1
|
de Morree A, Rando TA. Regulation of adult stem cell quiescence and its functions in the maintenance of tissue integrity. Nat Rev Mol Cell Biol 2023; 24:334-354. [PMID: 36922629 PMCID: PMC10725182 DOI: 10.1038/s41580-022-00568-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 03/18/2023]
Abstract
Adult stem cells are important for mammalian tissues, where they act as a cell reserve that supports normal tissue turnover and can mount a regenerative response following acute injuries. Quiescent stem cells are well established in certain tissues, such as skeletal muscle, brain, and bone marrow. The quiescent state is actively controlled and is essential for long-term maintenance of stem cell pools. In this Review, we discuss the importance of maintaining a functional pool of quiescent adult stem cells, including haematopoietic stem cells, skeletal muscle stem cells, neural stem cells, hair follicle stem cells, and mesenchymal stem cells such as fibro-adipogenic progenitors, to ensure tissue maintenance and repair. We discuss the molecular mechanisms that regulate the entry into, maintenance of, and exit from the quiescent state in mice. Recent studies revealed that quiescent stem cells have a discordance between RNA and protein levels, indicating the importance of post-transcriptional mechanisms, such as alternative polyadenylation, alternative splicing, and translation repression, in the control of stem cell quiescence. Understanding how these mechanisms guide stem cell function during homeostasis and regeneration has important implications for regenerative medicine.
Collapse
Affiliation(s)
- Antoine de Morree
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| | - Thomas A Rando
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, USA.
- Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA.
- Center for Tissue Regeneration, Repair, and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Gao M, Wang K, Zhao H. GABAergic neurons maturation is regulated by a delicate network. Int J Dev Neurosci 2023; 83:3-15. [PMID: 36401305 DOI: 10.1002/jdn.10242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/25/2022] [Accepted: 11/13/2022] [Indexed: 11/21/2022] Open
Abstract
Gamma-aminobutyric acid-expressing (GABAergic) neurons are implicated in a variety of neuropsychiatric disorders, such as epilepsy, anxiety, autism, and other pathological processes, including cerebral ischemia injury and drug addiction. Therefore, GABAergic neuronal processes warrant further research. The development of GABAergic neurons is a tightly controlled process involving the activity of multiple transcription and growth factors. Here, we focus on the gene expression pathways and the molecular modulatory networks that are engaged during the development of GABAergic neurons with the goal of exploring regulatory mechanisms that influence GABAergic neuron fate (i.e., maturation). Overall, we hope to provide a basis for clarifying the pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Mingxing Gao
- Department of Histology and Embryology, School of Basic Medical Science, Jilin University, Changchun, Jilin, China
| | - Kaizhong Wang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Hui Zhao
- Department of Histology and Embryology, School of Basic Medical Science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
3
|
Omais S, El Atie YE, Ghanem N. Rb deficiency, neuronal survival and neurodegeneration: In search of the perfect mouse model. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100074. [PMID: 36699152 PMCID: PMC9869410 DOI: 10.1016/j.crneur.2023.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/26/2022] [Accepted: 01/06/2023] [Indexed: 01/14/2023] Open
Abstract
Three decades following the introduction of the first Rb knockout (KO) mouse model, the role of this critical protein in regulating brain development during embryogenesis and beyond remains a major scientific interest. Rb is a tumor suppressor gene known as the master regulator of the G1/S checkpoint and control of cell cycle progression in stem and progenitor cells, but also their differentiated progeny. Here, we review the recent literature about the various Rb conditional Knockout (cKO) and inducible Knockout (iKO) models studied thus far, highlighting how findings should always be interpreted in light of the model and context under inquiry especially when studying the role of Rb in neuronal survival. There is indeed evidence of age-specific, cell type-specific and region-specific effects following Rb KO in the embryonic and the adult mouse brain. In terms of modeling neurodegenerative processes in human diseases, we discuss cell cycle re-entry (CCE) as a candidate mechanism underlying the increased vulnerability of Rb-deficient neurons to cell death. Notably, mouse models may limit the extent to which CCE due to Rb inactivation can mimic the pathological course of these disorders, such as Alzheimer's disease. These remarks ought to be considered in future research when studying the consequences of Rb inactivation on neuronal generation and survival in rodents and their corresponding clinical significance in humans.
