal pH and Ca2+ changes. In addition, lysosomal pH and Ca2+ were found to regulate the transformation of NSCs, resulting in Rapamycin-induced antiaging. A DNA-based FLIM reporter was developed for tracking lysosomal pH and Ca2+ It was found that autophagy could be induced by lysosomal pH and Ca2+ Aβ-induced neuronal death was due to pHly- and [Ca2+]ly-mediated autophagy abnormal Antiaging-related transformation of qNSCs can be regulated by pHly and [Ca2+]ly
Collapse
Affiliation(s)
- Zhonghui Zhang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Dongchuan Road 500, Shanghai 200241, China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| | - Yang Tian
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Dongchuan Road 500, Shanghai 200241, China; Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| |
Collapse
|
26
|
Cho KS, Lee JH, Cho J, Cha GH, Song GJ. Autophagy Modulators and Neuroinflammation. Curr Med Chem 2020; 27:955-982. [PMID: 30381067 DOI: 10.2174/0929867325666181031144605] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/20/2018] [Accepted: 10/21/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuroinflammation plays a critical role in the development and progression of various neurological disorders. Therefore, various studies have focused on the development of neuroinflammation inhibitors as potential therapeutic tools. Recently, the involvement of autophagy in the regulation of neuroinflammation has drawn substantial scientific interest, and a growing number of studies support the role of impaired autophagy in the pathogenesis of common neurodegenerative disorders. OBJECTIVE The purpose of this article is to review recent research on the role of autophagy in controlling neuroinflammation. We focus on studies employing both mammalian cells and animal models to evaluate the ability of different autophagic modulators to regulate neuroinflammation. METHODS We have mostly reviewed recent studies reporting anti-neuroinflammatory properties of autophagy. We also briefly discussed a few studies showing that autophagy modulators activate neuroinflammation in certain conditions. RESULTS Recent studies report neuroprotective as well as anti-neuroinflammatory effects of autophagic modulators. We discuss the possible underlying mechanisms of action of these drugs and their potential limitations as therapeutic agents against neurological disorders. CONCLUSION Autophagy activators are promising compounds for the treatment of neurological disorders involving neuroinflammation.
Collapse
Affiliation(s)
- Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| | - Jang Ho Lee
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Korea
| | - Jeiwon Cho
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Korea.,Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Korea
| | - Guang-Ho Cha
- Department of Medical Science, College of Medicine, Chungnam National University, 35015 Daejeon, Korea
| | - Gyun Jee Song
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Korea.,Department of Medical Science, College of Medicine, Catholic Kwandong University, Gangneung, Gangwon-do, Korea
| |
Collapse
|
27
|
Preventive Electroacupuncture Ameliorates D-Galactose-Induced Alzheimer's Disease-Like Pathology and Memory Deficits Probably via Inhibition of GSK3 β/mTOR Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:1428752. [PMID: 32382276 PMCID: PMC7195631 DOI: 10.1155/2020/1428752] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/21/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022]
Abstract
Acupuncture has been practiced to treat neuropsychiatric disorders for a thousand years in China. Prevention of disease by acupuncture and moxibustion treatment, guided by the theory of Chinese acupuncture, gradually draws growing attention nowadays and has been investigated in the role of the prevention and treatment of mental disorders such as AD. Despite its well-documented efficacy, its biological action remains greatly invalidated. Here, we sought to observe whether preventive electroacupuncture during the aging process could alleviate learning and memory deficits in D-galactose-induced aged rats. We found that preventive electroacupuncture at GV20-BL23 acupoints during aging attenuated the hippocampal loss of dendritic spines, ameliorated neuronal microtubule injuries, and increased the expressions of postsynaptic PSD95 and presynaptic SYN, two important synapse-associated proteins involved in synaptic plasticity. Furthermore, we observed an inhibition of GSK3β/mTOR pathway activity accompanied by a decrease in tau phosphorylation level and prompted autophagy activity induced by preventive electroacupuncture. Our results suggested that preventive electroacupuncture can prevent and alleviate memory deficits and ameliorate synapse and neuronal microtubule damage in aging rats, which was probably via the inhibition of GSK3β/mTOR signaling pathway. It may provide new insights for the identification of prevention strategies of AD.
