1
|
Liu D, Bhunia AK. Anchorless Bacterial Moonlighting Metabolic Enzymes Modulate the Immune System and Contribute to Pathogenesis. ACS Infect Dis 2024; 10:2551-2566. [PMID: 39066728 DOI: 10.1021/acsinfecdis.4c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Moonlighting proteins (MPs), characterized by their ability to perform multiple physiologically unrelated functions without alterations to their primary structures, represent a fascinating class of biomolecules with significant implications for host-pathogen interactions. This Review highlights the emerging importance of metabolic moonlighting proteins (MetMPs) in bacterial pathogenesis, focusing on their non-canonical secretion and unconventional surface anchoring mechanisms. Despite lacking typical signal peptides and anchoring motifs, MetMPs such as acetaldehyde alcohol dehydrogenase (AdhE) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are secreted and localized to the bacterial surface under stress conditions, facilitating host colonization and immune evasion. The secretion of MetMPs, often observed during conditions such as resource scarcity or infection, suggests a complex regulation akin to the overexpression of heat shock proteins in response to environmental stresses. This Review proposes two potential pathways for MetMP secretion: membrane damage-induced permeability and co-transportation with traditionally secreted proteins, highlighting a remarkable bacterial adaptability. Biophysically, surface anchoring of MetMPs is driven by electrostatic interactions, bypassing the need for conventional anchoring sequences. This mechanism is exemplified by the interaction between the bifunctional enzyme AdhE (known as Listeria adhesion protein, LAP) and the internalin B (InlB) in Listeria monocytogenes, which is mediated by charged residues facilitating adhesion to host tissues. Furthermore, MetMPs play critical roles in iron homeostasis, immune modulation, and evasion, underscoring their multifaceted roles in bacterial pathogenicity. The intricate dynamics of MetMP secretion and anchoring underline the need for further research to unravel the molecular mechanisms underpinning these processes, offering potential new targets for therapeutic intervention against bacterial infections.
Collapse
Affiliation(s)
- Dongqi Liu
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
| | - Arun K Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Martín-Villanueva S, Galmozzi CV, Ruger-Herreros C, Kressler D, de la Cruz J. The Beak of Eukaryotic Ribosomes: Life, Work and Miracles. Biomolecules 2024; 14:882. [PMID: 39062596 PMCID: PMC11274626 DOI: 10.3390/biom14070882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Ribosomes are not totally globular machines. Instead, they comprise prominent structural protrusions and a myriad of tentacle-like projections, which are frequently made up of ribosomal RNA expansion segments and N- or C-terminal extensions of ribosomal proteins. This is more evident in higher eukaryotic ribosomes. One of the most characteristic protrusions, present in small ribosomal subunits in all three domains of life, is the so-called beak, which is relevant for the function and regulation of the ribosome's activities. During evolution, the beak has transitioned from an all ribosomal RNA structure (helix h33 in 16S rRNA) in bacteria, to an arrangement formed by three ribosomal proteins, eS10, eS12 and eS31, and a smaller h33 ribosomal RNA in eukaryotes. In this review, we describe the different structural and functional properties of the eukaryotic beak. We discuss the state-of-the-art concerning its composition and functional significance, including other processes apparently not related to translation, and the dynamics of its assembly in yeast and human cells. Moreover, we outline the current view about the relevance of the beak's components in human diseases, especially in ribosomopathies and cancer.
Collapse
Affiliation(s)
- Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Carla V. Galmozzi
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Carmen Ruger-Herreros
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Dieter Kressler
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland;
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| |
Collapse
|
3
|
Baid P, Sengupta J. Cryo-EM captures a unique conformational rearrangement in 23S rRNA helices of the Mycobacterium 50S subunit. Int J Biol Macromol 2023; 253:126876. [PMID: 37709237 DOI: 10.1016/j.ijbiomac.2023.126876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Structural investigations of the ribosomes isolated from pathogenic and non-pathogenic Mycobacterium species have identified several mycobacteria-specific structural features of ribosomal RNA and proteins. Here, we report structural evidence of a hitherto unknown conformational switch of mycobacterium 23S rRNA helices (H54a and H67-H71). Cryo-electron microscopy (cryo-EM) structures (~3-4 Å) of the M. smegmatis (Msm) log-phase 50S ribosomal subunit revealed conformational variability in H67-H71 region of the 23S rRNA, and manifested that, while H68 possesses the usual stretched conformation in one class of the maps, another one exhibits a bulge-out, fused density of H68-H69 at the inter-subunit surface, indicating an intrinsic dynamics of these rRNA helices. Remarkably, altered conformation of H68 forming a more prominent bulge-out structure at the inter-subunit surface of the 50S subunit due to the conformational rearrangements of 23S rRNA H67-H71 region was clearly visualized in a 3 Å cryo-EM map of the 50S subunit obtained from the stationary phase ribosome dataset. The Msm50S subunit having such bulge-out conformation at the intersubunit surface would be incompatible for associating with the 30S subunit due to its inability to form major inter-subunit bridges. Evidently, availability of active 70S ribosome pool can be modulated by stabilizing either one of the H68 conformation.