Collapse
Affiliation(s)
- Saad Omais
- Department of Biology, American University of Beirut, Lebanon
| | - Yara E. El Atie
- Department of Biology, American University of Beirut, Lebanon
| | - Noël Ghanem
- Department of Biology, American University of Beirut, Lebanon
| |
Collapse
|
4
|
Abstract
The methyltransferase-like (METTL) family is a diverse group of methyltransferases that can methylate nucleotides, proteins, and small molecules. Despite this diverse array of substrates, they all share a characteristic seven-beta-strand catalytic domain, and recent evidence suggests many also share an important role in stem cell biology. The most well characterized family members METTL3 and METTL14 dimerize to form an N6-methyladenosine (m6A) RNA methyltransferase with established roles in cancer progression. However, new mouse models indicate that METTL3/METTL14 are also important for embryonic stem cell (ESC) development and postnatal hematopoietic and neural stem cell self-renewal and differentiation. METTL1, METTL5, METTL6, METTL8, and METTL17 also have recently identified roles in ESC pluripotency and differentiation, while METTL11A/11B, METTL4, METTL7A, and METTL22 have been shown to play roles in neural, mesenchymal, bone, and hematopoietic stem cell development, respectively. Additionally, a variety of other METTL family members are translational regulators, a role that could place them as important players in the transition from stem cell quiescence to differentiation. Here we will summarize what is known about the role of METTL proteins in stem cell differentiation and highlight the connection between their growing importance in development and their established roles in oncogenesis.
Collapse
Affiliation(s)
- John G Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main St., Buffalo, NY, 14203, USA
| | - James P Catlin
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main St., Buffalo, NY, 14203, USA
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main St., Buffalo, NY, 14203, USA.
| |
Collapse
|
5
|
Fong BC, Chakroun I, Iqbal MA, Paul S, Bastasic J, O’Neil D, Yakubovich E, Bejjani AT, Ahmadi N, Carter A, Clark A, Leone G, Park DS, Ghanem N, Vandenbosch R, Slack RS. The Rb/E2F axis is a key regulator of the molecular signatures instructing the quiescent and activated adult neural stem cell state. Cell Rep 2022; 41:111578. [DOI: 10.1016/j.celrep.2022.111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 08/11/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
|
6
|
Omais S, Hilal RN, Halaby NN, Jaafar C, Ghanem N. Aging entails distinct requirements for Rb at maintaining adult neurogenesis. AGING BRAIN 2022; 2:100041. [PMID: 36908894 PMCID: PMC9997174 DOI: 10.1016/j.nbas.2022.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022] Open
Abstract
Cell cycle proteins play essential roles in regulating embryonic and adult neurogenesis in the mammalian brain. A key example is the Retinoblastoma protein (Rb) whose loss disrupts the whole neurogenic program during brain development, but only results in increased progenitor proliferation in the adult subventricular zone (SVZ) and compromised long-term neuronal survival in the adult olfactory bulb (OB). Whether this holds true of neurogenesis in the aged brain remains unknown. In this study, we find no evidence of irregular proliferation or early commitment defects in the mid-aged (12-month-old) and old-aged (20-month-old) SVZ following tamoxifen-inducible Rb knockout (Rb iKO) in mice. However, we highlight a striking defect in early maturation of Rb-deficient migrating neuroblasts along the rostral migratory stream (RMS), followed by massive decline in neuronal generation inside the aged OB. In the absence of Rb, we also show evidence of incomplete cell cycle re-entry (CCE) along with DNA damage in the young OB, while we find a similar trend towards CCE but no clear signs of DNA damage or neurodegenerative signatures (pTau or Synuclein accumulation) in the aged OB. However, such phenotype could be masked by the severe maturation defect reported above in addition to the natural decline in adult neurogenesis with age. Overall, we show that Rb is required to prevent CCE and DNA damage in adult-born OB neurons, hence maintain neuronal survival. Moreover, while loss of Rb alone is insufficient to trigger seeding of neurotoxic species, this study reveals age-dependent non-monotonic dynamics in regulating neurogenesis by Rb.
