1
|
Zhao D, Wang J, Wang H, Zhu X, Han C, Liu A. The Transcription Regulator GntR/HutC Regulates Biofilm Formation, Motility and Stress Tolerance in Lysobacter capsici X2-3. Curr Microbiol 2023; 80:281. [PMID: 37439829 DOI: 10.1007/s00284-023-03390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
Lysobacter capsici X2-3, a plant growth-promoting rhizobacteria (PGPR), was isolated from wheat rhizosphere and has inhibitory effects against a wide range of pathogens. One important characteristic of L. capsici is its ability to produce diverse antibiotics and lytic enzymes. The GntR family of transcription factors is a common transcription factor superfamily in bacteria that has fundamental roles in bacterial metabolism regulation. However, the GntR family transcription factor in Lysobacter has not been identified. In this study, to obtain an understanding of the GntR/HutC gene function in L. capsici X2-3, a random Tn5-insertion mutant library of X2-3 was constructed to select genes showing pleiotropic effects on phenotype. We identified a Tn5 mutant with an insertion in LC4356 that showed reduced biofilm levels, and sequence analysis indicated that the inserted gene encodes a GntR/HutC family transcription regulator. Furthermore, the LC4356 mutant showed reduced extracellular polysaccharide (EPS) production, diminished twitching motility and decreased survival under UV radiation and high-temperature. The RT‒qPCR results indicated that the pentose phosphate pathway-related genes G6PDH, 6PGL and PGDH were upregulated in the LC4356 mutant. Thus, since L. capsici is an efficient biocontrol agent for crop protection, our findings provide fundamental insights into GntR/HutC and will be worthwhile to improve PGPR biocontrol efficacy.
Collapse
Affiliation(s)
- Dan Zhao
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Jing Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Hong Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiaoping Zhu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Chao Han
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| | - Aixin Liu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
2
|
Li R, Peng J, Liu Q, Chang Z, Huang Y, Tang J, Lu G. Xanthomonas campestris VemR enhances the transcription of the T3SS key regulator HrpX via physical interaction with HrpG. MOLECULAR PLANT PATHOLOGY 2023; 24:232-247. [PMID: 36626275 PMCID: PMC9923393 DOI: 10.1111/mpp.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
VemR is a response regulator of the two-component signalling systems (TCSs). It consists solely of a receiver domain. Previous studies have shown that VemR plays an important role in influencing the production of exopolysaccharides and exoenzymes, cell motility, and virulence of Xanthomonas campestris pv. campestris (Xcc). However, whether VemR is involved in the essential pathogenicity determinant type III secretion system (T3SS) is unclear. In this work, we found by transcriptome analysis that VemR modulates about 10% of Xcc genes, which are involved in various cellular processes including the T3SS. Further experiments revealed that VemR physically interacts with numerous proteins, including the TCS sensor kinases HpaS and RavA, and the TCS response regulator HrpG, which directly activates the transcription of HrpX, a key regulator controlling T3SS expression. It has been demonstrated previously that HpaS composes a TCS with HrpG or VemR to control the expression of T3SS or swimming motility, while RavA and VemR form a TCS to control the expression of flagellar genes. Mutation analysis and in vitro transcription assay revealed that phosphorylation might be essential for the function of VemR and phosphorylated VemR could significantly enhance the activation of hrpX transcription by HrpG. We infer that the binding of VemR to HrpG can modulate the activity of HrpG to the hrpX promoter, thereby enhancing hrpX transcription. Although further studies are required to validate this inference and explore the detailed functional mechanism of VemR, our findings provide some insights into the complex regulatory cascade of the HpaS/RavA-VemR/HrpG-HrpX signal transduction system in the control of T3SS.
Collapse
Affiliation(s)
- Rui‐Fang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsPlant Protection Research Institute, Guangxi Academy of Agricultural SciencesNanningChina
| | - Jian‐Ling Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Qian‐Qian Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Zheng Chang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Yi‐Xin Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Ji‐Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Guang‐Tao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| |
Collapse
|
3
|
Li R, Ren P, Zhang D, Cui P, Zhu G, Xian X, Tang J, Lu G. HpaP divergently regulates the expression of hrp genes in Xanthomonas oryzae pathovars oryzae and oryzicola. MOLECULAR PLANT PATHOLOGY 2023; 24:44-58. [PMID: 36260328 PMCID: PMC9742497 DOI: 10.1111/mpp.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The bacterial pathogens Xanthomonas oryzae pathovars oryzae (Xoo) and oryzicola (Xoc) cause leaf blight and leaf streak diseases on rice, respectively. Pathogenesis is largely defined by the virulence genes harboured in the pathogen genome. Recently, we demonstrated that the protein HpaP of the crucifer pathogen Xanthomonas campestris pv. campestris is an enzyme with both ATPase and phosphatase activities, and is involved in regulating the synthesis of virulence factors and the induction of the hypersensitive response (HR). In this study, we investigated the role of HpaP homologues in Xoo and Xoc. We showed that HpaP is required for full virulence of Xoo and Xoc. Deletion of hpaP in Xoo and Xoc led to a reduction in virulence and alteration in the production of virulence factors, including extracellular polysaccharide and cell motility. Comparative transcriptomics and reverse transcription-quantitative PCR assays revealed that in XVM2 medium, a mimic medium of the plant environment, the expression levels of hrp genes (for HR and pathogenicity) were enhanced in the Xoo hpaP deletion mutant compared to the wild type. By contrast, in the same growth conditions, hrp gene expression was decreased in the Xoc hpaP deletion mutant compared to the wild type. However, an opposite expression pattern was observed when the pathogens grew in planta, where the expression of hrp genes was reduced in the Xoo hpaP mutant but increased in the Xoc hpaP mutant. These findings indicate that HpaP plays a divergent role in Xoo and Xoc, which may lead to the different infection strategies employed by these two pathogens.
