1
|
Alonso SDV, González Flecha FL. Fifty years of biophysics in Argentina. Biophys Rev 2023; 15:431-438. [PMID: 37681102 PMCID: PMC10480372 DOI: 10.1007/s12551-023-01114-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023] Open
Abstract
In 1972, a group of young Argentinean scientists nucleated in the so-called Membrane Club constituted the Biophysical Society of Argentina (SAB). Over the years, this Society has grown and embraced new areas of research and emerging technologies. In this commentary, we provide an overview of the early stages of biophysics development in Argentina and highlight some of the notable achievements made during the past five decades. The SAB Annual Meetings have been a platform for intense scientific discussions, and the Society has fostered numerous international connections, becoming a hallmark of SAB activities over these 50 years. Initially centered on membrane biophysics, SAB focus has since expanded to encompass diverse fields such as molecular, cellular, and systems biophysics.
Collapse
Affiliation(s)
- Silvia del V. Alonso
- Laboratorio de Bio-Nanotecnología, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
- Grupo de Biología Estructural y Biotecnología (GBEyB), IMBICE (CONICET CCT-La Plata), La Plata, Argentina
| | - F. Luis González Flecha
- Laboratorio de Biofísica Molecular, Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires – CONICET, Buenos Aires, Argentina
| |
Collapse
|
2
|
Pignataro MF, Herrera MG, Fernández NB, Aran M, Gentili HG, Battaglini F, Santos J. Selection of synthetic proteins to modulate the human frataxin function. Biotechnol Bioeng 2023; 120:409-425. [PMID: 36225115 DOI: 10.1002/bit.28263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/13/2022] [Accepted: 10/09/2022] [Indexed: 01/13/2023]
Abstract
Frataxin is a kinetic activator of the mitochondrial supercomplex for iron-sulfur cluster assembly. Low frataxin expression or a decrease in its functionality results in Friedreich's Ataxia (FRDA). With the aim of creating new molecular tools to study this metabolic pathway, and ultimately, to explore new therapeutic strategies, we have investigated the possibility of obtaining small proteins exhibiting a high affinity for frataxin. In this study, we applied the ribosome display approach, using human frataxin as the target. We focused on Affi_224, one of the proteins that we were able to select after five rounds of selection. We have studied the interaction between both proteins and discussed some applications of this specific molecular tutor, concerning the modulation of the supercomplex activity. Affi_224 and frataxin showed a KD value in the nanomolar range, as judged by surface plasmon resonance analysis. Most likely, it binds to the frataxin acidic ridge, as suggested by the analysis of chemical shift perturbations (nuclear magnetic resonance) and computational simulations. Affi_224 was able to increase Cys NFS1 desulfurase activation exerted by the FRDA frataxin variant G130V. Importantly, Affi_224 interacts with frataxin in a human cellular model. Our results suggest quaternary addition may be a new tool to modulate frataxin function in vivo. Nevertheless, more functional experiments under physiological conditions should be carried out to evaluate Affi_224 effectiveness in FRDA cell models.
