1
|
Liu W, Qu A, Yuan J, Wang L, Chen J, Zhang X, Wang H, Han Z, Li Y. Colorectal cancer histopathology image analysis: A comparative study of prognostic values of automatically extracted morphometric nuclear features in multispectral and red-blue-green imagery. Histol Histopathol 2024; 39:1303-1316. [PMID: 38343355 DOI: 10.14670/hh-18-715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
OBJECTIVES Multispectral imaging (MSI) has been utilized to predict the prognosis of colorectal cancer (CRC) patients, however, our understanding of the prognostic value of nuclear morphological parameters of bright-field MSI in CRC is still limited. This study was designed to compare the efficiency of MSI and standard red-green-blue (RGB) images in predicting the prognosis of CRC. METHODS We compared the efficiency of MS and conventional RGB images on the quantitative assessment of hematoxylin-eosin (HE) stained histopathology images. A pipeline was developed using a pixel-wise support vector machine (SVM) classifier for gland-stroma segmentation, and a marker-controlled watershed algorithm was used for nuclei segmentation. The correlation between extracted morphological parameters and the five-year disease-free survival (5-DFS) was analyzed. RESULTS Forty-seven nuclear morphological parameters were extracted in total. Based on Kaplan-Meier analysis, eight features derived from MS images and seven featured derived from RGB images were significantly associated with 5-DFS, respectively. Compared with RGB images, MSI showed higher accuracy, precision, and Dice index in nuclei segmentation. Multivariate analysis indicated that both integrated parameters 1 (factors negatively correlated with CRC prognosis including nuclear number, circularity, eccentricity, major axis length) and 2 (factors positively correlated with CRC prognosis including nuclear average area, area perimeter, total area/total perimeter ratio, average area/perimeter ratio) in MS images were independent prognostic factors of 5-DFS, in contrast with only integrated parameter 1 (P<0.001) in RGB images. More importantly, the quantification of HE-stained MS images displayed higher accuracy in predicting 5-DFS compared with RGB images (76.9% vs 70.9%). CONCLUSIONS Quantitative evaluation of HE-stained MS images could yield more information and better predictive performance for CRC prognosis than conventional RGB images, thereby contributing to precision oncology.
Collapse
Affiliation(s)
- Wenlou Liu
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Aiping Qu
- School of Computer, University of South China, Hengyang, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linwei Wang
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiamei Chen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiuli Zhang
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hongmei Wang
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhengxiang Han
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Yan Li
- Department of Cancer Surgery, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
El
Rayes SM, El-Enany G, Gomaa MS, Ali IAI, Fathalla W, Pottoo FH, Khan FA. Convenient Synthesis of N-Alkyl-2-(3-phenyl-quinoxalin-2-ylsulfanyl)acetamides and Methyl-2-[2-(3-phenyl-quinoxalin-2-ylsulfanyl)acetylamino]alkanoates. ACS OMEGA 2022; 7:34166-34176. [PMID: 36188256 PMCID: PMC9520703 DOI: 10.1021/acsomega.2c03522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
A series of 27 new quinoxaline derivatives (N-alkyl-[2-(3-phenyl-quinoxalin-2-ylsulfanyl)]acetamides, methyl-2-[2-(3-phenylquinoxalin-2-ylsulfanyl)-acetylamino]alkanoates, and their corresponding dipeptides) were prepared from 3-phenylquinoxaline-2(1H)-thione based on the chemoselective reaction with soft electrophiles. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to study the efficacy of 27 compounds on cancer cell viability and proliferation. A total of 13 compounds (4a-c, 5, 6, 8c, 9c, 9f, 10a, 10b, 11c, 12b, and 12c) showed inhibitory action on HCT-116 cancer cells and 15 compounds (4a-c, 5, 6, 8c, 9a, 9c, 9f, 9h, 10b, 11c, 12a, 12b, and 12c) showed activity on MCF-7 cancer cells, with compound 10b exhibiting the highest inhibitory action (IC50 1.52 and 2 μg/mL, respectively) on both cell lines. The molecular modeling studies on the human thymidylate synthase (hTS) homodimer interface showed that these compounds are good binders and could selectively inhibit the enzyme by stabilizing its inactive conformation. The study also identified key residues for homodimer binding, which could be used for further optimization and development.