Collapse
Affiliation(s)
- Saad Omais
- Department of Biology, American University of Beirut, Lebanon
| | - Rouba N Hilal
- Department of Biology, American University of Beirut, Lebanon
| | - Nour N Halaby
- Department of Biology, American University of Beirut, Lebanon
| | - Carine Jaafar
- Department of Biology, American University of Beirut, Lebanon
| | - Noël Ghanem
- Department of Biology, American University of Beirut, Lebanon
| |
Collapse
|
7
|
Catlin JP, Marziali LN, Rein B, Yan Z, Feltri ML, Schaner Tooley CE. Age-related neurodegeneration and cognitive impairments of NRMT1 knockout mice are preceded by misregulation of RB and abnormal neural stem cell development. Cell Death Dis 2021; 12:1014. [PMID: 34711807 PMCID: PMC8553844 DOI: 10.1038/s41419-021-04316-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023]
Abstract
N-terminal methylation is an important posttranslational modification that regulates protein/DNA interactions and plays a role in many cellular processes, including DNA damage repair, mitosis, and transcriptional regulation. Our generation of a constitutive knockout mouse for the N-terminal methyltransferase NRMT1 demonstrated its loss results in severe developmental abnormalities and premature aging phenotypes. As premature aging is often accompanied by neurodegeneration, we more specifically examined how NRMT1 loss affects neural pathology and cognitive behaviors. Here we find that Nrmt1-/- mice exhibit postnatal enlargement of the lateral ventricles, age-dependent striatal and hippocampal neurodegeneration, memory impairments, and hyperactivity. These morphological and behavior abnormalities are preceded by alterations in neural stem cell (NSC) development. Early expansion and differentiation of the quiescent NSC pool in Nrmt1-/- mice is followed by its subsequent depletion and many of the resulting neurons remain in the cell cycle and ultimately undergo apoptosis. These cell cycle phenotypes are reminiscent to those seen with loss of the NRMT1 target retinoblastoma protein (RB). Accordingly, we find misregulation of RB phosphorylation and degradation in Nrmt1-/- mice, and significant de-repression of RB target genes involved in cell cycle. We also identify novel de-repression of Noxa, an RB target gene that promotes apoptosis. These data identify Nα-methylation as a novel regulatory modification of RB transcriptional repression during neurogenesis and indicate that NRMT1 and RB work together to promote NSC quiescence and prevent neuronal apoptosis.
Collapse
Affiliation(s)
- James P Catlin
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Leandro N Marziali
- Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Benjamin Rein
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - M Laura Feltri
- Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
8
|
Omais S, Halaby NN, Habashy KJ, Jaafar C, Bejjani AT, Ghanem N. Histological Assessment of Cre-loxP Genetic Recombination in the Aging Subventricular Zone of Nestin-CreER T2/Rosa26YFP Mice. Methods Mol Biol 2020; 2045:187-199. [PMID: 30888667 DOI: 10.1007/7651_2019_214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The use of inducible transgenic Nestin-CreERT2 mice has proved to be an essential research tool for gene targeting and studying the molecular pathways implicated in adult neurogenesis, namely, inside the adult subgranular zone (SGZ) of the dentate gyrus and the adult subventricular zone (SVZ) lining the lateral ventricles. Several lines of Nestin-CreER-expressing mice were generated and used in adult neurogenesis research in the past two decades; however, their suitability for studying neurogenesis in aged mice remains elusive. Here, we assessed the efficiency of Cre-loxP genetic recombination in the aging SVZ using the Nestin-CreERT2/Rosa26YFP line designed by Lagace et al. (J Neurosci 27(46):12623-12629, 2007). This analysis was performed in 12-month-old (middle-aged) mice and 20-month-old (old) mice compared to 2-month-old (young adult) mice. To evaluate successful recombination, our approach relies on the histological assessment of Cre mRNA level of expression and the YFP reporter gene's expression inside the aging SVZ by combining in situ hybridization and immunohistochemistry. Using co-immunolabeling, this approach also provides the advantage of estimating the percentage of recombined progeny [(GFP+Nestin+)/Nestin+] and the rate of cell proliferation [(GFP+Ki67+)/GFP+] inside the aging SVZ niche.
Collapse
Affiliation(s)
- Saad Omais
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Nour N Halaby
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Karl John Habashy
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Carine Jaafar
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Anthony T Bejjani
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Noël Ghanem
- Department of Biology, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
9
|
Guo Q, Cheng K, Wang X, Li X, Yu Y, Hua Y, Yang Z. Expression of HDAC1 and RBBP4 correlate with clinicopathologic characteristics and prognosis in breast cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:563-572. [PMID: 32269697 PMCID: PMC7137008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/07/2020] [Indexed: 06/11/2023]
Abstract
Retinoblastoma binding protein 4 (RBBP4) plays an important role in transcription, cell cycle, and proliferation. Immunohistochemistry was performed to assess HDAC1 and RBBP4 expression in 240 BC patients. The expression of HDAC1 and RBBP4 in 12 pairs of BC tissues and their normal tissues was determined by western blotting. Kaplan-Meier analysis and Cox's proportional hazards regression were applied to evaluate the prognostic significance of HDAC1 and RBBP4. HDAC1 and RBBP4 expression in BC was significantly higher than that in normal tissues. HDAC1 was positively correlated with RBBP4 in breast cancer. HDAC1 and RBBP4 were negatively correlated with ER and PR in BC, respectively. The patients with high expression of RBBP4 had a worse overall survival time. The expression of RBBP4 was found to be significantly correlated with lymph node metastasis. RBBP4 may play a major role though HDAC1 in the development, metastasis, and prognosis of BC.