Collapse
Affiliation(s)
- Priya Baid
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Jayati Sengupta
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
van Lis R, Couté Y, Brugière S, Tourasse NJ, Laurent B, Nitschke W, Vallon O, Atteia A. Phylogenetic and functional diversity of aldehyde-alcohol dehydrogenases in microalgae. PLANT MOLECULAR BIOLOGY 2021; 105:497-511. [PMID: 33415608 DOI: 10.1007/s11103-020-01105-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/10/2020] [Indexed: 06/12/2023]
Abstract
The study shows the biochemical and enzymatic divergence between the two aldehyde-alcohol dehydrogenases of the alga Polytomella sp., shedding light on novel aspects of the enzyme evolution amid unicellular eukaryotes. Aldehyde-alcohol dehydrogenases (ADHEs) are large metalloenzymes that typically perform the two-step reduction of acetyl-CoA into ethanol. These enzymes consist of an N-terminal acetylating aldehyde dehydrogenase domain (ALDH) and a C-terminal alcohol dehydrogenase (ADH) domain. ADHEs are present in various bacterial phyla as well as in some unicellular eukaryotes. Here we focus on ADHEs in microalgae, a diverse and polyphyletic group of plastid-bearing unicellular eukaryotes. Genome survey shows the uneven distribution of the ADHE gene among free-living algae, and the presence of two distinct genes in various species. We show that the non-photosynthetic Chlorophyte alga Polytomella sp. SAG 198.80 harbors two genes for ADHE-like enzymes with divergent C-terminal ADH domains. Immunoblots indicate that both ADHEs accumulate in Polytomella cells growing aerobically on acetate or ethanol. ADHE1 of ~ 105-kDa is found in particulate fractions, whereas ADHE2 of ~ 95-kDa is mostly soluble. The study of the recombinant enzymes revealed that ADHE1 has both the ALDH and ADH activities, while ADHE2 has only the ALDH activity. Phylogeny shows that the divergence occurred close to the root of the Polytomella genus within a clade formed by the majority of the Chlorophyte ADHE sequences, next to the cyanobacterial clade. The potential diversification of function in Polytomella spp. unveiled here likely took place after the loss of photosynthesis. Overall, our study provides a glimpse at the complex evolutionary history of the ADHE in microalgae which includes (i) acquisition via different gene donors, (ii) gene duplication and (iii) independent evolution of one of the two enzymatic domains.
Collapse
Affiliation(s)
- Robert van Lis
- Aix Marseille Université, CNRS, BIP UMR 7281, Marseille, France
- LBE, Univ Montpellier, INRAE, Narbonne, France
| | - Yohann Couté
- Univ Grenoble Alpes, CEA, INSERM, IRIG, Grenoble, BGE, France
| | - Sabine Brugière
- Univ Grenoble Alpes, CEA, INSERM, IRIG, Grenoble, BGE, France
| | - Nicolas J Tourasse
- UMR7141 CNRS-Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France
| | - Benoist Laurent
- FR 550 CNRS, Institut de Biologie Physico-Chimique, Paris, France
| | | | - Olivier Vallon
- UMR7141 CNRS-Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France
| | - Ariane Atteia
- Aix Marseille Université, CNRS, BIP UMR 7281, Marseille, France.
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Sète, France.
- MARBEC, Station Ifremer, Avenue Jean Monnet, Sète, France.