Collapse
Affiliation(s)
- María Florencia Pignataro
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Georgina Herrera
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Natalia Brenda Fernández
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Martín Aran
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina.,Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Hernán Gustavo Gentili
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fernando Battaglini
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE CONICET), Buenos Aires, Argentina
| | - Javier Santos
- Departamento de Fisiología y Biología Molecular y Celular, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, Ciudad Autónoma de Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
3
|
Dey D, Biswas P, Paul P, Mahmud S, Ema TI, Khan AA, Ahmed SZ, Hasan MM, Saikat ASM, Fatema B, Bibi S, Rahman MA, Kim B. Natural flavonoids effectively block the CD81 receptor of hepatocytes and inhibit HCV infection: a computational drug development approach. Mol Divers 2022:10.1007/s11030-022-10491-9. [PMID: 35821161 DOI: 10.1007/s11030-022-10491-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/24/2022] [Indexed: 12/15/2022]
Abstract
Hepatitis C virus (HCV) infection is a major public health concern, and almost two million people are infected per year globally. This is occurred by the diverse spectrum of viral genotypes, which are directly associated with chronic liver disease (fibrosis, and cirrhosis). Indeed, the viral genome encodes three principal proteins as sequentially core, E1, and E2. Both E1 and E2 proteins play a crucial role in the attachment of the host system, but E2 plays a more fundamental role in attachment. The researchers have found the "E2-CD81 complex" at the entry site, and therefore, CD81 is the key receptor for HCV entrance in both humans, and chimpanzees. So, the researchers are trying to block the host CD81 receptor and halt the virus entry within the cellular system via plant-derived compounds. Perhaps that is why the current research protocol is designed to perform an in silico analysis of the flavonoid compounds for targeting the tetraspanin CD81 receptor of hepatocytes. To find out the best flavonoid compounds from our library, web-based tools (Swiss ADME, pKCSM), as well as computerized tools like the PyRx, PyMOL, BIOVIA Discovery Studio Visualizer, Ligplot+ V2.2, and YASARA were employed. For molecular docking studies, the flavonoid compounds docked with the targeted CD81 protein, and herein, the best-outperformed compounds are Taxifolin, Myricetin, Puerarin, Quercetin, and (-)-Epicatechin, and outstanding binding affinities are sequentially - 7.5, - 7.9, - 8.2, - 8.4, and - 8.5 kcal/mol, respectively. These compounds have possessed more interactions with the targeted protein. To validate the post docking data, we analyzed both 100 ns molecular dynamic simulation, and MM-PBSA via the YASARA simulator, and finally finds the more significant outcomes. It is concluded that in the future, these compounds may become one of the most important alternative antiviral agents in the fight against HCV infection. It is suggested that further in vivo, and in vitro research studies should be done to support the conclusions of this in silico research workflow.
Collapse
Affiliation(s)
- Dipta Dey
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, 7408, Bangladesh.
| | - Priyanka Paul
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6204, Bangladesh
| | - Tanzila Ismail Ema
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Arysha Alif Khan
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Shahlaa Zernaz Ahmed
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Babry Fatema
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, China
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Md Ataur Rahman
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea.
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
4
|
Botticelli S, La Penna G, Nobili G, Rossi G, Stellato F, Morante S. Modelling Protein Plasticity: The Example of Frataxin and Its Variants. Molecules 2022; 27:1955. [PMID: 35335316 PMCID: PMC8950120 DOI: 10.3390/molecules27061955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 12/20/2022] Open
Abstract
Frataxin (FXN) is a protein involved in storage and delivery of iron in the mitochondria. Single-point mutations in the FXN gene lead to reduced production of functional frataxin, with the consequent dyshomeostasis of iron. FXN variants are at the basis of neurological impairment (the Friedreich's ataxia) and several types of cancer. By using altruistic metadynamics in conjunction with the maximal constrained entropy principle, we estimate the change of free energy in the protein unfolding of frataxin and of some of its pathological mutants. The sampled configurations highlight differences between the wild-type and mutated sequences in the stability of the folded state. In partial agreement with thermodynamic experiments, where most of the analyzed variants are characterized by lower thermal stability compared to wild type, the D104G variant is found with a stability comparable to the wild-type sequence and a lower water-accessible surface area. These observations, obtained with the new approach we propose in our work, point to a functional switch, affected by single-point mutations, of frataxin from iron storage to iron release. The method is suitable to investigate wide structural changes in proteins in general, after a proper tuning of the chosen collective variable used to perform the transition.
Collapse
Affiliation(s)
- Simone Botticelli
- Dipartimento di Fisica, Università di Roma Tor Vergata and Sezione di Roma Tor Vergata, INFN, Via della Ricerca Scientifica 1, I-00133 Roma, Italy; (S.B.); (G.N.); (G.R.); (F.S.); (S.M.)
| | - Giovanni La Penna
- Dipartimento di Fisica, Università di Roma Tor Vergata and Sezione di Roma Tor Vergata, INFN, Via della Ricerca Scientifica 1, I-00133 Roma, Italy; (S.B.); (G.N.); (G.R.); (F.S.); (S.M.)
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019 Firenze, Italy
| | - Germano Nobili
- Dipartimento di Fisica, Università di Roma Tor Vergata and Sezione di Roma Tor Vergata, INFN, Via della Ricerca Scientifica 1, I-00133 Roma, Italy; (S.B.); (G.N.); (G.R.); (F.S.); (S.M.)
| | - Giancarlo Rossi
- Dipartimento di Fisica, Università di Roma Tor Vergata and Sezione di Roma Tor Vergata, INFN, Via della Ricerca Scientifica 1, I-00133 Roma, Italy; (S.B.); (G.N.); (G.R.); (F.S.); (S.M.)