Collapse
Affiliation(s)
- Rui‐Fang Li
- Plant Protection Research InstituteGuangxi Academy of Agricultural Science, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsNanningGuangxiChina
| | - Pei‐Dong Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Da‐Pei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Ping Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Gui‐Ning Zhu
- Plant Protection Research InstituteGuangxi Academy of Agricultural Science, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsNanningGuangxiChina
| | - Xiao‐Yong Xian
- Plant Protection Research InstituteGuangxi Academy of Agricultural Science, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsNanningGuangxiChina
| | - Ji‐Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| | - Guang‐Tao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesCollege of Life Science and Technology, Guangxi UniversityNanningChina
| |
Collapse
|
4
|
Shao Y, Tang G, Huang Y, Ke W, Wang S, Zheng D, Ruan L. Transcriptional regulator Sar regulates the multiple secretion systems in Xanthomonas oryzae. MOLECULAR PLANT PATHOLOGY 2023; 24:16-27. [PMID: 36177860 PMCID: PMC9742495 DOI: 10.1111/mpp.13272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a notorious plant pathogen that causes leaf blight of rice cultivars. The pathogenic bacteria possess numerous transcriptional regulators to regulate various biological processes, such as pathogenicity in the host plant. Our previous study identified a new master regulator PXO_RS20790 that is involved in pathogenicity for Xoo against the host rice. However, the molecular functions of PXO_RS20790 are still unclear. Here, we demonstrate that transcriptional regulator Sar (PXO_RS20790) regulates multiple secretion systems. The RNA-sequencing analysis, bacterial one-hybrid assay, and electrophoretic mobility shift assay revealed that Sar enables binding of the promoters of the T1SS-related genes, the avirulence gene, raxX, and positively regulates these genes' expression. Meanwhile, we found that Sar positively regulated the T6SS-1 clusters but did not regulate the T6SS-2 clusters. Furthermore, we revealed that only T6SS-2 is involved in interbacterial competition. We also indicated that Sar could bind the promoters of the T3SS regulators, hrpG and hrpX, to activate these two genes' transcription. Our findings revealed that Sar is a crucial regulator of multiple secretion systems and virulence.
Collapse
Affiliation(s)
- Yanan Shao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Guiyu Tang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yuanyuan Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Wenli Ke
- State Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shasha Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Dehong Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- National Demonstration Center for Experimental Plant Science Education, College of AgricultureGuangxi UniversityNanningChina
| | - Lifang Ruan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- College of Resources and EnvironmentTibet Agriculture & Animal Husbandry UniversityLinzhiChina
| |
Collapse
|
5
|
Li R, Ren P, Liu Q, Yao J, Wu L, Zhu G, Xian X, Tang J, Lu G. McvR, a single domain response regulator regulates motility and virulence in the plant pathogen Xanthomonas campestris. MOLECULAR PLANT PATHOLOGY 2022; 23:649-663. [PMID: 35152521 PMCID: PMC8995066 DOI: 10.1111/mpp.13186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Signal transduction pathways mediated by sensor histidine kinases and cognate response regulators control a variety of physiological processes in response to environmental conditions in most bacteria. Comparatively little is known about the mechanism(s) by which single-domain response regulators (SD-RRs), which lack a dedicated output domain but harbour a phosphoryl receiver domain, exert their various regulatory effects in bacteria. Here we have examined the role of the SD-RR proteins encoded by the phytopathogen Xanthomonas campestris pv. campestris (Xcc). We describe the identification and characterization of a SD-RR protein named McvR (motility, chemotaxis, and virulence-related response regulator) that is required for virulence and motility regulation in Xcc. Deletion of the mcvR open reading frame caused reduced motility, chemotactic movement, and virulence in Xcc. Global transcriptome analyses revealed the McvR had a broad regulatory role and that most motility and pathogenicity genes were down-regulated in the mcvR mutant. Bacterial two-hybrid and protein pull-down assays revealed that McvR did not physically interact with components of the bacterial flagellum but interacts with other SD-RR proteins (like CheY) and the subset of DNA-binding proteins involved in gene regulation. Site-directed mutagenesis and phosphor-transfer experiments revealed that the aspartyl residue at position 55 of the receiver domain is important for phosphorylation and the regulatory activity of McvR protein. Taken together, the findings describe a previously unrecognized class of SD-RR protein that contributes to the regulation of motility and virulence in Xcc.