Collapse
Affiliation(s)
- Samir Mohamed El
Rayes
- Department
of Chemistry, Faculty of Science, Suez Canal
University, Ismailia 41522, Egypt
| | - Gaber El-Enany
- Department
of Physics, College of Science and Arts in Uglat Asugour, Qassim University, Buraydah 52571, Kingdom of Suadi Arabia
- Science
& Math Department, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
| | - Mohamed Sayed Gomaa
- Department
of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Kingdom of Saudi Arabia
| | - Ibrahim A. I. Ali
- Department
of Chemistry, Faculty of Science, Suez Canal
University, Ismailia 41522, Egypt
| | - Walid Fathalla
- Science
& Math Department, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
| | - Faheem Hyder Pottoo
- Department
of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Kingdom of Saudi Arabia
| | - Firdos Alam Khan
- Department
of Stem Cell Research, Institute of Research and Medical Consultations
(IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Al-Jameel SS, Rehman S, Almessiere MA, Khan FA, Slimani Y, Al-Saleh NS, Manikandan A, Al-Suhaimi EA, Baykal A. Anti-microbial and anti-cancer activities of Mn 0.5Zn 0.5Dy xFe 2-xO 4 (x ≤ 0.1) nanoparticles. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:493-499. [PMID: 34159846 DOI: 10.1080/21691401.2021.1938592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Combining two or more nanoparticles is a promising approach. Previously we have reported synthesis of nanoparticles Dysprosium (Dy) substituted with manganese (Mn) zinc (Zn) by using ultrasonication method. The five different nanoparticles (NPs) Mn0.5Zn0.5DyxFe2-xO4 (x ≤ 0.1) have been structurally and morphologically characterized but there is no report on the biological application of these NPs. In the present study, we have examined the anti-cancer, anti-bacterial, and anti-fungal activities of Mn0.5Zn0.5DyxFe2-xO4 (x ≤ 0.1) NPs. Human colorectal carcinoma cells (HCT-116) were tested with different concentrations of NPs by using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. In addition, the impact of NPs was also examined on normal cells such as human embryonic kidney cells, HEK-293. After 48 h of treatment, Mn0.5Zn0.5DyxFe2-xO4 NPs (x = 0.02, 0.04 and 0.06) showed no inhibitory action on cancer cell's growth and proliferation, whereas Mn0.5Zn0.5DyxFe2-xO4 NPs (x = 0.08 and 0.1) showed profound inhibitory action on cancer cell's growth and proliferation. However, the treatment of Mn0.5Zn0.5DyxFe2-xO4 NPs on the normal cells (HEK-293) did not show cytotoxic or inhibitory action on HEK-293 cells. The treatment of Mn0.5Zn0.5DyxFe2-xO4 NPs (x ≤ 0.1) also inhibited both the bacteria (Escherichia coli ATCC35218 and Staphylococcus aureus) with lowest MIC and MBC values of 4 and 8 mg/mL and fungus (Candida albicans) with MIC and MFC values of 4 and 8 mg/mL on treatment with x = 0.08 and 0. 1.
Collapse
Affiliation(s)
- Suhailah S Al-Jameel
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Suriya Rehman
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Munirah A Almessiere
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Firdos A Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Yassine Slimani
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Najat S Al-Saleh
- Consultant Family and Community Medicine, King Fahad Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ayyar Manikandan
- Department of Chemistry, Bharath Institute of Higher Education and Research (BIHER), Bharath University, Chennai, India
| | - Ebtesam A Al-Suhaimi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdulhadi Baykal
- Department of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
4
|
Rehman S, Almessiere MA, A. Al-Suhaimi E, Hussain M, Yousuf Bari M, Mehmood Ali S, Al-Jameel SS, Slimani Y, Khan FA, Baykal A. Ultrasonic Synthesis and Biomedical Application of Mn 0.5Zn 0.5Er xY xFe 2-2xO 4 Nanoparticles. Biomolecules 2021; 11:biom11050703. [PMID: 34066897 PMCID: PMC8150661 DOI: 10.3390/biom11050703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 01/08/2023] Open
Abstract
In the present study, biocompatible manganese nanoparticles have been linked with zinc and iron molecules to prepare different derivatives of Mn0.5Zn0.5ErxYxFe2-2xO4 NPs (x = 0.02, 0.04, 0.06, 0.08, 0.10), using an ultrasonication approach. The structure, surface morphology, and chemical compositions of Mn0.5Zn0.5ErxYxFe2-2xO4 NPs were elucidated by X-ray diffractometer (XRD), High-resolution transmission electron microscopy (HR-TEM), scanning electron microscope (SEM), and Energy Dispersive X-Ray Analysis (EDX) techniques. The bioactivity of Mn0.5Zn0.5ErxYxFe2-2xO4 NPs on normal (HEK-293) and (HCT-116) colon cancer cell line was evaluated. The Mn0.5Zn0.5ErxYxFe2-2xO4 NPs treatment post 48 h resulted in a significant reduction in cells (via MTT assay, having an IC50 value between 0.88 µg/mL and 2.40 µg/mL). The specificity of Mn0.5Zn0.5ErxYxFe2-2xO4 NPs were studied by treating them on normal cells line (HEK-293). The results showed that Mn0.5Zn0.5ErxYxFe2-2xO4 NPs did not incur any effect on HEK-293, which suggests that Mn0.5Zn0.5ErxYxFe2-2xO4 NPs selectively targeted the colon cancerous cells. Using Candida albicans, antifungal activity was also studied by evaluating minimum inhibitory/fungicidal concentration (MIC/MFC) and the effect of nanomaterial on the germ tube formation, which exhibited that NPs significantly inhibited the growth and germ tube formation. The obtained results hold the potential to design nanoparticles that lead to efficient bioactivity.
Collapse
Affiliation(s)
- Suriya Rehman
- Department of Epidemic Diseases Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia
- Correspondence:
| | - Munirah A. Almessiere
- Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia; (M.A.A.); (Y.S.)
| | - Ebtesam A. Al-Suhaimi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia;
| | - Mehwish Hussain
- Department of Public Health, College of Public Health, Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia;
| | - Maha Yousuf Bari
- Department of English, Deanship of Preparatory Year, Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia;
| | - Syed Mehmood Ali
- Department of Biomedical Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia;
| | - Suhailah S. Al-Jameel
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia;
| | - Yassine Slimani
- Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia; (M.A.A.); (Y.S.)