Collapse
|
28
|
Yang Y, Miao S, Zhou R, Ma Y, Zhang Y. The development of visual neuroimaging research of acupuncture in the treatment of Parkinson’s disease. BRAIN SCIENCE ADVANCES 2020. [DOI: 10.26599/bsa.2019.9050016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder commonly observed in middle-aged and elderly. Currently, its etiology and pathogenesis are still not completely understood. It is associated with many symptoms that severely affect patients’ health and quality of life. At present, the PD clinical treatment mainly aimed to alleviate symptoms, and both medicinal and surgical treatments have side effects and treatment blind spots. The use of acupuncture for the treatment of PD is relatively widespread, and its safety and efficacy have been gradually accepted by the public and medical professions. However, the efficacy of acupuncture in experimental studies remains controversial. Therefore, this paper reviews imaging studies on the use of acupuncture for the treatment of PD. From the study, it shows that acupuncture can improve the neuronal activity, activate the neuronal activity in damaged brain regions, affect relevant neural networks and brain circulation, improve cerebral metabolism, and cause structural changes in related brain regions. Intuitive and visible imaging studies provide objective bases on the use of acupuncture for the treatment of PD.
Collapse
Affiliation(s)
- Yuan Yang
- School of Medicine, Tsinghua University, Beijing 100084, China
- Department of Neurosurgery, Yuquan Hospital, Tsinghua University, Beijing 100040, China
| | - Suhua Miao
- Department of Neurosurgery, Yuquan Hospital, Tsinghua University, Beijing 100040, China
| | - Rongsong Zhou
- Department of Neurosurgery, Yuquan Hospital, Tsinghua University, Beijing 100040, China
| | - Yu Ma
- Department of Neurosurgery, Yuquan Hospital, Tsinghua University, Beijing 100040, China
| | - Yuqi Zhang
- School of Medicine, Tsinghua University, Beijing 100084, China
- Department of Neurosurgery, Yuquan Hospital, Tsinghua University, Beijing 100040, China
| |
Collapse
|
29
|
Guo X, Ma T. Effects of Acupuncture on Neurological Disease in Clinical- and Animal-Based Research. Front Integr Neurosci 2019; 13:47. [PMID: 31543763 PMCID: PMC6729102 DOI: 10.3389/fnint.2019.00047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 12/11/2022] Open
Abstract
Neurological disease, including Alzheimer’s disease (AD), Parkinson’s disease (PD), which were caused by abnormalities in the nervous system involves the accumulation of false proteins, neurotransmitter abnormalities, neuronal apoptosis, etc. As an alternative supplementary medicine (ASM), acupuncture plays an important role in the treatment of neurological diseases. In this review article, we summarized the current evidence for the treatment efficacy of acupuncture in AD and PD from the perspective of clinical trials and animal model. Acupuncture can inhibit the accumulation of toxic proteins in neurological diseases, modulate energy supply based on glucose metabolism, depress neuronal apoptosis, etc., and exert a wide range of neuroprotective effects.
Collapse
Affiliation(s)
- Xiangyu Guo
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tao Ma
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
30
|
Wang H, Chen S, Zhang Y, Xu H, Sun H. Electroacupuncture ameliorates neuronal injury by Pink1/Parkin-mediated mitophagy clearance in cerebral ischemia-reperfusion. Nitric Oxide 2019; 91:23-34. [PMID: 31323277 DOI: 10.1016/j.niox.2019.07.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/01/2019] [Accepted: 07/16/2019] [Indexed: 01/01/2023]
Abstract
The accumulation of dysfunctional mitochondria induced by the impairment of the autophagy-lysosome pathway (ALP), especially mitophagy is an important cause of cerebral ischemia-reperfusion (I/R) injury. Electroacupuncture (EA) exerts remarkable effects in treating ischemic stroke; however, the detailed mechanism remains unclear. In this study, rats were treated with mitochondrial permeability transition pore (mPTP) opening inhibitor, peroxynitrite (ONOO-) scavenger, or selective inhibitor of mitophagy activation during 2-h middle cerebral artery occlusion (MCAO) followed by 24 h of reperfusion in combination with EA treatment. RNA-Seq analysis showed that EA treatment in cerebral I/R was linked to the autophagosome, the PI3K/Akt signaling pathway and metabolic pathways. We found that I/R resulted in significantly mitochondrial function impairments including decreased mitochondrial membrane potential (MMP) and ATP levels, aggregation of damaged mitochondria, excessive nitro/oxidative stress, PI3K/Akt/mTOR-mediated ALP dysfunction and deficiency of Pink1/Parkin-mediated mitophagy clearance. The treatment with EA, cyclosporine-A (CsA, a potent inhibitor of mPTP opening) or FeTMPyP (a type of ONOO- scavenger) could significantly increase MMP and/or ATP levels, improve mitochondrial function and decrease neuronal injury. At the same time, EA also improved ALP dysfunction and the deficiency of mitophagy clearance; however, mitochondrial division inhibitor-1 (Mdivi-1, a selective inhibitor of mitophagy activation) blocked mitophagy clearance and aggravated neuronal injury. Taken together, EA ameliorates nitro/oxidative stress-induced mitochondrial functional damage and decreases the accumulation of damaged mitochondria via Pink1/Parkin-mediated mitophagy clearance to protect cells against neuronal injury in cerebral I/R.