Collapse
Affiliation(s)
- Rui‐Fang Li
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsPlant Protection Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Pei‐Dong Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Qian‐Qian Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Jia‐Li Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Liu Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Gui‐Ning Zhu
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsPlant Protection Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Xiao‐Yong Xian
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsPlant Protection Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Ji‐Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Guang‐Tao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| |
Collapse
|
6
|
Zhang Y, Andrade MO, Wang W, Teper D, Romeo T, Wang N. Examination of the Global Regulon of CsrA in Xanthomonas citri subsp. citri Using Quantitative Proteomics and Other Approaches. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1236-1249. [PMID: 34282945 DOI: 10.1094/mpmi-05-21-0113-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The RNA-binding protein CsrA is a global posttranscriptional regulator and controls many physiological processes and virulence traits. Deletion of csrA caused loss of virulence, reduced motility and production of xanthan gum and substantial increase in glycogen accumulation, as well as enhanced bacterial aggregation and cell adhesion in Xanthomonas spp. How CsrA controls these traits is poorly understood. In this study, an isobaric tag for relative and absolute quantitation (iTRAQ)-based proteomic analysis was conducted to compare the protein profile of wild-type strain Xanthomonas citri subsp. citri and the isogenic ΔcsrA strain. A total of 2,374 proteins were identified, and 284 were considered to be differentially expressed proteins (DEPS), among which 151 proteins were up-regulated and 133 were down-regulated in the ΔcsrA strain with respect to the wild-type strain. Enrichment analysis and a protein-protein interaction network analysis showed that CsrA regulates bacterial secretion systems, flagella, and xanthan gum biosynthesis. Several proteins encoded by the gumB operon were down-regulated, whereas proteins associated with flagellum assembly and the type IV secretion system were up-regulated in the ΔcsrA strain relative to the Xcc306 strain. These results were confirmed by β-glucuronidase assay or Western blot. RNA secondary structure prediction and a gel-shift assay indicated that CsrA binds to the Shine-Dalgarno sequence of virB5. In addition, the iTRAQ analysis identified 248 DEPs that were not previously identified in transcriptome analyses. Among them, CsrA regulates levels of eight regulatory proteins (ColR, GacA, GlpR, KdgR, MoxR, PilH, RecX, and YgiX), seven TonB-dependent receptors, four outer membrane proteins, and two ferric enterobactin receptors. Taken together, this study greatly expands understanding of the regulatory network of CsrA in X. citri subsp. citri.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yanan Zhang
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred FL 33850, U.S.A
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, 655011, China
| | - Maxuel O Andrade
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred FL 33850, U.S.A
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Centre for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Wenting Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred FL 33850, U.S.A
- Department of Plant Pathology, University of Florida, Gainesville FL 32611, U.S.A
| | - Doron Teper
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred FL 33850, U.S.A
| | - Tony Romeo
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville FL 32611, U.S.A
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred FL 33850, U.S.A
| |
Collapse
|
7
|
Lin Y, Liao YY, Huang RX, Li AZ, An SQ, Tang JL, Tang DJ. Extracellular Amylase Is Required for Full Virulence and Regulated by the Global Posttranscriptional Regulator RsmA in Xanthomonas campestris Pathovar campestris. PHYTOPATHOLOGY 2021; 111:1104-1113. [PMID: 33245253 DOI: 10.1094/phyto-08-20-0372-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As with many phytopathogenic bacteria, the virulence of Xanthomonas campestris pv. campestris, the causal agent of black rot disease in cruciferous plants, relies on secretion of a suite of extracellular enzymes that includes cellulase (endoglucanase), pectinase, protease, and amylase. Although the role in virulence of a number of these enzymes has been assessed, the contribution of amylase to X. campestris pv. campestris virulence has yet to be established. In this work, we investigated both the role of extracellular amylase in X. campestris pv. campestris virulence and the control of its expression. Deletion of XC3487 (here renamed amyAXcc), a putative amylase-encoding gene from the genome of X. campestris pv. campestris strain 8004, resulted in a complete loss of extracellular amylase activity and significant reduction in virulence. The extracellular amylase activity and virulence of the amyAXcc mutant could be restored to the wild-type level by expressing amyAXcc in trans. These results demonstrated that amyAXcc is responsible for the extracellular amylase activity of X. campestris pv. campestris and indicated that extracellular amylase plays an important role in X. campestris pv. campestris virulence. We also found that the expression of amyAXcc is strongly induced by starch and requires activation by the global posttranscriptional regulator RsmA. RsmA binds specifically to the 5'-untranslated region of amyAXcc transcripts, suggesting that RsmA regulates amyAXcc directly at the posttranscriptional level. Unexpectedly, in addition to posttranscriptional regulation, the use of a transcriptional reporter demonstrated that RsmA also regulates amyAXcc expression at the transcriptional level, possibly by an indirect mechanism.
Collapse
Affiliation(s)
- Yan Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, and College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Yong-Yan Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, and College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Ru-Xia Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, and College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Ai-Zhou Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, and College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Shi-Qi An
- National Biofilms Innovation Centre, Biological Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, and College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Dong-Jie Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, and College of Life Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
8
|
Cologgi DL, Otwell AE, Speers AM, Rotondo JA, Reguera G. Genetic analysis of electroactive biofilms. Int Microbiol 2021; 24:631-648. [PMID: 33907940 DOI: 10.1007/s10123-021-00176-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022]
Abstract
Geobacter biofilms synthesize an electroactive exopolysaccharide matrix with conductive pili and c-cytochromes that spatially organizes cells optimally for growth and electron transport to iron oxide substrates, soluble metal contaminants, and current-harvesting electrodes. Despite its relevance to bioremediation and bioenergy applications, little is known about the developmental stages leading to the formation of mature (>20 μm thick) electroactive biofilms. Thus, we developed a transposon mutagenesis method and a high-throughput screening assay and identified mutants of Geobacter sulfurreducens PCA interrupted in the initial stages of surface colonization (attachment and monolayer formation) and the vertical growth and maturation of multilayered biofilms. The molecular dissection of biofilm formation demonstrated that cells undergo a regulated developmental program to first colonize the surface to saturation and then synthesize an electroactive matrix to support optimal cell growth within structured communities. Transitioning from a monolayer to a multilayered, mature biofilm required the expression of conductive pili, consistent with the essential role of these extracellular protein appendages as electronic conduits across all layers of the biofilms. The genetic screening also identified cell envelope processes, regulatory pathways, and electron transport components not previously linked to biofilm formation. These genes provide much-needed understanding of the cellular reprogramming needed to build electroactive biofilms. Importantly, they serve as predictive markers of the physiology and reductive capacity of Geobacter biofilms during the bioremediation of toxic metals and radionuclides and current harvesting in bioelectrochemical systems.