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia;
| | - Abdulhadi Baykal
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia;
| |
Collapse
|
5
|
Rigillo A, Fuchs-Baumgartinger A, Sabattini S, Škor O, Agnoli C, Schwendenwein I, Bettini G, Rütgen BC. Ki-67 assessment-agreeability between immunohistochemistry and flow cytometry in canine lymphoma. Vet Comp Oncol 2021; 19:551-566. [PMID: 33759339 PMCID: PMC8453729 DOI: 10.1111/vco.12694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 11/28/2022]
Abstract
Recent literature suggests a combination of flow cytometric determination of Ki-67 and immunophenotype as a reliable tool to classify canine lymphomas. Immunohistochemistry (IHC) on histological samples is the gold standard technique assessing Ki-67 index. Agreement between IHC and FCM derived Ki-67 indices has never been investigated. The aim of this study was to investigate the agreement between IHC and FCM in the assessment of Ki-67 expression/index, in order to evaluate whether FCM may serve as a non-invasive alternative method for the estimation of proliferative activity in canine lymphoma. Dogs with previously untreated canine lymphoma undergoing diagnostic lymphadenectomy were prospectively enrolled. Ki-67 expression/index was assessed by FCM and IHC and expressed as percentage of positive cells. 39 dogs classified by histopathology matched the inclusion criteria. With both methods, Ki-67 expression/index was higher in intermediate/high-grade lymphomas. Spearman's coefficient of correlation was ρ = 0.57; (95% CI0.33-0.75) suggesting a moderate correlation. A Bland-Altman plot revealed a negative constant bias of -3.55 (95% CI: -10.52 to 3.42) with limits of agreement from -45.71 to 38.61. The study confirmed agreement albeit with wide confidence intervals between the values of Ki-67 expression/index assessed with FCM and IHC. Discrepancies were observed in a subset of cases. Possible explanation could be that Ki-67 index in IHC is determined in the most proliferative areas of the slide, which could introduce kind of sampling bias, whereas FCM evaluates many more cells in cell suspension. Further studies are warranted to investigate this phenomenon.
Collapse
Affiliation(s)
- Antonella Rigillo
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Andrea Fuchs-Baumgartinger
- Institute of Pathology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Silvia Sabattini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Ondrej Škor
- Clinic for Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Chiara Agnoli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Ilse Schwendenwein
- Clinical Pathology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Giuliano Bettini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Barbara C Rütgen
- Clinical Pathology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
6
|
Aboelmagd A, El Rayes SM, Gomaa MS, Ali IAI, Fathalla W, Pottoo FH, Khan FA, Khalifa ME. The synthesis and antiproliferative activity of new N-allyl quinoxalinecarboxamides and their O-regioisomers. NEW J CHEM 2021. [DOI: 10.1039/d0nj03672b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have designed a series of quinoxalinepeptidomimetic derivatives based on our previously reported scaffold in an attempt to find a promising lead compound.
Collapse
Affiliation(s)
- A. Aboelmagd
- Department of Chemistry
- Faculty of Science
- Suez Canal University
- Ismailia
- Egypt
| | - S. M. El Rayes
- Department of Chemistry
- Faculty of Science
- Suez Canal University
- Ismailia
- Egypt
| | - M. S. Gomaa
- Department of Pharmaceutical Chemistry
- College of Clinical Pharmacy
- Imam Abdulrahman Bin Faisal University
- Dammam 31441
- Kingdom of Saudi Arabia
| | - Ibrahim A. I. Ali
- Department of Chemistry
- Faculty of Science
- Suez Canal University
- Ismailia
- Egypt
| | - Walid Fathalla
- Department of Physics and Math
- Faculty of Engineering
- Port-Said
- University
- Port-Said
| | - F. H. Pottoo
- Department of Pharmacology
- College of Clinical Pharmacy
- Imam Abdul Rahman Bin Faisal University
- Dammam 31441
- Kingdom of Saudi Arabia
| | - Firdos A. Khan
- Department of Stem Cell Biology
- Institute for Research & Medical Consultations
- (IRMC)
- Imam Abdul Rahman Bin Faisal University
- Dammam
| | - Mohamed E. Khalifa
- Department of Chemistry
- College of Science
- Taif University
- Taif 21944
- Saudi Arabia
| |
Collapse
|
7
|
Aboelmagd A, Alotaibi SH, El Rayes SM, Elsayed GM, Ali IAI, Fathalla W, Pottoo FH, Khan FA. Synthesis and Anti proliferative Activity of New
N
‐Pentylquinoxaline carboxamides and Their
O
‐Regioisomer. ChemistrySelect 2020. [DOI: 10.1002/slct.202003024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ahmed Aboelmagd
- Department of Chemistry Faculty of Science Suez Canal University Ismailia Egypt
| | - Saad H. Alotaibi
- Department of Chemistry Turabah University College Taif University P.O.Box 11099 Taif 21944 Saudi Arabia
| | - Samir M. El Rayes
- Department of Chemistry Faculty of Science Suez Canal University Ismailia Egypt
| | - Gomaa M. Elsayed
- Department of Pharmaceutical Chemistry College of Clinical Pharmacy Imam Abdul Rahman Bin Faisal University P.O.Box1982 Dammam 31441 Eastern Province, Kingdom of Saudi Arabia
| | - Ibrahim A. I. Ali
- Department of Chemistry Faculty of Science Suez Canal University Ismailia Egypt
| | - Walid Fathalla
- Department of Physics and Math Faculty of Engineering Port-Said University Port-Said Egypt
| | - Faheem H. Pottoo
- Department of Pharmacology College of Clinical Pharmacy Imam Abdul Rahman Bin Faisal University P.O. Box 1982 Dammam 31441 Eastern Province, Kingdom of Saudi Arabia