Collapse
Affiliation(s)
- Huanyuan Wang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Suhui Chen
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yamin Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Xu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hua Sun
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
31
|
Signal Transduction Pathways of Acupuncture for Treating Some Nervous System Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2909632. [PMID: 31379957 PMCID: PMC6657648 DOI: 10.1155/2019/2909632] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/23/2019] [Indexed: 12/14/2022]
Abstract
In this article, we review signal transduction pathways through which acupuncture treats nervous system diseases. We electronically searched the databases, including PubMed, MEDLINE, clinical Key, the Cochrane Library, and the China National Knowledge Infrastructure from their inception to December 2018 using the following MeSH headings and keywords alone or in varied combination: acupuncture, molecular, signal transduction, genetic, cerebral ischemic injury, cerebral hemorrhagic injury, stroke, epilepsy, seizure, depression, Alzheimer's disease, dementia, vascular dementia, and Parkinson's disease. Acupuncture treats nervous system diseases by increasing the brain-derived neurotrophic factor level and involves multiple signal pathways, including p38 MAPKs, Raf/MAPK/ERK 1/2, TLR4/ERK, PI3K/AKT, AC/cAMP/PKA, ASK1-JNK/p38, and downstream CREB, JNK, m-TOR, NF-κB, and Bcl-2/Bax balance. Acupuncture affects synaptic plasticity, causes an increase in neurotrophic factors, and results in neuroprotection, cell proliferation, antiapoptosis, antioxidant activity, anti-inflammation, and maintenance of the blood-brain barrier.
Collapse
|
32
|
The effect of conduction exercise and self-acupressure in treatment of Parkinson's disease: Protocol for a pilot study. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2019. [DOI: 10.1016/j.jtcms.2019.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
33
|
Li G, Zeng L, Cheng H, Han J, Zhang X, Xie H. Acupuncture Administration Improves Cognitive Functions and Alleviates Inflammation and Nuclear Damage by Regulating Phosphatidylinositol 3 Kinase (PI3K)/Phosphoinositol-Dependent Kinase 1 (PDK1)/Novel Protein Kinase C (nPKC)/Rac 1 Signaling Pathway in Senescence-Accelerated Prone 8 (SAM-P8) Mice. Med Sci Monit 2019; 25:4082-4093. [PMID: 31152645 PMCID: PMC6559003 DOI: 10.12659/msm.913858] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is an age-associated neurodegenerative disorder. This study aimed to investigate effects of acupuncture administration on cognitive function and associated mechanisms. MATERIAL AND METHODS Senescence-accelerated prone 8 (SAM-P8) mice were randomly divided into 3 groups: the SAM-P8 group (P8-CN), the SAM-P8 administrating with acupuncture (P8-Acup) group, and the SAM-P8 administrating without acupuncture (P8-Sham) group. Morris water maze test was conducted to evaluate cognitive functions (memory and learning ability). PDK1, nPKC, and Rac1 inhibitors were used to treat SAM-P8 mice. Transmission electron microscope analysis was used to examine nuclear damage hippocampal tissues. Hematoxylin and eosin (H&E) staining was employed to evaluate inflammation. Western blot was used to detect PI3K, PDK1, nPKC, and Rac 1 expression in hippocampal tissues. RESULTS Acupuncture administration significantly reduced PI3K, PDK1, nPKC, and Rac 1 levels compared to P8-CN group (P<0.05). Both acupuncture and enzyme inhibitors (NSC23766, Rottlerin, OSU03012) significantly improved cognitive functions, reduced inflammation, and alleviated nuclear damages of SAM-P8 mice compared to P8-CN group (P<0.05). Acupuncture significantly enhanced effects of inhibitors on inflammation and nuclear damages compared to inhibitor treatment single (P<0.05). Acupuncture significantly enhanced down-regulative effects of OSU03012 on PI3K and PDK1 levels, increased down-regulative effects of Rottlerin on nPKC and Rac 1 levels and enhanced effects of Rottlerin on Rac 1 compared to P8-CN group (P<0.05). CONCLUSIONS Acupuncture administration improved cognitive functions and alleviated inflammatory response and nuclear damage of SAM-P8 mice, by downregulating PI3K/PDK1/nPKC/Rac 1 signaling pathway. This study could provide potential insight for treating cognitive dysfunction and aging of AD patients.