Collapse
Affiliation(s)
- Dena L Cologgi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Anne E Otwell
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.,Present address: Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Allison M Speers
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - John A Rotondo
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Gemma Reguera
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
9
|
Abstract
Xanthomonas is a notorious plant pathogen causing serious diseases in hundreds of plant hosts. Xanthomonas species are equipped with an array of signal transduction systems that regulate gene expression to survive in various harsh environments and successfully infect hosts. Although certain pathogenicity-associated regulators have been functionally characterized, signal transduction systems always function as a regulatory network which remains to be elucidated in Xanthomonas. This study used a systematic approach to characterize all identified pathogenicity-associated regulators in Xanthomonas oryzae pv. oryzae (Xoo), including a transcriptional regulator with unknown function, and their interactive regulatory network. RNA sequencing was used in elucidating the patterns of the 10 pathogenicity-associated regulators identified. Results revealed that each pathogenicity-associated regulator has cross talk with others and all these regulators function as a regulatory network, with VemR and PXO_RS20790 being the master pathogenicity-associated regulators and HrpX being the final executant. Moreover, regulome analysis showed that numerous genes other than genes in pathogenicity islands are finely regulated within the regulatory network. Given that most of the pathogenicity-associated regulators are conserved in Xanthomonadales, our findings suggest a global network of gene regulation in this evolutionarily conserved pathogen. In conclusion, our study provides essential basic information about the regulatory network in Xoo, suggesting that this complicated regulatory network is one of the reasons for the robustness and fitness of Xanthomonas spp. IMPORTANCE The host plant infection process of pathogenic bacteria is a coordinating cellular behavior, which requires dynamic regulation at several levels in response to variations in host plants or fluctuations in the external environment. As one of the most important genera of plant-pathogenic bacteria, Xanthomonas has been studied as a model. Although certain pathogenicity-associated regulators have been functionally characterized, interactions among them remain to be elucidated. This study systematically characterized pathogenicity-associated regulators in Xoo and revealed that cross talk exists among pathogenicity-associated regulators and function as a regulatory network in which a hierarchy exists among the regulators. Our study elucidated the landscape of the pathogenicity-associated regulatory network in Xanthomonas, promoting understanding of the infection process of pathogenic bacteria.
Collapse
|
10
|
An SQ, Potnis N, Dow M, Vorhölter FJ, He YQ, Becker A, Teper D, Li Y, Wang N, Bleris L, Tang JL. Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen Xanthomonas. FEMS Microbiol Rev 2020; 44:1-32. [PMID: 31578554 PMCID: PMC8042644 DOI: 10.1093/femsre/fuz024] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/29/2019] [Indexed: 01/15/2023] Open
Abstract
Xanthomonas is a well-studied genus of bacterial plant pathogens whose members cause a variety of diseases in economically important crops worldwide. Genomic and functional studies of these phytopathogens have provided significant understanding of microbial-host interactions, bacterial virulence and host adaptation mechanisms including microbial ecology and epidemiology. In addition, several strains of Xanthomonas are important as producers of the extracellular polysaccharide, xanthan, used in the food and pharmaceutical industries. This polymer has also been implicated in several phases of the bacterial disease cycle. In this review, we summarise the current knowledge on the infection strategies and regulatory networks controlling virulence and adaptation mechanisms from Xanthomonas species and discuss the novel opportunities that this body of work has provided for disease control and plant health.
Collapse
Affiliation(s)
- Shi-Qi An
- National Biofilms Innovation Centre (NBIC), Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Rouse Life Science Building, Auburn University, Auburn AL36849, USA
| | - Max Dow
- School of Microbiology, Food Science & Technology Building, University College Cork, Cork T12 K8AF, Ireland
| | | | - Yong-Qiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| | - Anke Becker
- Loewe Center for Synthetic Microbiology and Department of Biology, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, Marburg 35032, Germany
| | - Doron Teper
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred 33850, USA
| | - Yi Li
- Bioengineering Department, University of Texas at Dallas, 2851 Rutford Ave, Richardson, TX 75080, USA.,Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 700 Experiment Station Road, Lake Alfred 33850, USA
| | - Leonidas Bleris
- Bioengineering Department, University of Texas at Dallas, 2851 Rutford Ave, Richardson, TX 75080, USA.,Center for Systems Biology, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA.,Department of Biological Sciences, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX75080, USA
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi, China
| |
Collapse
|
11
|
Chen B, Li RF, Zhou L, Qiu JH, Song K, Tang JL, He YW. The phytopathogen Xanthomonas campestris utilizes the divergently transcribed pobA/pobR locus for 4-hydroxybenzoic acid recognition and degradation to promote virulence. Mol Microbiol 2020; 114:870-886. [PMID: 32757400 DOI: 10.1111/mmi.14585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/29/2020] [Indexed: 01/26/2023]
Abstract
Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot in crucifers. Our previous findings revealed that Xcc can degrade 4-hydroxybenzoic acid (4-HBA) via the β-ketoadipate pathway. This present study expands on this knowledge in several ways. First, we show that infective Xcc cells induce in situ biosynthesis of 4-HBA in host plants, and Xcc can efficiently degrade 4-HBA via the pobA/pobR locus, which encodes a 4-hydroxybenzoate hydroxylase and an AraC-family transcription factor respectively. Next, the transcription of pobA is specifically induced by 4-HBA and is positively regulated by PobR, which is constitutively expressed in Xcc. 4-HBA directly binds to PobR dimers, resulting in activation of pobA expression. Point mutation and subsequent isothermal titration calorimetry and size exclusion chromatography analysis identified nine key conserved residues required for 4-HBA binding and/or dimerization of PobR. Furthermore, overlapping promoters harboring fully overlapping -35 elements were identified between the divergently transcribed pobA and pobR. The 4-HBA/PobR dimer complex specifically binds to a 25-bp site, which encompasses the -35 elements shared by the overlapping promoters. Finally, GUS histochemical staining and subsequent quantitative assay showed that both pobA and pobR genes are transcribed during Xcc infection of Chinese radish, and the strain ΔpobR exhibited compromised virulence in Chinese radish. These findings suggest that the ability of Xcc to survive the 4-HBA stress might be important for its successful colonization of host plants.