| | - Firdos A. Khan
- Department of Stem Cell Biology Institute for Research & Medical Consultations IRMC) Imam Abdul Rahman Bin Faisal University Dammam 31441 Saudi Arabia
| |
Collapse
|
8
|
Akhtar S, Rehman S, Asiri SM, Khan FA, Baig U, Hakeem AS, Gondal MA. Evaluation of bioactivities of zinc oxide, cadmium sulfide and cadmium sulfide loaded zinc oxide nanostructured materials prepared by nanosecond pulsed laser. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111156. [PMID: 32806284 DOI: 10.1016/j.msec.2020.111156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/18/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023]
Abstract
The present study reports the preparation of cadmium sulfide (CdS) loaded zinc oxide (ZnO) nanostructured semiconductor material and its anti-bioactivity studies against cancerous and fungus cells. For composite preparation, two different mass ratios of CdS (10 and 20%) were loaded on ZnO (10%CdS/ZnO, 20%CdS/ZnO) using a 532 nm pulsed laser ablation in water media. The structural and morphological analyses confirmed the successful loading of nanoscaled CdS on the surface of ZnO particles, ZnO particles were largely spherical with average size ~50 nm, while CdS about 12 nm in size. The elemental and electron diffraction analyses reveal that the prepared composite, CdS/ZnO contained both CdS and ZnO, thus reaffirming the production of CdS loaded ZnO. The microscopic examination and MTT assay showed the significant impact of ZnO, CdS, and CdS loaded ZnO on human colorectal carcinoma cells (HCT-116 cells). Our results show that the prepared ZnO had better anticancer activities than individual CdS, and CdS loaded ZnO against cancerous cells. For antifungal efficacy, as-prepared nanomaterials were investigated against Candida albicans by examining minimum inhibitory/fungicidal concentration (MIC/MFC) and morphogenesis. The lowest MIC (0.5 mg/mL), and MFC values (1 mg/mL) were found for 10 and 20%CdS/ZnO. Furthermore, the morphological analyses reveal the severe damage of the cell membrane upon exposure of Candida strains to nanomaterials. The present study suggests that ZnO, CdS, and CdS loaded ZnO nanostructured materials possess potential anti-cancer and anti-fungal activities.
Collapse
Affiliation(s)
- Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Suriya Rehman
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Sarah Mousa Asiri
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P. O. Box 1982, Dammam 31441, Saudi Arabia
| | - Umair Baig
- Center for Research Excellence in Desalination & Water Treatment and Center for Environment and Water, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Abbas Saeed Hakeem
- Center of Excellence in Nanotechnology, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - M A Gondal
- Department of Physics and Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
9
|
Alahmari F, Rehman S, Almessiere M, Khan FA, Slimani Y, Baykal A. Synthesis of Ni 0.5Co 0.5-xCd xFe 1.78Nd 0.02O 4 (x ≤ 0.25) nanofibers by using electrospinning technique induce anti-cancer and anti-bacterial activities. J Biomol Struct Dyn 2020; 39:3186-3193. [PMID: 32340569 DOI: 10.1080/07391102.2020.1761880] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Here we report the electrospinning synthesis of Cd-substituted Ni-Co ferrite Ni0.5Co0.5-xCdxFe1.78Nd0.02O4 (x ≤ 0.25) nanofiber (NFs) with a very low concentration of Nd as a dopant. The structure and surface morphology of the Ni0.5Co0.5-xCdxFe1.78Nd0.02O4 (x ≤ 0.25) NFs were analyzed by X-ray powder pattern (XRD), transmission and scanning electron microscopes (TEM) along with Energy-dispersive X-ray (EDX). We have examined the biological applications of the Ni0.5Co0.5-xCdxFe1.78Nd0.02O4 (x ≤ 0.25) NFs on both cancerous cells and bacterial cells. We have found that Ni0.5Co0.5-xCdxFe1.78Nd0.02O4 (x ≤ 0.25) NFs produced inhibitory action on the human colorectal carcinoma cells (HEK-293) and also showed inhibitory action on the bacterial strains (S. aureus and E. coli) respectively. Finally, this is the first report on the synthesis of Cd- substituted Co-Ni ferrite nanofibers using electrospinning technique exhibiting anti-cancer and anti-bacterial activities.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- F Alahmari
- Department of Nanomedicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - S Rehman
- Department of Epidemic Disease Research, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - M Almessiere
- Department of Biophysics, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - F A Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Y Slimani
- Department of Biophysics, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - A Baykal
- Department of Nanomedicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
10
|