- Centro Fermi—Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, I-00184 Roma, Italy
| | - Francesco Stellato
- Dipartimento di Fisica, Università di Roma Tor Vergata and Sezione di Roma Tor Vergata, INFN, Via della Ricerca Scientifica 1, I-00133 Roma, Italy; (S.B.); (G.N.); (G.R.); (F.S.); (S.M.)
- Centro Fermi—Museo Storico della Fisica e Centro Studi e Ricerche E. Fermi, I-00184 Roma, Italy
| | - Silvia Morante
- Dipartimento di Fisica, Università di Roma Tor Vergata and Sezione di Roma Tor Vergata, INFN, Via della Ricerca Scientifica 1, I-00133 Roma, Italy; (S.B.); (G.N.); (G.R.); (F.S.); (S.M.)
| |
Collapse
|
5
|
Puglisi R. Protein Mutations and Stability, a Link with Disease: The Case Study of Frataxin. Biomedicines 2022; 10:biomedicines10020425. [PMID: 35203634 PMCID: PMC8962269 DOI: 10.3390/biomedicines10020425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Protein mutations may lead to pathologies by causing protein misfunction or propensity to degradation. For this reason, several studies have been performed over the years to determine the capability of proteins to retain their native conformation under stress condition as well as factors to explain protein stabilization and the mechanisms behind unfolding. In this review, we explore the paradigmatic example of frataxin, an iron binding protein involved in Fe–S cluster biogenesis, and whose impairment causes a neurodegenerative disease called Friedreich’s Ataxia (FRDA). We summarize what is known about most common point mutations identified so far in heterozygous FRDA patients, their effects on frataxin structure and function and the consequences of its binding with partners.
Collapse
Affiliation(s)
- Rita Puglisi
- UK Dementia Research Institute at the Wohl Institute of King's College London, London SE59RT, UK
| |
Collapse
|
6
|
Duran T, Minatovicz B, Bai J, Shin D, Mohammadiarani H, Chaudhuri B. Molecular Dynamics Simulation to Uncover the Mechanisms of Protein Instability During Freezing. J Pharm Sci 2021; 110:2457-2471. [PMID: 33421436 DOI: 10.1016/j.xphs.2021.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/07/2020] [Accepted: 01/03/2021] [Indexed: 11/19/2022]
Abstract
Freezing is a common process applied in the pharmaceutical industry to store and transport biotherapeutics. Herewith, multi-scale molecular dynamics simulations of Lactate dehydrogenase (LDH) protein in phosphate buffer with/without ice formation performed to uncover the still poorly understood mechanisms and molecular details of protein destabilization upon freezing. Both fast and slow ice growing conditions were simulated at 243 K from one or two-side of the simulation box, respectively. The rate of ice formation at all-atom simulations was crucial to LDH stability, as faster freezing rates resulted in enhanced structural stability maintained by a higher number of intramolecular hydrogen bonds, less flexible protein's residues, lower solvent accessibility and greater structural compactness. Further, protein aggregation investigated by coarse-grained simulations was verified to be initiated by extended protein structures and retained by electrostatic interactions of the salt bridges between charged residues and hydrogen bonds between polar residues of the protein. Lastly, the study of free energy of dissociation through steered molecular dynamics simulation revealed LDH was destabilized by the solvation of the hydrophobic core and the loss of hydrophobic interactions. For the first time, experimentally validated molecular simulations revealed the detailed mechanisms of LDH destabilization upon ice formation and cryoconcentration of solutes.