Collapse
Affiliation(s)
- Bo Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Rui-Fang Li
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Lian Zhou
- Zhiyuan Innovation Research Centre, Student Innovation Institute, Zhiyuan College, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Hui Qiu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Jin ZJ, Zhou L, Sun S, Cui Y, Song K, Zhang X, He YW. Identification of a Strong Quorum Sensing- and Thermo-Regulated Promoter for the Biosynthesis of a New Metabolite Pesticide Phenazine-1-carboxamide in Pseudomonas strain PA1201. ACS Synth Biol 2020; 9:1802-1812. [PMID: 32584550 DOI: 10.1021/acssynbio.0c00161] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Phenazine-1-carboxamide (PCN) produced by multifarious Pseudomonas strains represents a promising candidate as a new metabolite pesticide due to its broad-spectrum antifungal activity and capacity to induce systemic resistance in plants. The rice rhizosphere Pseudomonas strain PA1201 contains two reiterated gene clusters, phz1 and phz2, for phenazine-1-carboxylic acid (PCA) biosynthesis; PCA is further converted into PCN by this strain using a functional phzH-encoding glutamine aminotransferase. However, PCN levels in PA1201 constitute approximately one-fifth of PCA levels and the optimal temperature for PCN synthesis is 28 °C. In this study, the phzH open reading frame (ORF) and promoter region were investigated and reannotated. phzH promoter PphzH was found to be a weak promoter, and PhzH levels were not sufficient to convert all of the native PCA into PCN. Following RNA Seq and promoter-lacZ fusion analyses, a strong quorum sensing (QS)- and thermo-regulated promoter PrhlI was identified and characterized. The activity of PphzH is approximately 1% of PrhlI in PA1201. After three rounds of promoter editing and swapping by PrhlI, a new PCN-overproducing strain UP46 was generated. The optimal fermentation temperature for PCN biosynthesis in UP46 was increased from 28 to 37 °C and the PCN fermentation titer increased 179.5-fold, reaching 14.1 g/L, the highest ever reported.
Collapse
Affiliation(s)
- Zi-Jing Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lian Zhou
- Zhiyuan Innovation Research Centre, Student Innovation Institute, Zhiyuan College, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuang Sun
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Ji’nan, 250014, China
| | - Ying Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kai Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
13
|
Li R, Wang X, Wu L, Huang L, Qin Q, Yao J, Lu G, Tang J. Xanthomonas campestris sensor kinase HpaS co-opts the orphan response regulator VemR to form a branched two-component system that regulates motility. MOLECULAR PLANT PATHOLOGY 2020; 21:360-375. [PMID: 31919999 PMCID: PMC7036368 DOI: 10.1111/mpp.12901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/26/2019] [Accepted: 12/04/2019] [Indexed: 05/07/2023]
Abstract
Xanthomonas campestris pv. campestris (Xcc) controls virulence and plant infection mechanisms via the activity of the sensor kinase and response regulator pair HpaS/hypersensitive response and pathogenicity G (HrpG). Detailed analysis of the regulatory role of HpaS has suggested the occurrence of further regulators besides HrpG. Here we used in vitro and in vivo approaches to identify the orphan response regulator VemR as another partner of HpaS and to characterize relevant interactions between components of this signalling system. Bacterial two-hybrid and protein pull-down assays revealed that HpaS physically interacts with VemR. Phos-tag SDS-PAGE analysis showed that mutation in hpaS reduced markedly the phosphorylation of VemR in vivo. Mutation analysis reveals that HpaS and VemR contribute to the regulation of motility and this relationship appears to be epistatic. Additionally, we show that VemR control of Xcc motility is due in part to its ability to interact and bind to the flagellum rotor protein FliM. Taken together, the findings describe the unrecognized regulatory role of sensor kinase HpaS and orphan response regulator VemR in the control of motility in Xcc and contribute to the understanding of the complex regulatory mechanisms used by Xcc during plant infection.
Collapse
Affiliation(s)
- Rui‐Fang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect PestsPlant Protection Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Xin‐Xin Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Liu Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Li Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Qi‐Jian Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Jia‐Li Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Guang‐Tao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Ji‐Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life Science and TechnologyGuangxi UniversityNanningChina
| |
Collapse
|
14
|
Qi YH, Huang L, Liu GF, Leng M, Lu GT. PilG and PilH antagonistically control flagellum-dependent and pili-dependent motility in the phytopathogen Xanthomonas campestris pv. campestris. BMC Microbiol 2020; 20:37. [PMID: 32070276 PMCID: PMC7029496 DOI: 10.1186/s12866-020-1712-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 01/27/2020] [Indexed: 12/27/2022] Open
Abstract
Background The virulence of the plant pathogen Xanthomonas campestris pv. campestris (Xcc) involves the coordinate expression of many virulence factors, including surface appendages flagellum and type IV pili, which are required for pathogenesis and the colonization of host tissues. Despite many insights gained on the structure and functions played by flagellum and pili in motility, biofilm formation, surface attachment and interactions with bacteriophages, we know little about how these appendages are regulated in Xcc. Results Here we present evidence demonstrating the role of two single domain response regulators PilG and PilH in the antagonistic control of flagellum-dependent (swimming) and pili-dependent (swarming) motility. Using informative mutagenesis, we reveal PilG positively regulates swimming motility while and negatively regulating swarming motility. Conversely, PilH negatively regulates swimming behaviour while and positively regulating swarming motility. By transcriptome analyses (RNA-seq and RT-PCR) we confirm these observations as PilG is shown to upregulate many genes involved chemotaxis and flagellar biosynthesis but these similar genes were downregulated by PilH. Co-immunoprecipitation, bacterial two-hybrid and pull-down analyses showed that PilH and PilG were able to interact with district subsets of proteins that potentially account for their regulatory impact. Additionally, we present evidence, using mutagenesis that PilG and PilH are involved in other cellular processes, including chemotaxis and virulence. Conclusions Taken together, we demonstrate that for the conditions tested PilG and PilH have inverse regulatory effects on flagellum-dependent and pili-dependent motility in Xcc and that this regulatory impact depends on these proteins influences on genes/proteins involved in flagellar biosynthesis and pilus assembly.