Tombuloglu H, Khan FA, Almessiere MA, Aldakheel S, Baykal A. Synthesis of niobium substituted cobalt-nickel nano-ferrite (Co 0.5Ni 0.5Nb xFe 2-xO 4 (x ≤ 0.1) by hydrothermal approach show strong anti-colon cancer activities. J Biomol Struct Dyn 2020; 39:2257-2265. [PMID: 32241211 DOI: 10.1080/07391102.2020.1748719] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The combination of two or more nanoparticles found to be effective strategy to synthesize nanocomposites for better drug delivery and treatment. In the present study, we have combined cobalt (Co), nickel (Ni), niobium (Nb), and iron oxide (Fe2O4) and prepared niobium substituted cobalt-nickel nano-ferrite nanocomposites (Co0.5Ni0.5NbxFe2-xO4 (x ≤ 0.1) by using hydrothermal approach. We have characterized the structure and morphology of nanocomposites by using XRD, EDX, TEM and SEM methodologies. We have examined the impact of nanocomposites (Co0.5Ni0.5NbxFe2-xO4 (x ≤ 0.1) on cancerous cells (human colorectal carcinoma cells, HCT-116) by using MTT assay. We have also checked the impact of nanocomposites on normal and non-cancerous cells (human embryonic kidney cells, HEK-293) to confirm the specificity of their actions. Post- 48 h treatment of Co0.5Ni0.5NbxFe2-xO4 (x ≤ 0.1) led to dose-dependent inhibition of cancer cells growth and proliferation. However, no cytotoxic effect was observed on the normal cells (HEK-293). In addition, DAPI stained nuclear DNA staining analysis demonstrates that the Co0.5Ni0.5NbxFe2-xO4 (x ≤ 0.1) treatment also caused nuclear DNA disintegration which is the marker for programmed cell death. These results demonstrate that synthesized nanocomposites Co0.5Ni0.5NbxFe2-xO4 (x ≤ 0.1) selectively target the colon cancer cells and induce cancer cell death.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- H Tombuloglu
- Department of Genetics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - F A Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - M A Almessiere
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.,Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - S Aldakheel
- Department of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - A Baykal
- Department of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
11
|
El Rayes SM, Aboelmagd A, Gomaa MS, Fathalla W, Ali IAI, Pottoo FH, Khan FA. Newly synthesized 3-(4-chloro-phenyl)-3-hydroxy-2,2-dimethyl-propionic acid methyl ester derivatives selectively inhibit the proliferation of colon cancer cells. RSC Adv 2020; 10:8825-8841. [PMID: 35496560 PMCID: PMC9049988 DOI: 10.1039/c9ra10950a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/21/2020] [Indexed: 11/28/2022] Open
Abstract
A series of 24 compounds were synthesized based on structure modification of the model methyl-3-(4-chlorophenyl)-3-hydroxy-2,2-dimethylpropanoate as potent HDACIs. Saponification and hydrazinolysis of the model ester afforded the corresponding acid and hydrazide, respectively. The model ester was transformed into the corresponding trichloroacetimidate or acetate by the reaction with trichloroacetonitrile and acetic anhydride, respectively. N-Alkyl-3-(4-chlorophenyl)-3-hydroxy-2,2-dimethylpropan-amides and methyl-2-[(3-(4-chlorophenyl)-3-hydroxy-2,2-dimethylpropanoyl)amino] alkanoates were obtained by the reaction of corresponding acid or hydrazide with amines and amino acid esters via DCC and azide coupling methods. Methyl-3-aryl-3-(4-chlorophenyl)-2,2-dimethylpropanoates were obtained in good yields and short reaction time from the corresponding trichloroacetimidate or acetate by the reaction with C-active nucleophiles in the presence of TMSOTf (0.1 eq.%) via C–C bond formation. The antiproliferative and apoptotic activity were further studied with molecular docking. The 48 post-treatments showed that out of 24 compounds, 12 compounds showed inhibitory actions on HCT-116 cells, we have calculated the inhibitory action (IC50) of these compounds on HCT-116 and we have found that the IC50 values were in between 0.12 mg mL−1 to 0.81 mg mL−1. The compounds (7a & 7g) showed highest inhibitory activity (0.12 mg mL−1), whereas compound 7d showed the lowest inhibitory activity (0.81 mg mL−1). We have also examined inhibitory action on normal and non-cancerous cells (HEK-293 cells) and confirmed that action of these compounds was specific to cancerous cells. The cancerous cells were also examined for nuclear disintegration through staining with DAPI, (4′,6-diamidino-2-phenylindole) is a blue-fluorescent DNA stain, and we have found that there was loss of DAPI staining in the compound treated cancerous cells. The compounds were found to potentially act through the HSP90 and TRAP1 mediated signaling pathway. Compounds 7a and 7g showed the highest selectivity to TRAP1 which explained its superior activity. A series of 24 compounds were synthesized based on structure modification of the model methyl-3-(4-chlorophenyl)-3-hydroxy-2,2-dimethylpropanoate as potent HDACIs.![]()
Collapse
Affiliation(s)
- Samir M. El Rayes
- Department of Chemistry
- Faculty of Science
- Suez Canal University
- Ismailia
- Egypt
| | - Ahmed Aboelmagd
- Department of Chemistry
- Faculty of Science
- Suez Canal University
- Ismailia
- Egypt
| | - Mohamed S. Gomaa
- Department of Pharmaceutical
- College of Clinical Pharmacy
- Imam Abdulrahman Bin Faisal University
- Dammam 31441
- Kingdom of Saudi Arabia
| | - Walid Fathalla
- Department of Physics and Math
- Faculty of Engineering
- Port-Said University
- Port-Said
- Egypt
| | - Ibrahim A. I. Ali
- Department of Chemistry
- Faculty of Science
- Suez Canal University
- Ismailia
- Egypt
| | - Faheem H. Pottoo
- Department of Pharmacology
- College of Clinical Pharmacy
- Imam Abdulrahman Bin Faisal University
- Dammam 31441
- Kingdom of Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research
- Institute of Research and Medical Consultations (IRMC)
- Imam Abdulrahman Bin Faisal University
- Dammam 31441
- Saudi Arabia
| |
Collapse
|
12
|
Rehman S, Almessiere MA, Khan FA, Korkmaz AD, Tashkandi N, Slimani Y, Baykal A. Synthesis and biological characterization of Mn 0.5Zn 0.5Eu xDy xFe 1.8-2xO 4 nanoparticles by sonochemical approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110534. [PMID: 32228890 DOI: 10.1016/j.msec.2019.110534] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023]
Abstract