Collapse
Affiliation(s)
- Guomin Li
- Department of Rehabilitation Medicine, The First People's Hospital of Chenzhou, Chenzhou, Hunan, China (mainland)
| | - Lirong Zeng
- Department of Rehabilitation Medicine, The First People's Hospital of Chenzhou, Chenzhou, Hunan, China (mainland)
| | - Haiyan Cheng
- Department of Traditional Chinese Medicine, Hubei Jianghan Oilfield General Hospital, Jianghan, Hubei, China (mainland)
| | - Jingxian Han
- Acupuncture and Moxibustion Research Institute, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China (mainland)
| | - Xuezhu Zhang
- Acupuncture and Moxibustion Research Institute, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China (mainland)
| | - Hui Xie
- Department of Rehabilitation Medicine, The First People's Hospital of Chenzhou, Chenzhou, Hunan, China (mainland)
| |
Collapse
|
34
|
Ko JH, Lee H, Kim SN, Park HJ. Does Acupuncture Protect Dopamine Neurons in Parkinson's Disease Rodent Model?: A Systematic Review and Meta-Analysis. Front Aging Neurosci 2019; 11:102. [PMID: 31139074 PMCID: PMC6517785 DOI: 10.3389/fnagi.2019.00102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 04/16/2019] [Indexed: 12/19/2022] Open
Abstract
Background: Acupuncture has been reported to have significant effects, not only in alleviating impaired motor function, but also rescuing dopaminergic neuron deficits in rodent models of Parkinson's disease (PD). However, a systemic analysis of these beneficial effects has yet to be performed. Objective: To evaluate the neuroprotective effect of acupuncture in animal models of PD. Methods: A literature search of the PubMed, MEDLINE, EMBASE, China National Knowledge Infrastructure, Research Information Service System, and Japan Society of Acupuncture and Moxibustion databases was performed to retrieve studies that investigated the effects of acupuncture on PD. The quality of each included study was evaluated using the 10-item checklist modified from the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies. RevMan version 5.3 (Foundation for Statistical Computing, Vienna, Austria) was used for meta-analysis. Results: The 42 studies included scored between 2 and 7 points, with a mean score of 4.6. Outcome measures included tyrosine hydroxylase (TH) level and dopamine content. Meta-analysis results revealed statistically significant effects of acupuncture for increasing both TH levels (33.97 [95% CI 33.15-34.79]; p < 0.00001) and dopamine content (4.23 [95% CI 3.53-4.92]; p < 0.00001) compared with that observed in PD control groups. In addition, motor dysfunctions exhibited by model PD animals were also mitigated by acupuncture treatment. Conclusions: Although there were limitations in the number and quality of the included studies, results of this analysis suggest that acupuncture exerts a protective effect on dopaminergic neurons in rodent models of PD.
Collapse
Affiliation(s)
- Jade Heejae Ko
- College of Korean Medicine, Dongguk University, Goyang, South Korea.,Graduate School, Dongguk University, Seoul, South Korea
| | - Hyangsook Lee
- Acupuncture and Meridian Science Research Center, Seoul, South Korea.,College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Seung-Nam Kim
- College of Korean Medicine, Dongguk University, Goyang, South Korea
| | - Hi-Joon Park
- Acupuncture and Meridian Science Research Center, Seoul, South Korea.,College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
35
|
Tamtaji OR, Naderi Taheri M, Notghi F, Alipoor R, Bouzari R, Asemi Z. The effects of acupuncture and electroacupuncture on Parkinson's disease: Current status and future perspectives for molecular mechanisms. J Cell Biochem 2019; 120:12156-12166. [PMID: 30938859 DOI: 10.1002/jcb.28654] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/18/2018] [Accepted: 02/07/2019] [Indexed: 12/11/2022]
Abstract
Among the progressive neurodegenerative disorders, Parkinson's disease (PD) is the second most common. Different factors have critical role in pathophysiology of PD such as apoptosis pathways, inflammatory cytokines, oxidative stress, and neurotransmitters and its receptors abnormalities. Acupuncture and electroacupuncture were considered as nondrug therapies for PD. Although numerous studies has been conducted for assessing the mechanism underlying electroacupuncture and acupuncture, various principal aspects of these treatment procedures remain not well-known. There have also been few investigations on the molecular mechanism of acupuncture and electroacupuncture therapy effects in PD. This review evaluates the effects of electroacupuncture and acupuncture on the molecular mechanism in PD.