Collapse
Affiliation(s)
- Tibo Duran
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, 06269, USA
| | - Bruna Minatovicz
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, 06269, USA
| | - Jun Bai
- Department of Computer Sciences and Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Dongkwan Shin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, 06269, USA
| | - Hossein Mohammadiarani
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, 06269, USA
| | - Bodhisattwa Chaudhuri
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, 06269, USA; Institute of Material Sciences (IMS), University of Connecticut, Storrs, CT, USA; Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
7
|
Doni D, Passerini L, Audran G, Marque SRA, Schulz M, Santos J, Costantini P, Bortolus M, Carbonera D. Effects of Fe 2+/Fe 3+ Binding to Human Frataxin and Its D122Y Variant, as Revealed by Site-Directed Spin Labeling (SDSL) EPR Complemented by Fluorescence and Circular Dichroism Spectroscopies. Int J Mol Sci 2020; 21:E9619. [PMID: 33348670 PMCID: PMC7766144 DOI: 10.3390/ijms21249619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
Frataxin is a highly conserved protein whose deficiency results in the neurodegenerative disease Friederich's ataxia. Frataxin's actual physiological function has been debated for a long time without reaching a general agreement; however, it is commonly accepted that the protein is involved in the biosynthetic iron-sulphur cluster (ISC) machinery, and several authors have pointed out that it also participates in iron homeostasis. In this work, we use site-directed spin labeling coupled to electron paramagnetic resonance (SDSL EPR) to add new information on the effects of ferric and ferrous iron binding on the properties of human frataxin in vitro. Using SDSL EPR and relating the results to fluorescence experiments commonly performed to study iron binding to FXN, we produced evidence that ferric iron causes reversible aggregation without preferred interfaces in a concentration-dependent fashion, starting at relatively low concentrations (micromolar range), whereas ferrous iron binds without inducing aggregation. Moreover, our experiments show that the ferrous binding does not lead to changes of protein conformation. The data reported in this study reveal that the currently reported binding stoichiometries should be taken with caution. The use of a spin label resistant to reduction, as well as the comparison of the binding effect of Fe2+ in wild type and in the pathological D122Y variant of frataxin, allowed us to characterize the Fe2+ binding properties of different protein sites and highlight the effect of the D122Y substitution on the surrounding residues. We suggest that both Fe2+ and Fe3+ might play a relevant role in the context of the proposed FXN physiological functions.
Collapse
Affiliation(s)
- Davide Doni
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy; (D.D.); (P.C.)
| | - Leonardo Passerini
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; (L.P.); (D.C.)
| | - Gérard Audran
- Institut de Chimie Radicalaire, Aix Marseille Universitè, CNRS, ICR, UMR 7273, Case 551, Ave Escadrille Normandie Niemen, CEDEX 20, 13397 Marseille, France; (G.A.); (S.R.A.M.); (M.S.)
| | - Sylvain R. A. Marque
- Institut de Chimie Radicalaire, Aix Marseille Universitè, CNRS, ICR, UMR 7273, Case 551, Ave Escadrille Normandie Niemen, CEDEX 20, 13397 Marseille, France; (G.A.); (S.R.A.M.); (M.S.)
| | - Marvin Schulz
- Institut de Chimie Radicalaire, Aix Marseille Universitè, CNRS, ICR, UMR 7273, Case 551, Ave Escadrille Normandie Niemen, CEDEX 20, 13397 Marseille, France; (G.A.); (S.R.A.M.); (M.S.)
| | - Javier Santos
- Departamento de Química Biológica, Instituto de Biociencias, Biotecnología y Biomedicina (iB3-UBA), Facultad de Ciencia Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160—Ciudad Universitaria, 1428EGA CONICET, Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
- Instituto de Química y Fisicoquímica Biológicas Dr. Alejandro Paladini, Universidad de Buenos Aires, CONICET, Junín 956, Buenos Aires 1113AAD, Argentina
| | - Paola Costantini
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy; (D.D.); (P.C.)
| | - Marco Bortolus
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; (L.P.); (D.C.)
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy; (L.P.); (D.C.)