Collapse
Affiliation(s)
- Qingqun Guo
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital Binzhou, Shandong, China
| | - Kai Cheng
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital Binzhou, Shandong, China
| | - Xiaohong Wang
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital Binzhou, Shandong, China
| | - Xiaoqiang Li
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital Binzhou, Shandong, China
| | - Yue Yu
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital Binzhou, Shandong, China
| | - Yitong Hua
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital Binzhou, Shandong, China
| | - Zhenlin Yang
- Department of Thyroid and Breast Surgery, Binzhou Medical University Hospital Binzhou, Shandong, China
| |
Collapse
|
10
|
Urbach A, Witte OW. Divide or Commit - Revisiting the Role of Cell Cycle Regulators in Adult Hippocampal Neurogenesis. Front Cell Dev Biol 2019; 7:55. [PMID: 31069222 PMCID: PMC6491688 DOI: 10.3389/fcell.2019.00055] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/28/2019] [Indexed: 12/21/2022] Open
Abstract
The adult dentate gyrus continuously generates new neurons that endow the brain with increased plasticity, helping to cope with changing environmental and cognitive demands. The process leading to the birth of new neurons spans several precursor stages and is the result of a coordinated series of fate decisions, which are tightly controlled by extrinsic signals. Many of these signals act through modulation of cell cycle (CC) components, not only to drive proliferation, but also for linage commitment and differentiation. In this review, we provide a comprehensive overview on key CC components and regulators, with emphasis on G1 phase, and analyze their specific functions in precursor cells of the adult hippocampus. We explore their role for balancing quiescence versus self-renewal, which is essential to maintain a lifelong pool of neural stem cells while producing new neurons “on demand.” Finally, we discuss available evidence and controversies on the impact of CC/G1 length on proliferation versus differentiation decisions.
Collapse
Affiliation(s)
- Anja Urbach
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
11
|
Zibara K, Ballout N, Mondello S, Karnib N, Ramadan N, Omais S, Nabbouh A, Caliz D, Clavijo A, Hu Z, Ghanem N, Gajavelli S, Kobeissy F. Combination of drug and stem cells neurotherapy: Potential interventions in neurotrauma and traumatic brain injury. Neuropharmacology 2018; 145:177-198. [PMID: 30267729 DOI: 10.1016/j.neuropharm.2018.09.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) has been recognized as one of the major public health issues that leads to devastating neurological disability. As a consequence of primary and secondary injury phases, neuronal loss following brain trauma leads to pathophysiological alterations on the molecular and cellular levels that severely impact the neuropsycho-behavioral and motor outcomes. Thus, to mitigate the neuropathological sequelae post-TBI such as cerebral edema, inflammation and neural degeneration, several neurotherapeutic options have been investigated including drug intervention, stem cell use and combinational therapies. These treatments aim to ameliorate cellular degeneration, motor decline, cognitive and behavioral deficits. Recently, the use of neural stem cells (NSCs) coupled with selective drug therapy has emerged as an alternative treatment option for neural regeneration and behavioral rehabilitation post-neural injury. Given their neuroprotective abilities, NSC-based neurotherapy has been widely investigated and well-reported in numerous disease models, notably in trauma studies. In this review, we will elaborate on current updates in cell replacement therapy in the area of neurotrauma. In addition, we will discuss novel combination drug therapy treatments that have been investigated in conjunction with stem cells to overcome the limitations associated with stem cell transplantation. Understanding the regenerative capacities of stem cell and drug combination therapy will help improve functional recovery and brain repair post-TBI. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Kazem Zibara
- ER045, Laboratory of Stem Cells, PRASE, Lebanese University, Beirut, Lebanon; Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Nissrine Ballout
- ER045, Laboratory of Stem Cells, PRASE, Lebanese University, Beirut, Lebanon
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Nabil Karnib
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Naify Ramadan
- Department of Women's and Children's Health (KBH), Division of Clinical Pediatrics, Karolinska Institute, Sweden
| | - Saad Omais
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Ali Nabbouh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Daniela Caliz
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA
| | - Angelica Clavijo
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA
| | - Zhen Hu
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA
| | - Noël Ghanem
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Shyam Gajavelli
- Lois Pope LIFE Center, Neurosurgery, University of Miami, 33136, Miami, FL, USA.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
12
|
Schultz LE, Haltom JA, Almeida MP, Wierson WA, Solin SL, Weiss TJ, Helmer JA, Sandquist EJ, Shive HR, McGrail M. Epigenetic regulators Rbbp4 and Hdac1 are overexpressed in a zebrafish model of RB1 embryonal brain tumor, and are required for neural progenitor survival and proliferation. Dis Model Mech 2018; 11:11/6/dmm034124. [PMID: 29914980 PMCID: PMC6031359 DOI: 10.1242/dmm.034124] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022] Open