Collapse
Affiliation(s)
- Omid Reza Tamtaji
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Mojtaba Naderi Taheri
- Nursing and Midwifery Care Research Center, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.,Deptartment of Community Health and Geriatric Nursing, School of Nursing and Midwifery, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Fahimeh Notghi
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Reza Alipoor
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Reihanesadat Bouzari
- Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| |
Collapse
|
36
|
PICK1 Deficiency Induces Autophagy Dysfunction via Lysosomal Impairment and Amplifies Sepsis-Induced Acute Lung Injury. Mediators Inflamm 2018; 2018:6757368. [PMID: 30402043 PMCID: PMC6192133 DOI: 10.1155/2018/6757368] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/25/2018] [Accepted: 08/02/2018] [Indexed: 12/19/2022] Open
Abstract
Sepsis is a systemic inflammatory reaction caused by infection. Multiple organ failure ultimately leads to high morbidity and mortality. Unfortunately, therapies against these responses have been unsuccessful due to the insufficient underlying pathophysiological evidence. Protein interacting with C-kinase 1 (PICK1) has received considerable attention because of its important physiological functions in many tissues. However, its role in sepsis-induced acute lung injury (ALI) is unclear. In this study, we used cecal ligation and puncture (CLP) to establish a septic model and found that decreased microtubule-associated protein-1light chain 3 (LC3)-II/LC3-I in PICK1−/− septic mice was caused by autophagy dysfunction. Consistently, the transmission electron microscopy (TEM) of bone marrow-derived macrophages (BMDMs) from PICK1−/− mice showed the accumulation of autophagosomes as well. However, more serious damage was caused by PICK1 deficiency indicating that the disrupted autophagic flux was harmful to sepsis-induced ALI. We also observed that it was the impaired lysosomal function that mediated autophagic flux blockade, and the autophagy progress was relevant to PI3K-Akt-mTOR pathway. These findings will aid in the potential development of PICK1 with novel evidence of autophagy in sepsis treatment and prevention.
Collapse
|
37
|
Tiaolipiwei Acupuncture Reduces Albuminuria by Alleviating Podocyte Lesions in a Rat Model of Diabetic Nephropathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:1913691. [PMID: 29849693 PMCID: PMC5937557 DOI: 10.1155/2018/1913691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/07/2018] [Accepted: 03/18/2018] [Indexed: 01/13/2023]
Abstract
Background Diabetic nephropathy is a common and serious complication of diabetes and a major cause of end-stage renal disease. Tiaolipiwei acupuncture is a safe treatment approach that may be effective for lowering albuminuria in diabetic nephropathy. Yet, the exact mechanisms of this therapeutic effect are unclear. Methods A rodent model of type 2 diabetic nephropathy (T2DN) was induced by a high-fat diet combined with low-dose streptozotocin. T2DN rats were treated with Tiaolipiwei acupuncture (ACU) for 4, 8, or 12 weeks. At the end of treatment, urinary and blood samples were collected for analysis. Transmission electron microscopy was used to observe morphological changes, and protein expression levels of nephrin, CD2AP, podocalyxin, and desmin were quantified in renal tissue. Results Compared to the T2DN groups, the T2DN + ACU groups showed significant improvements in 24-hour urinary protein, serum urea, cholesterol, and triglycerides at all time points. ACU treatment also improved the density of slit diaphragms. Simultaneously, ACU promoted the renal expression of nephrin, CD2AP, and podocalyxin and decreased the expression of desmin. Conclusion Our study suggests that Tiaolipiwei acupuncture ameliorates podocyte lesions to reduce albuminuria and prevent the progression of T2DN in a rat model.