| |
Collapse
|
5
|
Jeffery CJ. Enzymes, pseudoenzymes, and moonlighting proteins: diversity of function in protein superfamilies. FEBS J 2020; 287:4141-4149. [PMID: 32534477 DOI: 10.1111/febs.15446] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/20/2020] [Accepted: 06/08/2020] [Indexed: 12/31/2022]
Abstract
As more genome sequences are elucidated, there is an increasing need for information about the functions of the millions of proteins they encode. The function of a newly sequenced protein is often estimated by sequence alignment with the sequences of proteins with known functions. However, protein superfamilies can contain members that share significant amino acid sequence and structural homology yet catalyze different reactions or act on different substrates. Some homologous proteins differ by having a second or even third function, called moonlighting proteins. More recently, it was found that most protein superfamilies also include pseudoenzymes, a protein, or a domain within a protein, that has a three-dimensional fold that resembles a conventional catalytically active enzyme, but has no catalytic activity. In this review, we discuss several examples of protein families that contain enzymes, pseudoenzymes, and moonlighting proteins. It is becoming clear that pseudoenzymes and moonlighting proteins are widespread in the evolutionary tree, and in many protein families, and they are often very similar in sequence and structure to their monofunctional and catalytically active counterparts. A greater understanding is needed to clarify when similarities and differences in amino acid sequences and structures correspond to similarities and differences in biochemical functions and cellular roles. This information can help improve programs that identify protein functions from sequence or structure and assist in more accurate annotation of sequence and structural databases, as well as in our understanding of the broad diversity of protein functions.
Collapse
Affiliation(s)
- Constance J Jeffery
- Department of Biological Sciences, University of Illinois at Chicago, IL, USA
| |
Collapse
|
6
|
Kurylo CM, Parks MM, Juette MF, Zinshteyn B, Altman RB, Thibado JK, Vincent CT, Blanchard SC. Endogenous rRNA Sequence Variation Can Regulate Stress Response Gene Expression and Phenotype. Cell Rep 2020; 25:236-248.e6. [PMID: 30282032 PMCID: PMC6312700 DOI: 10.1016/j.celrep.2018.08.093] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 08/16/2018] [Accepted: 08/30/2018] [Indexed: 11/30/2022] Open
Abstract
Prevailing dogma holds that ribosomes are uniform in composition and function. Here, we show that nutrient limitation-induced stress in E. coli changes the relative expression of rDNA operons to alter the rRNA composition within the actively translating ribosome pool. The most upregulated operon encodes the unique 16S rRNA, rrsH, distinguished by conserved sequence variation within the small ribosomal subunit. rrsH-bearing ribosomes affect the expression of functionally coherent gene sets and alter the levels of the RpoS sigma factor, the master regulator of the general stress response. These impacts are associated with phenotypic changes in antibiotic sensitivity, biofilm formation, and cell motility and are regulated by stress response proteins, RelA and RelE, as well as the metabolic enzyme and virulence-associated protein, AdhE. These findings establish that endogenously encoded, naturally occurring rRNA sequence variation can modulate ribosome function, central aspects of gene expression regulation, and cellular physiology. Most organisms encode multiple, distinct copies of rRNA genes, rendering the composition of the ribosome pool intrinsically heterogeneous. Here, Kurylo et al. show that nutrient limitation in E. coli upregulates the expression of ribosomes bearing conserved sequence variation in 16S rRNA that can regulate gene expression and phenotype.
Collapse
Affiliation(s)
- Chad M Kurylo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Matthew M Parks
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Manuel F Juette
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Boris Zinshteyn
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Roger B Altman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jordana K Thibado
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - C Theresa Vincent
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Scott C Blanchard
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA; Tri-Institutional Training Program in Chemical Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
7
|
AcrR and Rex Control Mannitol and Sorbitol Utilization through Their Cross-Regulation of Aldehyde-Alcohol Dehydrogenase (AdhE) in Lactobacillus plantarum. Appl Environ Microbiol 2019; 85:AEM.02035-18. [PMID: 30530710 DOI: 10.1128/aem.02035-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/28/2018] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus plantarum is a versatile bacterium that occupies a wide range of environmental niches. In this study, we found that a bifunctional aldehyde-alcohol dehydrogenase-encoding gene, adhE, was responsible for L. plantarum being able to utilize mannitol and sorbitol through cross-regulation by two DNA-binding regulators. In L. plantarum NF92, adhE was greatly induced, and the growth of an adhE-disrupted (ΔadhE) strain was repressed when sorbitol or mannitol instead of glucose was used as a carbon source. The results of enzyme activity and metabolite assays demonstrated that AdhE could catalyze the synthesis of ethanol in L. plantarum NF92 when sorbitol or mannitol was used as the carbon source. AcrR and Rex were two transcriptional factors screened by an affinity isolation method and verified to regulate the expression of adhE DNase I footprinting assay results showed that they shared a binding site (GTTCATTAATGAAC) in the adhE promoter. Overexpression and knockout of AcrR showed that AcrR was a novel regulator to promote the transcription of adhE The activator AcrR and repressor Rex may cross-regulate adhE when L. plantarum NF92 utilizes sorbitol or mannitol. Thus, a model of the control of adhE by AcrR and Rex during L. plantarum NF92 utilization of mannitol or sorbitol was proposed.IMPORTANCE The function and regulation of AdhE in the important probiotic genus Lactobacillus are rarely reported. Here we demonstrated that AdhE is responsible for sorbitol and mannitol utilization and is cross-regulated by two transcriptional regulators in L. plantarum NF92, which had not been reported previously. This is important for L. plantarum to compete and survive in some harsh environments in which sorbitol or mannitol could be used as carbon source. A novel transcriptional regulator AcrR was identified to be important to promote the expression of adhE, which was unknown before. The cross-regulation of adhE by AcrR and Rex is important to balance the level of NADH in the cell during sorbitol or mannitol utilization.