Abstract
In this study, we used comparative genomics and developmental genetics to identify epigenetic regulators driving oncogenesis in a zebrafish retinoblastoma 1 (rb1) somatic-targeting model of RB1 mutant embryonal brain tumors. Zebrafish rb1 brain tumors caused by TALEN or CRISPR targeting are histologically similar to human central nervous system primitive neuroectodermal tumors (CNS-PNETs). Like the human oligoneural OLIG2+/SOX10+ CNS-PNET subtype, zebrafish rb1 tumors show elevated expression of neural progenitor transcription factors olig2, sox10, sox8b and the receptor tyrosine kinase erbb3a oncogene. Comparison of rb1 tumor and rb1/rb1 germline mutant larval transcriptomes shows that the altered oligoneural precursor signature is specific to tumor tissue. More than 170 chromatin regulators were differentially expressed in rb1 tumors, including overexpression of chromatin remodeler components histone deacetylase 1 (hdac1) and retinoblastoma binding protein 4 (rbbp4). Germline mutant analysis confirms that zebrafish rb1, rbbp4 and hdac1 are required during brain development. rb1 is necessary for neural precursor cell cycle exit and terminal differentiation, rbbp4 is required for survival of postmitotic precursors, and hdac1 maintains proliferation of the neural stem cell/progenitor pool. We present an in vivo assay using somatic CRISPR targeting plus live imaging of histone-H2A.F/Z-GFP fusion protein in developing larval brain to rapidly test the role of chromatin remodelers in neural stem and progenitor cells. Our somatic assay recapitulates germline mutant phenotypes and reveals a dynamic view of their roles in neural cell populations. Our study provides new insight into the epigenetic processes that might drive pathogenesis in RB1 brain tumors, and identifies Rbbp4 and its associated chromatin remodeling complexes as potential target pathways to induce apoptosis in RB1 mutant brain cancer cells. This article has an associated First Person interview with the first author of the paper. Summary: This study shows that chromatin remodelers that are overexpressed in a zebrafish model of RB1 mutant brain cancer are required for neural progenitor proliferation and survival, providing insight into potential mechanisms that drive tumor growth.
Collapse
Affiliation(s)
- Laura E Schultz
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Jeffrey A Haltom
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Maira P Almeida
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Wesley A Wierson
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Staci L Solin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Trevor J Weiss
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Jordan A Helmer
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Elizabeth J Sandquist
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Heather R Shive
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27607, USA
| | - Maura McGrail
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
13
|
Omais S, Jaafar C, Ghanem N. "Till Death Do Us Part": A Potential Irreversible Link Between Aberrant Cell Cycle Control and Neurodegeneration in the Adult Olfactory Bulb. Front Neurosci 2018; 12:144. [PMID: 29593485 PMCID: PMC5854681 DOI: 10.3389/fnins.2018.00144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis (AN) is an ongoing developmental process that generates newborn neurons in the olfactory bulb (OB) and the hippocampus (Hi) throughout life and significantly contributes to brain plasticity. Adult neural stem and progenitor cells (aNSPCs) are relatively limited in number and fate and are spatially restricted to the subventricular zone (SVZ) and the subgranular zone (SGZ). During AN, the distinct roles played by cell cycle proteins extend beyond cell cycle control and constitute key regulatory mechanisms involved in neuronal maturation and survival. Importantly, aberrant cell cycle re-entry (CCE) in post-mitotic neurons has been strongly linked to the abnormal pathophysiology in rodent models of neurodegenerative diseases with potential implications on the etiology and progression of such diseases in humans. Here, we present an overview of AN in the SVZ-OB and olfactory epithelium (OE) in mice and humans followed by a comprehensive update of the distinct roles played by cell cycle proteins including major tumors suppressor genes in various steps during neurogenesis. We also discuss accumulating evidence underlining a strong link between abnormal cell cycle control, olfactory dysfunction and neurodegeneration in the adult and aging brain. We emphasize that: (1) CCE in post-mitotic neurons due to loss of cell cycle suppression and/or age-related insults as well as DNA damage can anticipate the development of neurodegenerative lesions and protein aggregates, (2) the age-related decline in SVZ and OE neurogenesis is associated with compensatory pro-survival mechanisms in the aging OB which are interestingly similar to those detected in Alzheimer's disease and Parkinson's disease in humans, and (3) the OB represents a well suitable model to study the early manifestation of age-related defects that may eventually progress into the formation of neurodegenerative lesions and, possibly, spread to the rest of the brain. Such findings may provide a novel approach to the modeling of neurodegenerative diseases in humans from early detection to progression and treatment as well.