Collapse
|
38
|
Blonder LX. Historical and cross-cultural perspectives on Parkinson's disease. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2018; 15:/j/jcim.ahead-of-print/jcim-2016-0065/jcim-2016-0065.xml. [PMID: 29738310 DOI: 10.1515/jcim-2016-0065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 03/22/2018] [Indexed: 12/14/2022]
Abstract
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disorder, affecting up to 10 million people worldwide according to the Parkinson’s Disease Foundation. Epidemiological and genetic studies show a preponderance of idiopathic cases and a subset linked to genetic polymorphisms of a familial nature. Traditional Chinese medicine and Ayurveda recognized and treated the illness that Western Medicine terms PD millennia ago, and descriptions of Parkinson’s symptomatology by Europeans date back 2000 years to the ancient Greek physician Galen. However, the Western nosological classification now referred to in English as “Parkinson’s disease” and the description of symptoms that define it, are accredited to British physician James Parkinson, who in 1817 authored The Shaking Palsy. Later in the nineteenth century, French neurologist Jean-Martin Charcot re-labeled paralysis agitans “Parkinson’s disease” and over a century of scientific research ensued. This review discusses European, North American, and Asian contributions to the understanding and treatment of PD from ancient times through the twentieth century.
Collapse
Affiliation(s)
- Lee Xenakis Blonder
- Sanders- Brown Center on Aging and Departments of Behavioral Science, Neurology and Anthropology, University of Kentucky, 101 Sanders-Brown Center on Aging, Lexington, KY 40536-0230,USA
| |
Collapse
|
39
|
Luo D, Chen R, Liang FX. Modulation of Acupuncture on Cell Apoptosis and Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:8268736. [PMID: 29279719 PMCID: PMC5723958 DOI: 10.1155/2017/8268736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/20/2017] [Accepted: 09/14/2017] [Indexed: 11/25/2022]
Abstract
Acupuncture has been historically practiced to treat medical disorders by mechanically stimulating specific acupoints. Despite its well-documented efficacy, its biological basis largely remains elusive. Recent studies suggested that cell apoptosis and autophagy might play key roles in acupuncture therapy. Therefore, we searched PubMed, Embase, Web of Science, and China National Knowledge Infrastructure (CNKI), aiming to find the potential relationship between acupuncture and cell apoptosis and autophagy. To provide readers with objective evidence, some problems regarding the design method, acupoints selection, acupuncture intervention measure, and related diseases existing in 40 related researches were shown in this review. These findings demonstrated that acupuncture has a potential role in modulating cell apoptosis and autophagy in animal models, suggesting it as a candidate mechanism in acupuncture therapy to maintain physiologic homeostasis.
Collapse
Affiliation(s)
- Dan Luo
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Street, Wuhan, Hubei 430022, China
| | - Rui Chen
- Department of Traditional Chinese Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Street, Wuhan, Hubei 430022, China
| | - Feng-xia Liang
- Department of Acupuncture and Moxibustion, Hubei University of Traditional Chinese Medicine, No. 1 Tanhualin Street, Wuhan, Hubei 430060, China
| |
Collapse
|
40
|
Del Grosso A, Antonini S, Angella L, Tonazzini I, Signore G, Cecchini M. Lithium improves cell viability in psychosine-treated MO3.13 human oligodendrocyte cell line via autophagy activation. J Neurosci Res 2017; 94:1246-60. [PMID: 27638607 DOI: 10.1002/jnr.23910] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 12/30/2022]
Abstract
Globoid cell leukodystrophy (GLD) is a rare, rapidly progressing childhood leukodystrophy triggered by deficit of the lysosomal enzyme galactosylceramidase (GALC) and characterized by the accumulation of galactosylsphingosine (psychosine; PSY) in the nervous system. PSY is a cytotoxic sphingolipid, which leads to widespread degeneration of oligodendrocytes and Schwann cells, causing demyelination. Here we report on autophagy in the human oligodendrocyte cell line MO3.13 treated with PSY and exploitation of Li as an autophagy modulator to rescue cell viability. We demonstrate that PSY causes upregulation of the autophagic flux at the level of autophagosome and autolysosome formation and LC3-II expression. We show that pretreatment with Li, a drug clinically used to treat bipolar disorders, can further stimulate autophagy, improving cell tolerance to PSY. This Li protective effect is found not to be linked to reduction of PSY-induced oxidative stress and might not stem from a reduction of PSY accumulation. These data provide novel information on the intracellular pathways activated during PSY-induced toxicity and suggest the autophagy pathway as a promising novel therapeutic target for ameliorating the GLD phenotype. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ambra Del Grosso
- NEST, Istituto Nanoscienze-CNR, Pisa, Italy.,NEST, Scuola Normale Superiore, Pisa, Italy
| | | | | | - Ilaria Tonazzini
- NEST, Istituto Nanoscienze-CNR, Pisa, Italy.,Fondazione Umberto Veronesi, Milano, Italy
| | - Giovanni Signore
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR, Pisa, Italy. .,NEST, Scuola Normale Superiore, Pisa, Italy.