Collapse
|
8
|
Identification of functional interactome of a key cell division regulatory protein CedA of E.coli. Int J Biol Macromol 2017; 106:763-767. [PMID: 28818726 DOI: 10.1016/j.ijbiomac.2017.08.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 11/23/2022]
Abstract
Cell division is compromised in DnaAcos mutant Escherichia coli cells that results in filamentous cell morphology. This is countered by over-expression of CedA protein that induces cytokinesis and thus, regular cell morphology is regained; however via an unknown mechanism. To understand the process systematically, exact role of CedA should be deciphered. Protein interactions are crucial for functional organization of a cell and their identification helps in revealing exact function(s) of a protein and its binding partners. Thus, this study was intended to identify CedA binding proteins (CBPs) to gain more clues of CedA function. We isolated CBPs by pull down assay using purified recombinant CedA and identified nine CBPs by mass spectrometric analysis (MALDI-TOF MS and LC-MS/MS), viz. PDHA1, RL2, DNAK, LPP, RPOB, G6PD, GLMS, RL3 and YBCJ. Based on CBPs identified, we hypothesize that CedA plays a crucial and multifaceted role in cell cycle regulation and specific pathways in which CedA participates may include transcription and energy metabolism. However, further validation through in-vitro and in-vivo experiments is necessary. In conclusion, identification of CBPs may help us in deciphering mechanism of CedA mediated cell division during chromosomal DNA over-replication.
Collapse
|
9
|
Abstract
Bacteria gain antibiotic resistance genes by horizontal acquisition of mobile genetic elements (MGE) from other lineages. Newly acquired MGEs are often poorly adapted causing intragenomic conflicts, resolved by compensatory adaptation of the chromosome, the MGE or reciprocal coadaptation. The footprints of such intragenomic coevolution are present in bacterial genomes, suggesting an important role promoting genomic integration of horizontally acquired genes, but direct experimental evidence of the process is limited. Here we show adaptive modulation of tetracycline resistance via intragenomic coevolution between Escherichia coli and the multi-drug resistant (MDR) plasmid RK2. Tetracycline treatments, including monotherapy or combination therapies with ampicillin, favoured de novo chromosomal resistance mutations coupled with mutations on RK2 impairing the plasmid-encoded tetracycline efflux-pump. These mutations together provided increased tetracycline resistance at reduced cost. Additionally, the chromosomal resistance mutations conferred cross-resistance to chloramphenicol. Reciprocal coadaptation was not observed under ampicillin-only or no antibiotic selection. Intragenomic coevolution can create genomes comprised of multiple replicons that together provide high-level, low-cost resistance, but the resulting co-dependence may limit the spread of coadapted MGEs to other lineages.
Collapse
|
10
|
van Lis R, Popek M, Couté Y, Kosta A, Drapier D, Nitschke W, Atteia A. Concerted Up-regulation of Aldehyde/Alcohol Dehydrogenase (ADHE) and Starch in Chlamydomonas reinhardtii Increases Survival under Dark Anoxia. J Biol Chem 2016; 292:2395-2410. [PMID: 28007962 DOI: 10.1074/jbc.m116.766048] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/21/2016] [Indexed: 11/06/2022] Open
Abstract
Aldehyde/alcohol dehydrogenases (ADHEs) are bifunctional enzymes that commonly produce ethanol from acetyl-CoA with acetaldehyde as intermediate and play a key role in anaerobic redox balance in many fermenting bacteria. ADHEs are also present in photosynthetic unicellular eukaryotes, where their physiological role and regulation are, however, largely unknown. Herein we provide the first molecular and enzymatic characterization of the ADHE from the photosynthetic microalga Chlamydomonas reinhardtii Purified recombinant ADHE catalyzed the reversible NADH-mediated interconversions of acetyl-CoA, acetaldehyde, and ethanol but seemed to be poised toward the production of ethanol from acetaldehyde. Phylogenetic analysis of the algal fermentative enzyme supports a vertical inheritance from a cyanobacterial-related ancestor. ADHE was located in the chloroplast, where it associated in dimers and higher order oligomers. Electron microscopy analysis of ADHE-enriched stromal fractions revealed fine spiral structures, similar to bacterial ADHE spirosomes. Protein blots showed that ADHE is regulated under oxic conditions. Up-regulation is observed in cells exposed to diverse physiological stresses, including zinc deficiency, nitrogen starvation, and inhibition of carbon concentration/fixation capacity. Analyses of the overall proteome and fermentation profiles revealed that cells with increased ADHE abundance exhibit better survival under dark anoxia. This likely relates to the fact that greater ADHE abundance appeared to coincide with enhanced starch accumulation, which might reflect ADHE-mediated anticipation of anaerobic survival.