Collapse
Affiliation(s)
- Saad Omais
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Carine Jaafar
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Noël Ghanem
- Department of Biology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
14
|
Manickam V, Dhakshinamoorthy V, Perumal E. Iron Oxide Nanoparticles Induces Cell Cycle-Dependent Neuronal Apoptosis in Mice. J Mol Neurosci 2018; 64:352-362. [PMID: 29368134 DOI: 10.1007/s12031-018-1030-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/11/2018] [Indexed: 01/09/2023]
Abstract
Iron oxide (Fe2O3) nanoparticles (NPs) with its unique magnetic and paramagnetic properties are popular in biomedical applications. Some of their neurotoxic mechanisms due to repeated administration are proven. However, we speculate that the neuronal damage might be due to apoptosis resulting from unusual cell cycle entry. Moreover, iron accumulation has been shown to be closely associated with most of the neurodegenerative disorders. Thus, in the current study, mice were orally (po) treated with the Fe2O3-NPs to investigate cell cycle-associated events/components and occurrence of apoptosis. A subsequent increase in oxidant levels was observed with the iron accumulation due to Fe2O3-NPs exposure. The accumulated β-amyloid and reduced level of cdk5 seem to aid in the cell cycle entry and forcing progression towards apoptosis. Expression of Cyclin D1 and pRb (Ser 795) indicate the cell cycle re-entry of neurons. Overexpression of RNA Pol II and PARP cleavage suggests DNA damage due to Fe2O3-NPs exposure. Further, hyperphosphorylation of p38 (Thr 180/Tyr 182) confirms the activation of DNA damage-dependent checkpoint. Expression patterns of pro- and anti-apoptotic markers, TUNEL and TEM indicate the occurrences of apoptosis.
Collapse
Affiliation(s)
- Vijayprakash Manickam
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Vasanth Dhakshinamoorthy
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India.
| |
Collapse
|
15
|
Boström J, Sramkova Z, Salašová A, Johard H, Mahdessian D, Fedr R, Marks C, Medalová J, Souček K, Lundberg E, Linnarsson S, Bryja V, Sekyrova P, Altun M, Andäng M. Comparative cell cycle transcriptomics reveals synchronization of developmental transcription factor networks in cancer cells. PLoS One 2017; 12:e0188772. [PMID: 29228002 PMCID: PMC5724894 DOI: 10.1371/journal.pone.0188772] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/13/2017] [Indexed: 01/01/2023] Open
Abstract
The cell cycle coordinates core functions such as replication and cell division. However, cell-cycle-regulated transcription in the control of non-core functions, such as cell identity maintenance through specific transcription factors (TFs) and signalling pathways remains unclear. Here, we provide a resource consisting of mapped transcriptomes in unsynchronized HeLa and U2OS cancer cells sorted for cell cycle phase by Fucci reporter expression. We developed a novel algorithm for data analysis that enables efficient visualization and data comparisons and identified cell cycle synchronization of Notch signalling and TFs associated with development. Furthermore, the cell cycle synchronizes with the circadian clock, providing a possible link between developmental transcriptional networks and the cell cycle. In conclusion we find that cell cycle synchronized transcriptional patterns are temporally compartmentalized and more complex than previously anticipated, involving genes, which control cell identity and development.