| |
Collapse
|
8
|
Castro IH, Bringas M, Doni D, Noguera ME, Capece L, Aran M, Blaustein M, Costantini P, Santos J. Relationship between activity and stability: Design and characterization of stable variants of human frataxin. Arch Biochem Biophys 2020; 691:108491. [PMID: 32707090 DOI: 10.1016/j.abb.2020.108491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/26/2020] [Accepted: 07/08/2020] [Indexed: 11/16/2022]
Abstract
The relationships between conformational dynamics, stability and protein function are not obvious. Frataxin (FXN) is an essential protein that forms part of a supercomplex dedicated to the iron-sulfur (Fe-S) cluster assembly within the mitochondrial matrix. In humans, the loss of FXN expression or a decrease in its functionality results in Friedreich's Ataxia, a cardio-neurodegenerative disease. Recently, the way in which FXN interacts with the rest of the subunits of the supercomplex was uncovered. This opens a window to explore relationships between structural dynamics and function. In this study, we prepared a set of FXN variants spanning a broad range of conformational stabilities. Variants S160I, S160M and A204R were more stable than the wild-type and showed similar biological activity. Additionally, we prepared SILCAR, a variant that combines S160I, L203C and A204R mutations. SILCAR was 2.4 kcal mol-1 more stable and equally active. Some of the variants were significantly more resistant to proteolysis than the wild-type FXN. SILCAR showed the highest resistance, suggesting a more rigid structure. It was corroborated by means of molecular dynamics simulations. Relaxation dispersion NMR experiments comparing SILCAR and wild-type variants suggested similar internal motions in the microsecond to millisecond timescale. Instead, variant S157I showed higher denaturation resistance but a significant lower function, similarly to that observed for the FRDA variant N146K. We concluded that the contribution of particular side chains to the conformational stability of FXN might be highly subordinated to their impact on both the protein function and the stability of the functional supercomplex.
Collapse
Affiliation(s)
- Ignacio Hugo Castro
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB(3)). Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - Mauro Bringas
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE CONICET), C1428EGA, Buenos Aires, Argentina
| | - Davide Doni
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy
| | - Martin Ezequiel Noguera
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB(3)). Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas, Dr. Alejandro Paladini, Universidad de Buenos Aires, CONICET, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Luciana Capece
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE CONICET), C1428EGA, Buenos Aires, Argentina
| | - Martín Aran
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina
| | - Matías Blaustein
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB(3)). Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - Paola Costantini
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131, Padova, Italy
| | - Javier Santos
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB(3)). Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Olmos J, Pignataro MF, Benítez dos Santos AB, Bringas M, Klinke S, Kamenetzky L, Velazquez F, Santos J. A Highly Conserved Iron-Sulfur Cluster Assembly Machinery between Humans and Amoeba Dictyostelium discoideum: The Characterization of Frataxin. Int J Mol Sci 2020; 21:E6821. [PMID: 32957566 PMCID: PMC7554988 DOI: 10.3390/ijms21186821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Several biological activities depend on iron-sulfur clusters ([Fe-S]). Even though they are well-known in several organisms their function and metabolic pathway were poorly understood in the majority of the organisms. We propose to use the amoeba Dictyostelium discoideum, as a biological model to study the biosynthesis of [Fe-S] at the molecular, cellular and organism levels. First, we have explored the D. discoideum genome looking for genes corresponding to the subunits that constitute the molecular machinery for Fe-S cluster assembly and, based on the structure of the mammalian supercomplex and amino acid conservation profiles, we inferred the full functionality of the amoeba machinery. After that, we expressed the recombinant mature form of D. discoideum frataxin protein (DdFXN), the kinetic activator of this pathway. We characterized the protein and its conformational stability. DdFXN is monomeric and compact. The analysis of the secondary structure content, calculated using the far-UV CD spectra, was compatible with the data expected for the FXN fold, and near-UV CD spectra were compatible with the data corresponding to a folded protein. In addition, Tryptophan fluorescence indicated that the emission occurs from an apolar environment. However, the conformation of DdFXN is significantly less stable than that of the human FXN, (4.0 vs. 9.0 kcal mol-1, respectively). Based on a sequence analysis and structural models of DdFXN, we investigated key residues involved in the interaction of DdFXN with the supercomplex and the effect of point mutations on the energetics of the DdFXN tertiary structure. More than 10 residues involved in Friedreich's Ataxia are conserved between the human and DdFXN forms, and a good correlation between mutational effect on the energetics of both proteins were found, suggesting the existence of similar sequence/function/stability relationships. Finally, we integrated this information in an evolutionary context which highlights particular variation patterns between amoeba and humans that may reflect a functional importance of specific protein positions. Moreover, the complete pathway obtained forms a piece of evidence in favor of the hypothesis of a shared and highly conserved [Fe-S] assembly machinery between Human and D. discoideum.