Metallic nanoparticles (NPs) possess unique properties which makes them attractive candidates for various applications especially in field of experimental medicine and drug delivery. Many approaches were developed to synthesize divers and customized metallic NPs that can be useful in many areas such as, experimental medicine, drug design, drug delivery, electrical and electronic engineering, electrochemical sensors, and biochemical sensors. Among different metallic nanoparticles, manganese (Mn) NPs are the most prominent materials, in the present study, we have synthetized unique Mn0.5Zn0.5DyxEuxFe1.8-2xO4 NPs by using ultrasonication method (x ≤ 0.1). The structure, and surface morphology of Mn0.5Zn0.5DyxEuxFe1.8-2xO4 NPs was characterized by XRD, SEM, TEM and EDX methods. We have examined the biological effects of Mn0.5Zn0.5DyxEuxFe1.8-2xO4 NPs on both normal (HEK-293) and cancerous (HCT-116) cells. We have found that the treatment of Mn0.5Zn0.5DyxEuxFe1.8-2xO4 NPs post 48 h, showed significant decline in cancer cells population as revealed by MTT assay. The IC50 value of Mn0.5Zn0.5DyxEuxFe1.8-2xO4 NPs was ranged between (2.35 μg/mL to 2.33 μg/mL). To check the specificity of the actions, we found that the treatment of Mn0.5Zn0.5DyxEuxFe1.8-2xO4 NPs did not produce any effects on the normal cells, which suggest that Mn0.5Zn0.5DyxEuxFe1.8-2xO4 NPs selectively targeted the cancerous cells. The anti-bacterial properties of Mn0.5Zn0.5DyxEuxFe1.8-2xO4 NPs were also evaluated by MIC and MBC assays. We suggest that Mn0.5Zn0.5DyxEuxFe1.8-2xO4 NPs produced by sonochemical method possess potential anti-cancer and anti-bacterial capabilities.
Collapse
Affiliation(s)
- S Rehman
- Department of Epidemiology, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - M A Almessiere
- Department of Biophysics, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - F A Khan
- Department of Stem Cell Biology, Institute for Research & Medical Consultations (IRMC),Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - A Demir Korkmaz
- Department of Chemistry, Istanbul Medeniyet University, 34700, Istanbul, Uskudar, Turkey.
| | - N Tashkandi
- Department of Nano-Medicine Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - Y Slimani
- Department of Biophysics, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - A Baykal
- Department of Nano-Medicine Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| |
Collapse
|
13
|
Synthesis of Mn 0.5Zn 0.5Sm xEu xFe 1.8-2xO 4 Nanoparticles via the Hydrothermal Approach Induced Anti-Cancer and Anti-Bacterial Activities. NANOMATERIALS 2019; 9:nano9111635. [PMID: 31752130 PMCID: PMC6915425 DOI: 10.3390/nano9111635] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023]
Abstract
Manganese metallic nanoparticles are attractive materials for various biological and medical applications. In the present study, we synthesized unique Mn0.5Zn0.5SmxEuxFe1.8−2xO4 (0.01 ≤ x ≤ 0.05) nanoparticles (NPs) by using the hydrothermal approach. The structure and surface morphology of the products were determined by X-ray powder diffraction (XRD), transmission electron and scanning electron microcopies (TEM and SEM), along with energy dispersive X-ray spectroscopy (EDX). We evaluated the impact of Mn0.5Zn0.5SmxEuxFe1.8−2xO4 NPs on both human embryonic stem cells (HEK-293) (normal cells) and human colon carcinoma cells (HCT-116) (cancerous cells). We found that post-48 h of treatment of all products showed a significant decline in the cancer cell population as revealed by microscopically and the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium (MTT) assay. The inhibitory concentration (IC50) values of the products ranged between 0.75 and 2.25 µg/mL. When tested on normal and healthy cells (HEK-293), we found that the treatment of products did not produce any effects on the normal cells, which suggests that all products selectively targeted the cancerous cells. The anti-bacterial properties of the samples were also evaluated by Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) assays, which showed that products also inhibited the bacterial growth.
Collapse
|
14
|
El Rayes SM, Aboelmagd A, Gomaa MS, Ali IAI, Fathalla W, Pottoo FH, Khan FA. Convenient Synthesis and Anticancer Activity of Methyl 2-[3-(3-Phenyl-quinoxalin-2-ylsulfanyl)propanamido]alkanoates and N-Alkyl 3-((3-Phenyl-quinoxalin-2-yl)sulfanyl)propanamides. ACS OMEGA 2019; 4:18555-18566. [PMID: 31737814 PMCID: PMC6854567 DOI: 10.1021/acsomega.9b02320] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/02/2019] [Indexed: 05/16/2023]
Abstract
A series of methyl 2-[3-(3-phenyl-quinoxalin-2-ylsulfanyl)propanamido]alkanoates and their corresponding hydrazides and N-alkyl 3-((3-phenylquinoxalin-2-yl)sulfanyl)propanamides were prepared on the basis of the chemoselective Michael reaction of acrylic acid with the parent substrate 3-phenylquinoxaline-2(1H)-thione. The parent thione was produced by a convenient novel thiation method from the corresponding 3-phenylquinoxalin-2(1H)-one. The chemical structures of the newly synthesized compounds were confirmed by elemental analyses, 1H and 13C NMR. The antiproliferative activity of the synthesized compounds was tested against human HCT-116 and MCF-7 cell lines. Out of 25 screened derivatives, 10 active compounds exhibited IC50's in the range 1.9-7.52 μg/mL on the HCT-116, and 17 active compounds exhibited IC50's in the range 2.3-6.62 μg/mL on the MCF-7 cell lines compared to the reference drug doxorubicin (IC50 3.23 μg/mL). The structure-activity relationship of the tested compounds was studied through their binding affinity to the human thymidylate synthase allosteric site in silico using molecular docking and proved the quinoxaline ring as a suitable scaffold carrying a peptidomimetic side chain in position 3.