| |
Collapse
|
41
|
Lee BR, Kim HR, Choi ES, Cho JH, Kim NJ, Kim JH, Lee KM, Razzaq A, Choi H, Hwang Y, Grimes CA, Lee BH, Kim E, In SI. Enhanced Therapeutic Treatment of Colorectal Cancer Using Surface-Modified Nanoporous Acupuncture Needles. Sci Rep 2017; 7:12900. [PMID: 29018212 PMCID: PMC5635022 DOI: 10.1038/s41598-017-11213-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/17/2017] [Indexed: 12/21/2022] Open
Abstract
Acupuncture originated within the auspices of Oriental medicine, and today is used as an alternative method for treating various diseases and symptoms. The physiological mechanisms of acupuncture appear to involve the release of endogenous opiates and neurotransmitters, with the signals mediating through electrical stimulation of the central nervous system (CNS). Earlier we reported a nanoporous stainless steel acupuncture needle with enhanced therapeutic properties, evaluated by electrophysiological and behavioral responses in Sprague-Dawley (SD) rats. Herein, we investigate molecular changes in colorectal cancer (CRC) rats by acupuncture treatment using the nanoporous needles. Treatment at acupoint HT7 is found most effective at reducing average tumor size, β-catenin expression levels, and the number of aberrant crypt foci in the colon endothelium. Surface modification of acupuncture needles further enhances the therapeutic effects of acupuncture treatment in CRC rats.
Collapse
Affiliation(s)
- Bo Ram Lee
- Division of Nano & Energy Convergence Research, DGIST (Daegu Gyeongbuk Institute of Science and Technology), 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Hye-Rim Kim
- Energy Science & Engineering DGIST, 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Eun-Sook Choi
- Division of Nano & Energy Convergence Research, DGIST (Daegu Gyeongbuk Institute of Science and Technology), 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Jung-Hoon Cho
- Division of Nano & Energy Convergence Research, DGIST (Daegu Gyeongbuk Institute of Science and Technology), 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Nam-Jun Kim
- College of Korean Medicine, Daegu Haany University, 136 Shincheondong-ro, Suseong-Gu, Daegu, 42158, Republic of Korea
| | - Jung-Hee Kim
- Division of Nano & Energy Convergence Research, DGIST (Daegu Gyeongbuk Institute of Science and Technology), 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Kyeong-Min Lee
- Division of Nano & Energy Convergence Research, DGIST (Daegu Gyeongbuk Institute of Science and Technology), 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Abdul Razzaq
- Energy Science & Engineering DGIST, 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Hansaem Choi
- Energy Science & Engineering DGIST, 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Yunju Hwang
- Energy Science & Engineering DGIST, 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Craig A Grimes
- Flux Photon Corporation, 116 Donmoor Court, Garner, NC, 27529, United States
| | - Bong-Hyo Lee
- College of Korean Medicine, Daegu Haany University, 136 Shincheondong-ro, Suseong-Gu, Daegu, 42158, Republic of Korea.
| | - Eunjoo Kim
- Division of Nano & Energy Convergence Research, DGIST (Daegu Gyeongbuk Institute of Science and Technology), 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu, 42988, Republic of Korea.
| | - Su-Il In
- Energy Science & Engineering DGIST, 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu, 42988, Republic of Korea.