Collapse
Affiliation(s)
- Justo Olmos
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina; (J.O.); (M.F.P.); (A.B.B.d.S.); (L.K.)
| | - María Florencia Pignataro
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina; (J.O.); (M.F.P.); (A.B.B.d.S.); (L.K.)
| | - Ana Belén Benítez dos Santos
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina; (J.O.); (M.F.P.); (A.B.B.d.S.); (L.K.)
| | - Mauro Bringas
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE CONICET), Buenos Aires C1428EGA, Argentina;
| | - Sebastián Klinke
- Fundación Instituto Leloir, IIBBA-CONICET, and Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina;
| | - Laura Kamenetzky
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina; (J.O.); (M.F.P.); (A.B.B.d.S.); (L.K.)
- IMPaM, CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121ABG, Argentina
| | - Francisco Velazquez
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina; (J.O.); (M.F.P.); (A.B.B.d.S.); (L.K.)
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)—(UBA/CONICET), Buenos Aires C1428EGA, Argentina
| | - Javier Santos
- Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina; (J.O.); (M.F.P.); (A.B.B.d.S.); (L.K.)
- Consejo Nacional de Investigaciones Científicas y Técnicas, Rivadavia 1917, Buenos Aires C1033AAJ, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
10
|
Ma YC, Yang B, Wang X, Zhou L, Li WY, Liu WS, Lu XH, Zheng ZH, Ma Y, Wang RL. Identification of novel inhibitor of protein tyrosine phosphatases delta: structure-based pharmacophore modeling, virtual screening, flexible docking, molecular dynamics simulation, and post-molecular dynamics analysis. J Biomol Struct Dyn 2019; 38:4432-4448. [PMID: 31625456 DOI: 10.1080/07391102.2019.1682050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Owing to their unique functions in regulating the synapse activity of protein tyrosine phosphatases delta (PTPδ) that has drawn special attention for developing drugs to autism spectrum disorders (ASDs). In this study, the PTPδ pharmacophore was first established by the structure-based pharmacophore method. Subsequently, 10 compounds contented Lipinski's rule of five was acquired by the virtual screening of the PTPδ pharmacophore against ZINC and PubChem databases. Then, the 10 identified molecules were discovered that had better binding affinity than a known PTPδ inhibitors compound SCHEMBL16375396. Two compounds SCHEMBL16375408 and ZINC19796658 with high binding score, low toxicity were gained. They were observed by docking analysis and molecular dynamics simulations that the novel potential inhibitors not only possessed the same function as SCHEMBL16375396 did in inhibiting PTPδ, but also had more favorable conformation to bind with the catalytic active regions. This study provides a new method for identify PTPδ inhibitor for the treatment of ASDs disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yang-Chun Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Bing Yang
- Department of Cell Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Xin Wang
- Tasly Pharmaceutical Group Co., Ltd., Tianjin, China
| | - Liang Zhou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wei-Ya Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wen-Shan Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xin-Hua Lu
- New Drug Research and Development Center of North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Key Laboratory for New Drug Screening Technology of Shijiazhuang City, Shijiazhuang, Hebei, China
| | - Zhi-Hui Zheng
- New Drug Research and Development Center of North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Hebei Industry Microbial Metabolic Engineering & Technology Research Center, Key Laboratory for New Drug Screening Technology of Shijiazhuang City, Shijiazhuang, Hebei, China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Run-Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
11
|
González-Lebrero RM, Defelipe L, Modenutti C, Roitberg AE, Batastini NA, Noguera ME, Santos J, Roman EA. Folding and Dynamics Are Strongly pH-Dependent in a Psychrophile Frataxin. J Phys Chem B 2019; 123:7676-7686. [PMID: 31407901 DOI: 10.1021/acs.jpcb.9b05960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein dynamics, folding, and thermodynamics represent a central aspect of biophysical chemistry. pH, temperature, and denaturant perturbations inform our understanding of diverse contributors to stability and rates. In this work, we performed a thermodynamic analysis using a combined experimental and computational approach to gain insights into the role of electrostatics in the folding reaction of a psychrophile frataxin variant from Psychromonas ingrahamii. This folding reaction is strongly modulated by pH with a single, narrow, and well-defined transition state with ∼80% compactness, ∼70% electrostatic interactions, and ∼60% hydration shell compared to the native state (αD = 0.82, αH = 0.67, and αΔCp = 0.59). Our results are best explained by a two-proton/two-state model with very different pKa values of the native and denatured states (∼5.5 and ∼8.0, respectively). As a consequence, the stability strongly increases from pH 8.0 to 6.0 (|ΔΔG°| = 5.2 kcal mol-1), mainly because of a decrease in the TΔS°. Variation of ΔH° and ΔS° at pH below 7.0 is dominated by a change in ΔHf⧧ and ΔSf⧧, while at pH above 7.0, it is governed by ΔHu⧧ and ΔSu⧧. Molecular dynamics simulations showed that these pH modulations could be explained by the fluctuations of two regions, rich in electrostatic contacts, whose dynamics are pH-dependent and motions are strongly correlated. Results presented herein contribute to the understanding of the stability and dynamics of this frataxin variant, pointing to an intrinsic feature of the family topology to support different folding mechanisms.