Collapse
Affiliation(s)
- Robert van Lis
- From the Aix Marseille Université, CNRS, BIP-UMR 7281, 13402 Marseille, France.,LBE, INRA, 11100 Narbonne, France
| | - Marion Popek
- From the Aix Marseille Université, CNRS, BIP-UMR 7281, 13402 Marseille, France
| | - Yohann Couté
- the Université Grenoble Alpes, BIG-BGE, 38000 Grenoble, France.,the Commissariat à l'Energie Atomique, BIG-BGE, 38000 Grenoble, France.,INSERM, BGE, 38000 Grenoble, France
| | - Artemis Kosta
- the Microscopy Core Facility, FR3479 Institut de Microbiologie de la Méditerranée, 13402 Marseille cedex 20, France, and
| | - Dominique Drapier
- the Institut de Biologie Physico-Chimique, UMR7141 CNRS-UPMC, 75005 Paris, France
| | - Wolfgang Nitschke
- From the Aix Marseille Université, CNRS, BIP-UMR 7281, 13402 Marseille, France
| | - Ariane Atteia
- From the Aix Marseille Université, CNRS, BIP-UMR 7281, 13402 Marseille, France,
| |
Collapse
|
11
|
Gaona-López C, Julián-Sánchez A, Riveros-Rosas H. Diversity and Evolutionary Analysis of Iron-Containing (Type-III) Alcohol Dehydrogenases in Eukaryotes. PLoS One 2016; 11:e0166851. [PMID: 27893862 PMCID: PMC5125639 DOI: 10.1371/journal.pone.0166851] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/05/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Alcohol dehydrogenase (ADH) activity is widely distributed in the three domains of life. Currently, there are three non-homologous NAD(P)+-dependent ADH families reported: Type I ADH comprises Zn-dependent ADHs; type II ADH comprises short-chain ADHs described first in Drosophila; and, type III ADH comprises iron-containing ADHs (FeADHs). These three families arose independently throughout evolution and possess different structures and mechanisms of reaction. While types I and II ADHs have been extensively studied, analyses about the evolution and diversity of (type III) FeADHs have not been published yet. Therefore in this work, a phylogenetic analysis of FeADHs was performed to get insights into the evolution of this protein family, as well as explore the diversity of FeADHs in eukaryotes. PRINCIPAL FINDINGS Results showed that FeADHs from eukaryotes are distributed in thirteen protein subfamilies, eight of them possessing protein sequences distributed in the three domains of life. Interestingly, none of these protein subfamilies possess protein sequences found simultaneously in animals, plants and fungi. Many FeADHs are activated by or contain Fe2+, but many others bind to a variety of metals, or even lack of metal cofactor. Animal FeADHs are found in just one protein subfamily, the hydroxyacid-oxoacid transhydrogenase (HOT) subfamily, which includes protein sequences widely distributed in fungi, but not in plants), and in several taxa from lower eukaryotes, bacteria and archaea. Fungi FeADHs are found mainly in two subfamilies: HOT and maleylacetate reductase (MAR), but some can be found also in other three different protein subfamilies. Plant FeADHs are found only in chlorophyta but not in higher plants, and are distributed in three different protein subfamilies. CONCLUSIONS/SIGNIFICANCE FeADHs are a diverse and ancient protein family that shares a common 3D scaffold with a patchy distribution in eukaryotes. The majority of sequenced FeADHs from eukaryotes are distributed in just two subfamilies, HOT and MAR (found mainly in animals and fungi). These two subfamilies comprise almost 85% of all sequenced FeADHs in eukaryotes.
Collapse
Affiliation(s)
- Carlos Gaona-López
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM). Cd. Universitaria, Ciudad de México, México
| | - Adriana Julián-Sánchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM). Cd. Universitaria, Ciudad de México, México
| | - Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM). Cd. Universitaria, Ciudad de México, México
- * E-mail:
| |
Collapse
|