1
|
Descriptive Epidemiology of Infant Botulism in California: The First 40 Years. J Pediatr 2020; 227:247-257.e3. [PMID: 32800814 DOI: 10.1016/j.jpeds.2020.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/11/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To ascertain the descriptive epidemiology of infant botulism, the flaccid paralysis that results when neurotoxigenic Clostridium species produce botulinum toxin (BoNT) in the infant colon, in its first 40 years following initial recognition in California in 1976. STUDY DESIGN Cases were defined by laboratory identification of BoNT and/or neurotoxigenic Clostridium species in patients' feces. Parents were interviewed using a structured questionnaire. Descriptive epidemiologic characteristics were compared between 1976-1996 and 1997-2016. RESULTS From 1976-2016, 1345 cases of infant botulism occurred in 45 of 58 California counties (6.5 cases/100 000 live-births/year) caused by BoNT types A, B, Ba, Bf, and F; 88% of cases were ≤6 months of age and 51% were female. Cases were white (84.2%), Asian (8.9%), other races (3.8%), and African American (2.8%); 29.4% of cases were Hispanic. More than 99% of cases were hospitalized. Case occurrence peaked in summer-fall. Of 8 designated geographic regions, the Central Coast counties had 3 times the statewide incidence in both 20-year time periods. Breast-fed patients (83%) were more than twice as old at onset as formula-fed patients (median, 4.4 vs 1.7 months, respectively; P < .001). BoNT/A cases were older at onset than BoNT/B cases (median, 3.8 vs 2.9 months, respectively; P < .001). CONCLUSIONS Comprehensive continuous surveillance of infant botulism for 40 years in a large, diversely populated state identified fundamental epidemiologic characteristics of this uncommon illness. Unusual features included greater than 99% case hospitalization, absence of male preponderance, and a distinctive age distribution.
Collapse
|
2
|
Lam KH, Sikorra S, Weisemann J, Maatsch H, Perry K, Rummel A, Binz T, Jin R. Structural and biochemical characterization of the protease domain of the mosaic botulinum neurotoxin type HA. Pathog Dis 2018; 76:4982781. [PMID: 29688327 DOI: 10.1093/femspd/fty044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/20/2018] [Indexed: 11/13/2022] Open
Abstract
The extreme toxicity of botulinum neurotoxins (BoNTs) relies on their specific cleavage of SNARE proteins, which eventually leads to muscle paralysis. One newly identified mosaic toxin, BoNT/HA (aka H or FA), cleaves VAMP-2 at a unique position between residues L54 and E55, but the molecular basis underlying VAMP-2 recognition of BoNT/HA remains poorly characterized. Here, we report a ∼2.09 Å resolution crystal structure of the light chain protease domain of BoNT/HA (LC/HA). Structural comparison between LC/HA and LC of BoNT/F1 (LC/F1) reveals distinctive hydrophobic and electrostatic features near the active sites, which may explain their different VAMP-2 cleavage sites. When compared to BoNT/F5 that cleaves VAMP-2 at the same site as BoNT/HA, LC/HA displays higher affinity for VAMP-2, which could be caused by their different surface charge properties surrounding a VAMP-2 exosite-binding cleft. Furthermore, systematic mutagenesis studies on VAMP-2 and structural modeling demonstrate that residues R47 to K59 spanning the cleavage site in VAMP-2 may adopt a novel extended conformation when interacting with LC/HA and LC/F5. Taken together, our structure provides new insights into substrate recognition of BoNT/HA and paves the way for rational design of small molecule or peptide inhibitors against LC/HA.
Collapse
Affiliation(s)
- Kwok-Ho Lam
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697 USA
| | - Stefan Sikorra
- Institut für Zellbiochemie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Jasmin Weisemann
- Institut für Toxikologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Hannah Maatsch
- Institut für Zellbiochemie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Thomas Binz
- Institut für Zellbiochemie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697 USA
| |
Collapse
|
3
|
Sikorra S, Skiba M, Dorner MB, Weisemann J, Weil M, Valdezate S, Davletov B, Rummel A, Dorner BG, Binz T. Botulinum Neurotoxin F Subtypes Cleaving the VAMP-2 Q 58⁻K 59 Peptide Bond Exhibit Unique Catalytic Properties and Substrate Specificities. Toxins (Basel) 2018; 10:toxins10080311. [PMID: 30071628 PMCID: PMC6116196 DOI: 10.3390/toxins10080311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 11/16/2022] Open
Abstract
In the recent past, about 40 botulinum neurotoxin (BoNT) subtypes belonging to serotypes A, B, E, and F pathogenic to humans were identified among hundreds of independent isolates. BoNTs are the etiological factors of botulism and represent potential bioweapons; however, they are also recognized pharmaceuticals for the efficient counteraction of hyperactive nerve terminals in a variety of human diseases. The detailed biochemical characterization of subtypes as the basis for development of suitable countermeasures and possible novel therapeutic applications is lagging behind the increase in new subtypes. Here, we report the primary structure of a ninth subtype of BoNT/F. Its amino-acid sequence diverges by at least 8.4% at the holotoxin and 13.4% at the enzymatic domain level from all other known BoNT/F subtypes. We found that BoNT/F9 shares the scissile Q58/K59 bond in its substrate vesicle associated membrane protein 2 with the prototype BoNT/F1. Comparative biochemical analyses of four BoNT/F enzymatic domains showed that the catalytic efficiencies decrease in the order F1 > F7 > F9 > F6, and vary by up to a factor of eight. KM values increase in the order F1 > F9 > F6 ≈ F7, whereas kcat decreases in the order F7 > F1 > F9 > F6. Comparative substrate scanning mutagenesis studies revealed a unique pattern of crucial substrate residues for each subtype. Based upon structural coordinates of F1 bound to an inhibitor polypeptide, the mutational analyses suggest different substrate interactions in the substrate binding channel of each subtype.