Collapse
Affiliation(s)
- Rodolfo M González-Lebrero
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica , Universidad de Buenos Aires , Buenos Aires C1113AAD , Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas , Instituto de Química y Fisicoquímica Biológicas , Buenos Aires C1113AAD , Argentina
| | | | | | - Adrian E Roitberg
- Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Nicolas A Batastini
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica , Universidad de Buenos Aires , Buenos Aires C1113AAD , Argentina
| | - Martín E Noguera
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica , Universidad de Buenos Aires , Buenos Aires C1113AAD , Argentina
| | | | - Ernesto A Roman
- Consejo Nacional de Investigaciones Científicas y Técnicas , Instituto de Química y Fisicoquímica Biológicas , Buenos Aires C1113AAD , Argentina
| |
Collapse
|
12
|
Savojardo C, Petrosino M, Babbi G, Bovo S, Corbi-Verge C, Casadio R, Fariselli P, Folkman L, Garg A, Karimi M, Katsonis P, Kim PM, Lichtarge O, Martelli PL, Pasquo A, Pal D, Shen Y, Strokach AV, Turina P, Zhou Y, Andreoletti G, Brenner S, Chiaraluce R, Consalvi V, Capriotti E. Evaluating the predictions of the protein stability change upon single amino acid substitutions for the FXN CAGI5 challenge. Hum Mutat 2019; 40:1392-1399. [PMID: 31209948 PMCID: PMC6744327 DOI: 10.1002/humu.23843] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/02/2019] [Accepted: 06/09/2019] [Indexed: 12/31/2022]
Abstract
Frataxin (FXN) is a highly conserved protein found in prokaryotes and eukaryotes that is required for efficient regulation of cellular iron homeostasis. Experimental evidence associates amino acid substitutions of the FXN to Friedreich Ataxia, a neurodegenerative disorder. Recently, new thermodynamic experiments have been performed to study the impact of somatic variations identified in cancer tissues on protein stability. The Critical Assessment of Genome Interpretation (CAGI) data provider at the University of Rome measured the unfolding free energy of a set of variants (FXN challenge data set) with far-UV circular dichroism and intrinsic fluorescence spectra. These values have been used to calculate the change in unfolding free energy between the variant and wild-type proteins at zero concentration of denaturant ( Δ Δ G H 2 O ) . The FXN challenge data set, composed of eight amino acid substitutions, was used to evaluate the performance of the current computational methods for predicting the Δ Δ G H 2 O value associated with the variants and to classify them as destabilizing and not destabilizing. For the fifth edition of CAGI, six independent research groups from Asia, Australia, Europe, and North America submitted 12 sets of predictions from different approaches. In this paper, we report the results of our assessment and discuss the limitations of the tested algorithms.