Collapse
Affiliation(s)
- Johan Boström
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Zuzana Sramkova
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Alena Salašová
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Helena Johard
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Diana Mahdessian
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Radek Fedr
- Department of Cytokinetics, Institute of Biophysics CAS, v.v.i., Královopolská 135, Brno, Czech Republic
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne’s University Hospital in Brno, Brno, Czech Republic
| | - Carolyn Marks
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jiřina Medalová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics CAS, v.v.i., Královopolská 135, Brno, Czech Republic
- International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne’s University Hospital in Brno, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Emma Lundberg
- Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Sten Linnarsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petra Sekyrova
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- * E-mail: (PS); (MAl); (MAn)
| | - Mikael Altun
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (PS); (MAl); (MAn)
| | - Michael Andäng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- * E-mail: (PS); (MAl); (MAn)
| |
Collapse
|
16
|
Fong BC, Slack RS. RB: An essential player in adult neurogenesis. NEUROGENESIS 2017; 4:e1270382. [PMID: 28229086 DOI: 10.1080/23262133.2016.1270382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/30/2016] [Accepted: 12/04/2016] [Indexed: 12/16/2022]
Abstract
The fundamental mechanisms underlying adult neurogenesis remain to be fully clarified. Members of the cell cycle machinery have demonstrated key roles in regulating adult neural stem cell (NSC) quiescence and the size of the adult-born neuronal population. The retinoblastoma protein, Rb, is known to possess CNS-specific requirements that are independent from its classical role as a tumor suppressor. The recent study by Vandenbosch et al. has clarified distinct requirements for Rb during adult neurogenesis, in the restriction of proliferation, as well as long-term adult-born neuronal survival. However, Rb is no longer believed to be the main cell cycle regulator maintaining the quiescence of adult NSCs. Future studies must consider Rb as part of a larger network of regulatory effectors, including the other members of the Rb family, p107 and p130. This will help elucidate the contribution of Rb and other pocket proteins in the context of adult neurogenesis, and define its crucial role in regulating the size and fate of the neurogenic niche.
Collapse
Affiliation(s)
- Bensun C Fong
- University of Ottawa Brain and Mind Research Institute, Department of Cellular & Molecular Medicine, University of Ottawa , Ottawa, ON, Canada
| | - Ruth S Slack
- University of Ottawa Brain and Mind Research Institute, Department of Cellular & Molecular Medicine, University of Ottawa , Ottawa, ON, Canada
| |
Collapse
|
17
|
Matsui T, Nieto-Estévez V, Kyrychenko S, Schneider JW, Hsieh J. Retinoblastoma protein controls growth, survival and neuronal migration in human cerebral organoids. Development 2017; 144:1025-1034. [PMID: 28087635 DOI: 10.1242/dev.143636] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 12/16/2016] [Indexed: 01/22/2023]
Abstract
The tumor suppressor retinoblastoma protein (RB) regulates S-phase cell cycle entry via E2F transcription factors. Knockout (KO) mice have shown that RB plays roles in cell migration, differentiation and apoptosis, in developing and adult brain. In addition, the RB family is required for self-renewal and survival of human embryonic stem cells (hESCs). Since little is known about the role of RB in human brain development, we investigated its function in cerebral organoids differentiated from gene-edited hESCs lacking RB. We show that RB is abundantly expressed in neural stem and progenitor cells in organoids at 15 and 28 days of culture. RB loss promoted S-phase entry in DCX+ cells and increased apoptosis in Sox2+ neural stem and progenitor cells, and in DCX+ and Tuj1+ neurons. Associated with these cell cycle and pro-apoptotic effects, we observed increased CCNA2 and BAX gene expression, respectively. Moreover, we observed aberrant Tuj1+ neuronal migration in RB-KO organoids and upregulation of the gene encoding VLDLR, a receptor important in reelin signaling. Corroborating the results in RB-KO organoids in vitro, we observed ectopically localized Tuj1+ cells in RB-KO teratomas grown in vivo Taken together, these results identify crucial functions for RB in the cerebral organoid model of human brain development.