Collapse
Affiliation(s)
- Samir M. El Rayes
- Department
of Chemistry, Faculty of Science, Suez Canal
University, Ismailia 41522, Egypt
- E-mail: . Phone: +20127500914
| | - Ahmed Aboelmagd
- Department
of Chemistry, Faculty of Science, Suez Canal
University, Ismailia 41522, Egypt
| | - Mohamed S. Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy and Department of
Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Kingdom of Saudi
Arabia
| | - Ibrahim A. I. Ali
- Department
of Chemistry, Faculty of Science, Suez Canal
University, Ismailia 41522, Egypt
| | - Walid Fathalla
- Department
of Physics and Mathematics, Faculty of Engineering, Port-Said University, Port-Said 42526, Egypt
| | - Faheem H. Pottoo
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy and Department of
Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Kingdom of Saudi
Arabia
| | - Firdos A. Khan
- Department
of Stem Cell Biology, Institute for Research & Medical Consultations
(IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
15
|
Rehman S, Asiri SM, Khan FA, Jermy BR, Khan H, Akhtar S, Jindan RA, Khan KM, Qurashi A. Biocompatible Tin Oxide Nanoparticles: Synthesis, Antibacterial, Anticandidal and Cytotoxic Activities. ChemistrySelect 2019. [DOI: 10.1002/slct.201803550] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Suriya Rehman
- Institute for Research & Medical Consultations, (IRMC)Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Sarah Mousa Asiri
- Institute for Research & Medical Consultations, (IRMC)Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Firdos Alam Khan
- Institute for Research & Medical Consultations, (IRMC)Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - B Rabindran Jermy
- Institute for Research & Medical Consultations, (IRMC)Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Hafeezullah Khan
- Physics DepartmentInternational Islamic University Islamabad 44000 Pakistan
| | - Sultan Akhtar
- Institute for Research & Medical Consultations, (IRMC)Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Reem Al Jindan
- College of medicineImam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
| | - Khalid Mohammed Khan
- Institute for Research & Medical Consultations, (IRMC)Imam Abdulrahman Bin Faisal University Dammam 31441 Saudi Arabia
- International Center for Chemical and Biological SciencesUniversity of Karachi Karachi-75270 Pakistan
| | - Ahsanulhaq Qurashi
- Center of Excellence in NanotechnologyKing Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| |
Collapse
|
16
|
Khan FA, Akhtar S, Almofty SA, Almohazey D, Alomari M. FMSP-Nanoparticles Induced Cell Death on Human Breast Adenocarcinoma Cell Line (MCF-7 Cells): Morphometric Analysis. Biomolecules 2018; 8:biom8020032. [PMID: 29882888 PMCID: PMC6022976 DOI: 10.3390/biom8020032] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
Currently, breast cancer treatment mostly revolves around radiation therapy and surgical interventions, but often these treatments do not provide satisfactory relief to the patients and cause unmanageable side-effects. Nanomaterials show promising results in treating cancer cells and have many advantages such as high biocompatibility, bioavailability and effective therapeutic capabilities. Interestingly, fluorescent magnetic nanoparticles have been used in many biological and diagnostic applications, but there is no report of use of fluorescent magnetic submicronic polymer nanoparticles (FMSP-nanoparticles) in the treatment of human breast cancer cells. In the present study, we tested the effect of FMSP-nanoparticles on human breast cancer cells (MCF-7). We tested different concentrations (1.25, 12.5 and 50 µg/mL) of FMSP-nanoparticles in MCF-7 cells and evaluated the nanoparticles response morphometrically. Our results revealed that FMSP-nanoparticles produced a concentration dependent effect on the cancer cells, a dose of 1.25 µg/mL produced no significant effect on the cancer cell morphology and cell death, whereas dosages of 12.5 and 50 µg/mL resulted in significant nuclear augmentation, disintegration, chromatic condensation followed by dose dependent cell death. Our results demonstrate that FMSP-nanoparticles induce cell death in MCF-7 cells and may be a potential anti-cancer agent for breast cancer treatment.