Collapse
Affiliation(s)
- Yan-Hua Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Li Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Guo-Fang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Ming Leng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Guang-Tao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
| |
Collapse
|
15
|
Lovato A, Pignatti A, Vitulo N, Vandelle E, Polverari A. Inhibition of Virulence-Related Traits in Pseudomonas syringae pv. actinidiae by Gunpowder Green Tea Extracts. Front Microbiol 2019; 10:2362. [PMID: 31681224 PMCID: PMC6797950 DOI: 10.3389/fmicb.2019.02362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/27/2019] [Indexed: 12/23/2022] Open
Abstract
Green tea is a widely-consumed healthy drink produced from the leaves of Camellia sinensis. It is renowned for its antioxidant and anticarcinogenic properties, but also displays significant antimicrobial activity against numerous human pathogens. Here we analyzed the antimicrobial activity of Gunpowder green tea against Pseudomonas syringae pv. actinidiae (Psa), the agent that causes kiwifruit bacterial canker. At the phenotypic level, tea extracts strongly inhibited Psa growth and swimming motility, suggesting it could reduce Psa epiphytic survival during plant colonization. The loss of bacterial virulence-related traits following treatment with tea extracts was also investigated by large-scale transcriptome analysis, which confirmed the in vitro phenotypes and revealed the induction of adaptive responses in the treated bacteria allowing them to cope with iron deficiency and oxidative stress. Such molecular changes may account for the ability of Gunpowder green tea to protect kiwifruit against Psa infection.
Collapse
Affiliation(s)
| | | | | | - Elodie Vandelle
- Biotechnology Department, University of Verona, Verona, Italy
| | | |
Collapse
|
16
|
Leng M, Lu Z, Qin Z, Qi Y, Lu G, Tang J. Flp, a Fis-like protein, contributes to the regulation of type III secretion and virulence processes in the phytopathogen Xanthomonas campestris pv. campestris. MOLECULAR PLANT PATHOLOGY 2019; 20:1119-1133. [PMID: 31090173 PMCID: PMC6640185 DOI: 10.1111/mpp.12818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The ability of the plant pathogen Xanthomonas campestris pv. campestris (Xcc) to cause disease is dependent on its ability to adapt quickly to the host environment during infection. Like most bacterial pathogens, Xcc has evolved complex regulatory networks that ensure expression and regulation of their virulence genes. Here, we describe the identification and characterization of a Fis-like protein (named Flp), which plays an important role in virulence and type III secretion system (T3SS) gene expression in Xcc. Deletion of flp caused reduced virulence and hypersensitive response (HR) induction of Xcc and alterations in stress tolerance. Global transcriptome analyses revealed the Flp had a broad regulatory role and that most T3SS HR and pathogenicity (hrp) genes were down-regulated in the flp mutant. β-glucuronidase activity assays implied that Flp regulates the expression of hrp genes via controlling the expression of hrpX. More assays confirmed that Flp binds to the promoter of hrpX and affected the transcription of hrpX directly. Interestingly, the constitutive expression of hrpX in the flp mutant restored the HR phenotype but not full virulence. Taken together, the findings describe the unrecognized regulatory role of Flp protein that controls hrp gene expression and pathogenesis in Xcc.
Collapse
Affiliation(s)
- Ming Leng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi University100 Daxue RoadNanningGuangxi530004China
| | - Zhuo‐Jian Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi University100 Daxue RoadNanningGuangxi530004China
| | - Zuo‐Shu Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi University100 Daxue RoadNanningGuangxi530004China
| | - Yan‐Hua Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi University100 Daxue RoadNanningGuangxi530004China
| | - Guang‐Tao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi University100 Daxue RoadNanningGuangxi530004China
| | - Ji‐Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi University100 Daxue RoadNanningGuangxi530004China
| |
Collapse
|
17
|
Liu G, Su H, Sun H, Lu G, Tang J. Competitive control of endoglucanase gene engXCA expression in the plant pathogen Xanthomonas campestris by the global transcriptional regulators HpaR1 and Clp. MOLECULAR PLANT PATHOLOGY 2019; 20:51-68. [PMID: 30091270 PMCID: PMC6430473 DOI: 10.1111/mpp.12739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Transcriptional regulators are key players in pathways that allow bacteria to alter gene expression in response to environmental conditions. However, work to understand how such transcriptional regulatory networks interact in bacterial plant pathogens is limited. Here, in the phytopathogen Xanthomonas campestris, we demonstrate that the global transcriptional regulator HpaR1 influences many of the same genes as another global regulator Clp, including the engXCA gene that encodes extracellular endoglucanase. We demonstrate that HpaR1 facilitates the binding of RNA polymerase to the engXCA promoter. In addition, we show that HpaR1 binds directly to the engXCA promoter. Furthermore, our in vitro tests characterize two binding sites for Clp within the engXCA promoter. Interestingly, one of these sites overlaps with the HpaR1 binding site. Mobility shift assays reveal that HpaR1 has greater affinity for binding to the engXCA promoter. This observation is supported by promoter activity assays, which show that the engXCA expression level is lower when both HpaR1 and Clp are present together, rather than alone. The data also reveal that HpaR1 and Clp activate engXCA gene expression by binding directly to its promoter. This transcriptional activation is modulated as both regulators compete to bind to overlapping sites on the engXCA promoter. Bioinformatics analysis suggests that this mechanism may be used broadly in Xanthomonas campestris pv. campestris (Xcc) and is probably widespread in Xanthomonads and, potentially, other bacteria. Taken together, these data support a novel mechanism of competitive activation by two global regulators of virulence gene expression in Xcc which is probably widespread in Xanthomonads and, potentially, other bacteria.