| |
Collapse
|
42
|
Manecka DL, Vanderperre B, Fon EA, Durcan TM. The Neuroprotective Role of Protein Quality Control in Halting the Development of Alpha-Synuclein Pathology. Front Mol Neurosci 2017; 10:311. [PMID: 29021741 PMCID: PMC5623686 DOI: 10.3389/fnmol.2017.00311] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 09/14/2017] [Indexed: 12/21/2022] Open
Abstract
Synucleinopathies are a family of neurodegenerative disorders that comprises Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Each of these disorders is characterized by devastating motor, cognitive, and autonomic consequences. Current treatments for synucleinopathies are not curative and are limited to improvement of quality of life for affected individuals. Although the underlying causes of these diseases are unknown, a shared pathological hallmark is the presence of proteinaceous inclusions containing the α-synuclein (α-syn) protein in brain tissue. In the past few years, it has been proposed that these inclusions arise from the self-templated, prion-like spreading of misfolded and aggregated forms of α-syn throughout the brain, leading to neuronal dysfunction and death. In this review, we describe how impaired protein homeostasis is a prominent factor in the α-syn aggregation cascade, with alterations in protein quality control (PQC) pathways observed in the brains of patients. We discuss how PQC modulates α-syn accumulation, misfolding and aggregation primarily through chaperoning activity, proteasomal degradation, and lysosome-mediated degradation. Finally, we provide an overview of experimental data indicating that targeting PQC pathways is a promising avenue to explore in the design of novel neuroprotective approaches that could impede the spreading of α-syn pathology and thus provide a curative treatment for synucleinopathies.
Collapse
Affiliation(s)
| | | | | | - Thomas M. Durcan
- Neurodegenerative Diseases Group and iPSC-CRISPR Core Facility, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
43
|
Acupuncture Improved Neurological Recovery after Traumatic Brain Injury by Activating BDNF/TrkB Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8460145. [PMID: 28243312 PMCID: PMC5294361 DOI: 10.1155/2017/8460145] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 02/08/2023]
Abstract
How to promote neural repair following traumatic brain injury (TBI) has long been an intractable problem. Although acupuncture has been demonstrated to facilitate the neurological recovery, the underlying mechanism is elusive. Brain-derived neurotrophic factor (BDNF) exerts substantial protective effects for neurological disorders. In this study, we found that the level of BDNF and tropomyosin receptor kinase B (TrkB) was elevated spontaneously after TBI and reached up to the peak at 12 h. Nevertheless, this enhancement is quickly declined to the normal at 48 h. After combined stimulation at the acupoints of Baihui, Renzhong, Hegu, and Zusanli, we found that BDNF and TrkB were still significantly elevated at 168 h. We also observed that the downstream molecular p-Akt and p-Erk1/2 were significantly increased, suggesting that acupuncture could persistently activate the BDNF/TrkB pathway. To further verify that acupuncture improved recovery through activating BDNF/TrkB pathway, K252a (specific inhibitor of TrkB) was treated by injection stereotaxically into lateral ventricle. We observed that K252a could significantly prevent the acupuncture-induced amelioration of motor, sensation, cognition, and synaptic plasticity. These data indicated that acupuncture promoted the recovery of neurological impairment after TBI by activating BDNF/TrkB signaling pathway, providing new molecular mechanism for understanding traditional therapy of acupuncture.
Collapse
|
44
|
Thioredoxin Binding Protein-2 Regulates Autophagy of Human Lens Epithelial Cells under Oxidative Stress via Inhibition of Akt Phosphorylation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4856431. [PMID: 27656263 PMCID: PMC5021881 DOI: 10.1155/2016/4856431] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/03/2016] [Indexed: 12/21/2022]
Abstract
Oxidative stress plays an essential role in the development of age-related cataract. Thioredoxin binding protein-2 (TBP-2) is a negative regulator of thioredoxin (Trx), which deteriorates cellular antioxidant system. Our study focused on the autophagy-regulating effect of TBP-2 under oxidative stress in human lens epithelial cells (LECs). Human lens epithelial cells were used for cell culture and treatment. Lentiviral-based transfection system was used for overexpression of TBP-2. Cytotoxicity assay, western blot analysis, GFP/mCherry-fused LC3 plasmid, immunofluorescence, and transmission electronic microscopy were performed. The results showed that autophagic response of LECs with increased LC3-II, p62, and GFP/mCherry-LC3 puncta (P < 0.01) was induced by oxidative stress. Overexpression of TBP-2 further strengthens this response and worsens the cell viability (P < 0.01). Knockdown of TBP-2 attenuates the autophagic response and cell viability loss induced by oxidative stress. TBP-2 mainly regulates autophagy in the initiation stage, which is mTOR-independent and probably caused by the dephosphorylation of Akt under oxidative stress. These findings suggest a novel role of TBP-2 in human LECs under oxidative stress. Oxidative stress can cause cell injury and autophagy in LECs, and TBP-2 regulates this response. Hence, this study provides evidence regarding the role of TBP-2 in lens and the possible mechanism of cataract development.
Collapse
|