Collapse
Affiliation(s)
- Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Sarah Ameen Almofty
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Dana Almohazey
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| | - Munthar Alomari
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam 31441, Saudi Arabia.
| |
Collapse
|
17
|
Niazi MKK, Tavolara TE, Arole V, Hartman DJ, Pantanowitz L, Gurcan MN. Identifying tumor in pancreatic neuroendocrine neoplasms from Ki67 images using transfer learning. PLoS One 2018; 13:e0195621. [PMID: 29649302 PMCID: PMC5896941 DOI: 10.1371/journal.pone.0195621] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/26/2018] [Indexed: 12/17/2022] Open
Abstract
The World Health Organization (WHO) has clear guidelines regarding the use of Ki67 index in defining the proliferative rate and assigning grade for pancreatic neuroendocrine tumor (NET). WHO mandates the quantification of Ki67 index by counting at least 500 positive tumor cells in a hotspot. Unfortunately, Ki67 antibody may stain both tumor and non-tumor cells as positive depending on the phase of the cell cycle. Likewise, the counter stain labels both tumor and non-tumor as negative. This non-specific nature of Ki67 stain and counter stain therefore hinders the exact quantification of Ki67 index. To address this problem, we present a deep learning method to automatically differentiate between NET and non-tumor regions based on images of Ki67 stained biopsies. Transfer learning was employed to recognize and apply relevant knowledge from previous learning experiences to differentiate between tumor and non-tumor regions. Transfer learning exploits a rich set of features previously used to successfully categorize non-pathology data into 1,000 classes. The method was trained and validated on a set of whole-slide images including 33 NETs subject to Ki67 immunohistochemical staining using a leave-one-out cross-validation. When applied to 30 high power fields (HPF) and assessed against a gold standard (evaluation by two expert pathologists), the method resulted in a high sensitivity of 97.8% and specificity of 88.8%. The deep learning method developed has the potential to reduce pathologists’ workload by directly identifying tumor boundaries on images of Ki67 stained slides. Moreover, it has the potential to replace sophisticated and expensive imaging methods which are recently developed for identification of tumor boundaries in images of Ki67-stained NETs.
Collapse
Affiliation(s)
- Muhammad Khalid Khan Niazi
- Center for Biomedical Informatics, Wake Forest School of Medicine, Winston Salem, NC, United States of America
- * E-mail:
| | - Thomas Erol Tavolara
- Center for Biomedical Informatics, Wake Forest School of Medicine, Winston Salem, NC, United States of America
| | - Vidya Arole
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States of America
| | - Douglas J. Hartman
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Liron Pantanowitz
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Metin N. Gurcan
- Center for Biomedical Informatics, Wake Forest School of Medicine, Winston Salem, NC, United States of America
| |
Collapse
|
18
|
Liu W, Wang L, Liu J, Yuan J, Chen J, Wu H, Xiang Q, Yang G, Li Y. A Comparative Performance Analysis of Multispectral and RGB Imaging on HER2 Status Evaluation for the Prediction of Breast Cancer Prognosis. Transl Oncol 2016; 9:521-530. [PMID: 27835789 PMCID: PMC5109258 DOI: 10.1016/j.tranon.2016.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/21/2016] [Indexed: 12/15/2022] Open
Abstract
Despite the extensive application of multispectral imaging (MSI) in biomedical multidisciplinary researches, there is a paucity of data available regarding the implication of MSI in tumor prognosis prediction. We compared the behaviors of multispectral (MS) and conventional red-green-blue (RGB) images on assessment of human epidermal growth factor receptor 2 (HER2) immunohistochemistry to explore their impact on outcome in patients with invasive breast cancer (BC). Tissue microarrays containing 240 BC patients were introduced to compare the performance of MS and RGB imaging methods on the quantitative assessment of HER2 status and the prognostic value of 5-year disease-free survival (5-DFS). Both the total and average signal optical density values of HER2 MS and RGB images were analyzed, and all patients were divided into two groups based on the different 5-DFS. The quantification of HER2 MS images was negatively correlated with 5-DFS in lymph node–negative and –positive patients (P < .05), but RGB images were not in lymph node–positive patients (P = .101). Multivariate analysis indicated that the hazard ratio (HR) of HER2 MS was higher than that of HER2 RGB (HR = 2.454; 95% confidence interval [CI], 1.636-3.681 vs HR = 2.060; 95% CI, 1.361-3.119). Additionally, area under curve (AUC) by receiver operating characteristic analysis for HER2 MS was greater than that for HER2 RGB (AUC = 0.649; 95% CI, 0.577-0.722 vs AUC = 0.596; 95% CI, 0.522-0.670) in predicting the risk for recurrence. More importantly, the quantification of HER2 MS images has higher prediction accuracy than that of HER2 RGB images (69.6% vs 65.0%) on 5-DFS. Our study suggested that better information on BC prognosis could be obtained from the quantification of HER2 MS images and MS images might perform better in predicting BC prognosis than conventional RGB images.
Collapse
Affiliation(s)
- Wenlou Liu
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Linwei Wang
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Jiuyang Liu
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiamei Chen
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Han Wu
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Qingming Xiang
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan, 430071, China
| | - Guifang Yang
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yan Li
- Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Wuhan, 430071, China; Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital Affiliated to the Capital Medical University, Beijing, 100038, China.
| |
Collapse
|
19
|
Geng XF, Fang M, Liu SP, Li Y. Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay. Mol Med Rep 2016; 14:3007-12. [PMID: 27572664 PMCID: PMC5042759 DOI: 10.3892/mmr.2016.5632] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/25/2016] [Indexed: 12/12/2022] Open
Abstract
This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF‑7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot‑based molecular targeted imaging techniques (which stained pan‑cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF‑7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot‑based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology.
Collapse
Affiliation(s)
- Xia-Fei Geng
- Department of Oncology, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Min Fang
- Department of Oncology, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shao-Ping Liu
- Medical Research Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yan Li
- Department of Oncology, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|