Collapse
Affiliation(s)
- Guo‐Fang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi University100 Daxue RoadNanningGuangxi530004China
| | - Hui‐Zhao Su
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi University100 Daxue RoadNanningGuangxi530004China
| | - Han‐Yang Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi University100 Daxue RoadNanningGuangxi530004China
| | - Guang‐Tao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi University100 Daxue RoadNanningGuangxi530004China
| | - Ji‐Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi University100 Daxue RoadNanningGuangxi530004China
| |
Collapse
|
18
|
Nakanaga K, Ogura Y, Toyoda A, Yoshida M, Fukano H, Fujiwara N, Miyamoto Y, Nakata N, Kazumi Y, Maeda S, Ooka T, Goto M, Tanigawa K, Mitarai S, Suzuki K, Ishii N, Ato M, Hayashi T, Hoshino Y. Naturally occurring a loss of a giant plasmid from Mycobacterium ulcerans subsp. shinshuense makes it non-pathogenic. Sci Rep 2018; 8:8218. [PMID: 29844323 PMCID: PMC5974349 DOI: 10.1038/s41598-018-26425-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/30/2018] [Indexed: 12/30/2022] Open
Abstract
Mycobacterium ulcerans is the causative agent of Buruli ulcer (BU), a WHO-defined neglected tropical disease. All Japanese BU causative isolates have shown distinct differences from the prototype and are categorized as M. ulcerans subspecies shinshuense. During repeated sub-culture, we found that some M. shinshuense colonies were non-pigmented whereas others were pigmented. Whole genome sequence analysis revealed that non-pigmented colonies did not harbor a giant plasmid, which encodes elements needed for mycolactone toxin biosynthesis. Moreover, mycolactone was not detected in sterile filtrates of non-pigmented colonies. Mice inoculated with suspensions of pigmented colonies died within 5 weeks whereas those infected with suspensions of non-pigmented colonies had significantly prolonged survival (>8 weeks). This study suggests that mycolactone is a critical M. shinshuense virulence factor and that the lack of a mycolactone-producing giant plasmid makes the strain non-pathogenic. We made an avirulent mycolactone-deletion mutant strain directly from the virulent original.
Collapse
Affiliation(s)
- Kazue Nakanaga
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, Shizuoka, Japan
| | - Mitsunori Yoshida
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hanako Fukano
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Nagatoshi Fujiwara
- Department of Food and Nutrition, Faculty of Contemporary Human Life Science, Tezukayama University, Nara, Japan
| | - Yuji Miyamoto
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noboru Nakata
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuko Kazumi
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Shinji Maeda
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- School of Pharmacy, Hokkaido Pharmaceutical University, Sapporo, Japan
| | - Tadasuke Ooka
- Department of Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | - Kazunari Tanigawa
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan
| | - Satoshi Mitarai
- The Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Koichi Suzuki
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Norihisa Ishii
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Hoshino
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, Japan.
| |
Collapse
|
19
|
Pan Y, Liang F, Li RJ, Qian W. MarR-Family Transcription Factor HpaR Controls Expression of the vgrR-vgrS Operon of Xanthomonas campestris pv. campestris. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:299-310. [PMID: 29077520 DOI: 10.1094/mpmi-07-17-0187-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
MarR (multiple antibiotic resistance regulator)-family transcription factors (TFs), which regulate the expression of virulence factors and other physiological pathways in pathogenic bacteria, are regarded as ideal molecular targets for the development of novel antimicrobial strategies. In the plant bacterial pathogen Xanthomonas campestris pv. campestris, HpaR, a typical MarR-family TF, is associated with bacterial virulence, but its mechanism of virulence regulation remains unclear. Here, we dissected the HpaR regulon using high-throughput RNA sequencing and chromatin immunoprecipitation sequencing. HpaR directly or indirectly controls the expression of approximately 448 genes; it acts both as a transcriptional activator and a repressor to control the expression of downstream genes by directly binding to their promoter regions. The consensus HpaR-binding DNA motifs contain imperfect palindromic sequences similar to [G/T]CAACAATT[C/T]TTG. In-depth analysis revealed that HpaR positively modulates transcription level of the vgrR-vgrS operon that encodes an important two-component signal transduction system to sense iron depletion and regulate bacterial virulence. Epistasis analysis demonstrated that vgrR-vgrS is a core downstream component of HpaR regulation, as overexpression of vgrR restored the phenotypic deficiencies caused by a hpaR mutation. This dissection of the HpaR regulon should facilitate future studies focused on the activating mechanism of HpaR during bacterial infection.