Collapse
Affiliation(s)
- Stefan Sikorra
- Institute of Cell Biochemistry, OE 4310, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Martin Skiba
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany.
| | - Martin B Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany.
| | - Jasmin Weisemann
- Institute of Toxicology, OE 5340, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Mirjam Weil
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany.
| | - Sylvia Valdezate
- Reference and Research Laboratory for Taxonomy, Spanish National Centre of Microbiology, Institute of Health Carlos III, 28220 Madrid, Spain.
| | - Bazbek Davletov
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| | - Andreas Rummel
- Institute of Toxicology, OE 5340, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| | - Brigitte G Dorner
- Biological Toxins (ZBS 3), Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany.
| | - Thomas Binz
- Institute of Cell Biochemistry, OE 4310, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
| |
Collapse
|
4
|
Fonfria E, Elliott M, Beard M, Chaddock JA, Krupp J. Engineering Botulinum Toxins to Improve and Expand Targeting and SNARE Cleavage Activity. Toxins (Basel) 2018; 10:toxins10070278. [PMID: 29973505 PMCID: PMC6071219 DOI: 10.3390/toxins10070278] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 12/14/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are highly successful protein therapeutics. Over 40 naturally occurring BoNTs have been described thus far and, of those, only 2 are commercially available for clinical use. Different members of the BoNT family present different biological properties but share a similar multi-domain structure at the molecular level. In nature, BoNTs are encoded by DNA in producing clostridial bacteria and, as such, are amenable to recombinant production through insertion of the coding DNA into other bacterial species. This, in turn, creates possibilities for protein engineering. Here, we review the production of BoNTs by the natural host and also recombinant production approaches utilised in the field. Applications of recombinant BoNT-production include the generation of BoNT-derived domain fragments, the creation of novel BoNTs with improved performance and enhanced therapeutic potential, as well as the advancement of BoNT vaccines. In this article, we discuss site directed mutagenesis, used to affect the biological properties of BoNTs, including approaches to alter their binding to neurons and to alter the specificity and kinetics of substrate cleavage. We also discuss the target secretion inhibitor (TSI) platform, in which the neuronal binding domain of BoNTs is substituted with an alternative cellular ligand to re-target the toxins to non-neuronal systems. Understanding and harnessing the potential of the biological diversity of natural BoNTs, together with the ability to engineer novel mutations and further changes to the protein structure, will provide the basis for increasing the scope of future BoNT-based therapeutics.
Collapse
Affiliation(s)
- Elena Fonfria
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Mark Elliott
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Matthew Beard
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - John A Chaddock
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Johannes Krupp
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| |
Collapse
|
5
|
Hackett G, Moore K, Burgin D, Hornby F, Gray B, Elliott M, Mir I, Beard M. Purification and Characterization of Recombinant Botulinum Neurotoxin Serotype FA, Also Known as Serotype H. Toxins (Basel) 2018; 10:E195. [PMID: 29751611 PMCID: PMC5983251 DOI: 10.3390/toxins10050195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 11/17/2022] Open
Abstract
We have purified and characterized recombinant botulinum neurotoxin serotype FA (BoNT/FA). This protein has also been named as a new serotype (serotype H), but the classification has been controversial. A lack of well-characterized, highly pure material has been a roadblock to study. Here we report purification and characterization of enzymatically active, and of inactive nontoxic, recombinant forms of BoNT/FA as tractable alternatives to purifying this neurotoxin from native Clostridium botulinum. BoNT/FA cleaves the same intracellular target proteins as BoNT/F1 and other F serotype BoNTs; the intracellular targets are vesicle associated membrane proteins (VAMP) 1, 2 and 3. BoNT/FA cleaves the same site in VAMP-2 as BoNT/F5, which is different from the cleavage site of other F serotype BoNTs. BoNT/FA has slower enzyme kinetics than BoNT/F1 in a cell-free protease assay and is less potent at inhibiting ex vivo nerve-stimulated skeletal muscle contraction. In contrast, BoNT/FA is more potent at inhibiting neurotransmitter release from cultured neurons.
Collapse
Affiliation(s)
- Gavin Hackett
- Ipsen Bioinnovation Ltd., 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Kevin Moore
- Ipsen Bioinnovation Ltd., 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - David Burgin
- Ipsen Bioinnovation Ltd., 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Fraser Hornby
- Ipsen Bioinnovation Ltd., 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Bryony Gray
- Ipsen Bioinnovation Ltd., 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Mark Elliott
- Ipsen Bioinnovation Ltd., 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Imran Mir
- Ipsen Bioinnovation Ltd., 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Matthew Beard
- Ipsen Bioinnovation Ltd., 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| |
Collapse
|