Collapse
Affiliation(s)
- Takeshi Matsui
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vanesa Nieto-Estévez
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sergii Kyrychenko
- Department of Internal Medicine and Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jay W Schneider
- Department of Internal Medicine and Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jenny Hsieh
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
18
|
Jaafar C, Omais S, Al Lafi S, El Jamal N, Noubani M, Skaf L, Ghanem N. Role of Rb during Neurogenesis and Axonal Guidance in the Developing Olfactory System. Front Mol Neurosci 2016; 9:81. [PMID: 27667971 PMCID: PMC5016521 DOI: 10.3389/fnmol.2016.00081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/24/2016] [Indexed: 11/19/2022] Open
Abstract
The Retinoblastoma protein, Rb, was shown to regulate distinct aspects of neurogenesis in the embryonic and adult brain besides its primary role in cell cycle control. It is still unknown, however, whether Rb is required for tissue morphogenesis and the establishment of synaptic connections between adjacent tissues during development. We have investigated here the role of Rb during development of the olfactory system (OS), which heavily relies on reciprocal interactions between the olfactory epithelium (OE) and the olfactory bulb (OB). We show that mice carrying a telencephalic-specific deletion of Rb display several neurogenic defects in the OS during late development. In the OE, loss of Rb leads to ectopic proliferation of late-born progenitors (Tuj-1+), abnormal radial migration and terminal maturation of olfactory sensory neurons (OSNs). In the OB, deletion of Rb causes severe lamination defects with loss of clear boundaries between distinct layers. Importantly, starting around E15.5 when OB glomerulogenesis is initiated, many OSNs axons that project along the olfactory nerve layer (ONL) fail to properly innervate the nascent bulb, thus resulting in partial loss of connectivity between OE-OB and gradual neuronal degeneration in both tissues peaking at birth. This deficiency correlates with deregulated expressions of two key chemo-repellant molecules, Robo2/Slit1 and Nrp2/Sema3F that control the formation of dorsal-ventral topographic map of OSNs connections with OB glomeruli. This study highlights a critical requirement for Rb during neurogenesis and the establishment of proper synaptic connections inside the OS during development.
Collapse
Affiliation(s)
- Carine Jaafar
- Department of Biology, American University of Beirut Beirut, Lebanon
| | - Saad Omais
- Department of Biology, American University of Beirut Beirut, Lebanon
| | - Sawsan Al Lafi
- Department of Biology, American University of Beirut Beirut, Lebanon
| | - Nadim El Jamal
- Department of Biology, American University of Beirut Beirut, Lebanon
| | - Mohammad Noubani
- Department of Biology, American University of Beirut Beirut, Lebanon
| | - Larissa Skaf
- Department of Biology, American University of Beirut Beirut, Lebanon
| | - Noël Ghanem
- Department of Biology, American University of Beirut Beirut, Lebanon
| |
Collapse
|
19
|
Vandenbosch R, Clark A, Fong BC, Omais S, Jaafar C, Dugal-Tessier D, Dhaliwal J, Lagace DC, Park DS, Ghanem N, Slack RS. RB regulates the production and the survival of newborn neurons in the embryonic and adult dentate gyrus. Hippocampus 2016; 26:1379-1392. [DOI: 10.1002/hipo.22613] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Renaud Vandenbosch
- Department of Cellular and Molecular Medicine; University of Ottawa Brain and Mind Research Institute, University of Ottawa; Ottawa ON Canada
| | - Alysen Clark
- Department of Cellular and Molecular Medicine; University of Ottawa Brain and Mind Research Institute, University of Ottawa; Ottawa ON Canada
| | - Bensun C. Fong
- Department of Cellular and Molecular Medicine; University of Ottawa Brain and Mind Research Institute, University of Ottawa; Ottawa ON Canada
| | - Saad Omais
- Department of Biology; American University of Beirut; Beirut Lebanon
| | - Carine Jaafar
- Department of Biology; American University of Beirut; Beirut Lebanon
| | - Delphie Dugal-Tessier
- Department of Cellular and Molecular Medicine; University of Ottawa Brain and Mind Research Institute, University of Ottawa; Ottawa ON Canada
| | - Jagroop Dhaliwal
- Department of Cellular and Molecular Medicine; University of Ottawa Brain and Mind Research Institute, University of Ottawa; Ottawa ON Canada
| | - Diane C. Lagace
- Department of Cellular and Molecular Medicine; University of Ottawa Brain and Mind Research Institute, University of Ottawa; Ottawa ON Canada
| | - David S. Park
- Department of Cellular and Molecular Medicine; University of Ottawa Brain and Mind Research Institute, University of Ottawa; Ottawa ON Canada
| | - Noël Ghanem
- Department of Biology; American University of Beirut; Beirut Lebanon
| | - Ruth S. Slack
- Department of Cellular and Molecular Medicine; University of Ottawa Brain and Mind Research Institute, University of Ottawa; Ottawa ON Canada
| |
Collapse
|