Collapse
Affiliation(s)
- Yue Pan
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- 2 School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; and
| | - Fang Liang
- 3 Beijing Institute of Genomics, Chinese Academy of Sciences
| | - Ru-Jiao Li
- 3 Beijing Institute of Genomics, Chinese Academy of Sciences
| | - Wei Qian
- 1 State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
20
|
Maximiano MR, Oliveira-Neto OB, Franco OL, Mehta A. Validation of an in vitro system for studies of pathogenicity mechanisms in Xanthomonas campestris. FEMS Microbiol Lett 2017; 364:4494362. [PMID: 29040467 DOI: 10.1093/femsle/fnx217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/11/2017] [Indexed: 01/16/2023] Open
Abstract
Several minimal media capable of inducing pathogenicity genes have been used to study plant-pathogen interactions. An in planta assay to study a closer interaction between the bacteria and the host was also developed and has been employed by our group. In order to determine whether growth medium could be improved to better approximate in planta conditions beyond that offered by the defined minimal medium XVM1, we compared the expression of 20 Xanthomonas campestris pv. campestris (Xcc) genes by quantitative reverse transcription - polymerase chain reaction (qRT-PCR) under in vivo (bacteria recovered from the plant) and in vitro (rich medium NYG, minimal medium XVM1 and XVM1 + leaf extract) growth systems. The results showed a higher expression level of the genes in the in planta system when compared to growth in culture media. In planta growth is closest to a real interaction condition and captures the complexity of the plant cell environment; however, this system has some limitations. The main finding of our work is that the addition of plant extract to XVM1 medium results in a gene expression profile that better matches the in planta profile, when compared with the XVM1 medium alone, giving support to the use of plant extract to study pathogenicity mechanisms in Xanthomonas.
Collapse
Affiliation(s)
- Mariana Rocha Maximiano
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, Brasília, Distrito Federal 70770-917, Brazil.,Programa de Pós-Graduação em Ciências Biológicas (Imunologia e DIP/Genética e Biotecnologia), Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, S/n - Martelos, Juiz de Fora, Minas Gerais, 36036-330, Brazil
| | - Osmundo B Oliveira-Neto
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, Brasília, Distrito Federal 70770-917, Brazil
| | - Octávio L Franco
- Programa de Pós-Graduação em Ciências Biológicas (Imunologia e DIP/Genética e Biotecnologia), Universidade Federal de Juiz de Fora, Rua José Lourenço Kelmer, S/n - Martelos, Juiz de Fora, Minas Gerais, 36036-330, Brazil.,S-Inova Biotech, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Av. Tamandaré, 6000, Campo Grande, Mato Grosso do Sul, 79117-900, Brazil.,Centro de Analises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916N, Modulo C, Sala 219, Brasília, Distrito Federal 70790-100, Brazil
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, PBI, Av. W/5 Norte Final, Brasília, Distrito Federal 70770-917, Brazil
| |
Collapse
|
21
|
Chen L, Wang M, Huang L, Zhang Z, Liu F, Lu G. XC_0531 encodes a c-type cytochrome biogenesis protein and is required for pathogenesis in Xanthomonas campestris pv. campestris. BMC Microbiol 2017; 17:142. [PMID: 28655353 PMCID: PMC5488342 DOI: 10.1186/s12866-017-1056-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/21/2017] [Indexed: 11/13/2022] Open
Abstract
Background The phytopathogenic Xanthomonas campestris pv.campestris is a gram-negative bacterium and the causal agent of black-rot disease of cruciferous crops. Many gram-negative bacteria possess a family of proteins, called Dsbs, which are involved in disulfide bond formation in certain periplasmic proteins. In our preliminary screening of the virulence to the plants we identified that gene XC_0531 which annotated gene dsbD of Xanthomonas campestris pv. campestris (Xcc) is related to the virulence to the host plants. Results Here, we found XC_0531 encoded a DsbD like protein. Its deletion is sensitive to DTT and copper, decreased accumulation of free thiols in periplasm. Its deletion also affected heme synthesis, position of Soret band and the production of peak c550. This suggests that XC_0531 is related to c-type cytochromes biogenesis. XC_0531 mutation decreased the utilization of different carbon sources (such as galactose, xylose, maltose, saccharose and glucose), reduced extracellular polysaccharide (EPS) production, decreased extracellular enzyme activities (protease, cellulose and amylase), slowed down growth rate of Xcc and weakened virulence to the plants. These results suggest that these phenotypes caused by XC_0531 mutation is possibly due to deficient biosynthesis of c-type cytochromes in respiration chain and the formation of disulfide bonds. Our work confirmed the function of XC_0531 and provide theory basis for scientists working on molecular mechanisms of cytochrome c biogenesis, pathogenesis of Xcc, development of EPS commercial values and protecting plant from black rot. Conclusion We confirmed the function of gene XC_0531, which encodes a DsbD like protein, a protein correlated with c-type cytochrome biogenesis. This gene is related to the virulence to plants by affecting funtion of cytochromes c and probably disulfide bonds modification of proteins in type II secretion system (T2SS). Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1056-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory for Conservation and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, The Key Laboratory ofMinistry of Education for Microbial and Plant Genetic Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, China.,Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Yantai, China
| | - Mingpeng Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Yantai, China
| | - Li Huang
- State Key Laboratory for Conservation and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, The Key Laboratory ofMinistry of Education for Microbial and Plant Genetic Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, China
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Fanghua Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Yantai, China
| | - Guangtao Lu
- State Key Laboratory for Conservation and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, The Key Laboratory ofMinistry of Education for Microbial and Plant Genetic Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, China.
| |
Collapse
|