Collapse
Affiliation(s)
- Castrense Savojardo
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Maria Petrosino
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Roma, Roma, Italy
| | - Giulia Babbi
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Samuele Bovo
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Carles Corbi-Verge
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
| | - Rita Casadio
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Italian National Research Council (CNR), Bari, Italy
| | - Piero Fariselli
- Department of Medical Sciences University of Torino, 10126 Torino, Italy
| | - Lukas Folkman
- School of Information and Communication Technology, Griffith University, Parklands Dr, Southport, QLD 4222, Australia
| | - Aditi Garg
- Department of Computational and Data Sciences. Indian Institute of Science, Bengaluru 560 012, India
| | - Mostafa Karimi
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77840, USA
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Philip M. Kim
- Donnelly Center for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, 1 King’s College Cir, Toronto, ON M5S 1A8, Canada
- Department of Computer Science, University of Toronto, 214 College St, Toronto, ON M5T 3A1, Canada
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030, USA
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Pier Luigi Martelli
- Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Italy
| | - Alessandra Pasquo
- ENEA CR Frascati, Diagnostics and Metrology Laboratory,FSN-TECFIS-DIM, Frascati, Italy
| | - Debnath Pal
- Department of Computational and Data Sciences. Indian Institute of Science, Bengaluru 560 012, India
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77840, USA
| | - Alexey V. Strokach
- Department of Computer Science, University of Toronto, 214 College St, Toronto, ON M5T 3A1, Canada
| | - Paola Turina
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Yaoqi Zhou
- School of Information and Communication Technology, Griffith University, Parklands Dr, Southport, QLD 4222, Australia
- Institute for Glycomics, Griffith University, Parklands Dr, Southport QLD 4222, Australia
| | - Gaia Andreoletti
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Steven Brenner
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Roberta Chiaraluce
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Roma, Roma, Italy
| | - Valerio Consalvi
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Roma, Roma, Italy
| | - Emidio Capriotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
13
|
Faraj SE, Noguera ME, Delfino JM, Santos J. Global Implications of Local Unfolding Phenomena, Probed by Cysteine Reactivity in Human Frataxin. Sci Rep 2019; 9:1731. [PMID: 30742023 PMCID: PMC6370780 DOI: 10.1038/s41598-019-39429-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/18/2019] [Indexed: 12/28/2022] Open
Abstract
Local events that affect specific regions of proteins are of utmost relevance for stability and function. The aim of this study is to quantitatively assess the importance of locally-focused dynamics by means of a simple chemical modification procedure. Taking human Frataxin as a working model, we investigated local fluctuations of the C-terminal region (the last 16 residues of the protein) by means of three L → C replacement mutants: L98C, L200C and L203C. The conformation and thermodynamic stability of each variant was assessed. All the variants exhibited native features and high stabilities: 9.1 (wild type), 8.1 (L198C), 7.0 (L200C) and 10.0 kcal mol-1 (L203C). In addition, kinetic rates of Cys chemical modification by DTNB and DTDPy were measured, conformational dynamics data were extracted and free energy for the local unfolding of the C-terminal region was estimated. The analysis of these results indicates that the conformation of the C-terminal region fluctuates with partial independence from global unfolding events. Additionally, numerical fittings of the kinetic model of the process suggest that the local transition occurs in the seconds to minutes timescale. In fact, standard free energy differences for local unfolding were found to be significantly lower than those of the global unfolding reaction, showing that chemical modification results may not be explained in terms of the global unfolding reaction alone. These results provide unequivocal experimental evidence of local phenomena with global effects and contribute to understanding how global and local stability are linked to protein dynamics.
Collapse
Affiliation(s)
- Santiago E Faraj
- Alejandro Paladini Institute of Biological Chemistry and Chemical Physics (UBA-CONICET), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, (C1113AAD), Buenos Aires, Argentina
| | - Martín E Noguera
- Alejandro Paladini Institute of Biological Chemistry and Chemical Physics (UBA-CONICET), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, (C1113AAD), Buenos Aires, Argentina
| | - José María Delfino
- Alejandro Paladini Institute of Biological Chemistry and Chemical Physics (UBA-CONICET), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, (C1113AAD), Buenos Aires, Argentina
| | - Javier Santos
- Alejandro Paladini Institute of Biological Chemistry and Chemical Physics (UBA-CONICET), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, (C1113AAD), Buenos Aires, Argentina. .,Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencia Exactas y Naturales, Universidad de Buenos Aires. Instituto de Biociencias, Biotecnología y Biomedicina (iB3). Intendente Güiraldes 2160 - Ciudad Universitaria, 1428EGA, C.A.B.A., Argentina.
| |
Collapse
|
14
|
PFDB: A standardized protein folding database with temperature correction. Sci Rep 2019; 9:1588. [PMID: 30733462 PMCID: PMC6367381 DOI: 10.1038/s41598-018-36992-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 11/22/2018] [Indexed: 11/23/2022] Open
Abstract
We constructed a standardized protein folding kinetics database (PFDB) in which the logarithmic rate constants of all listed proteins are calculated at the standard temperature (25 °C). A temperature correction based on the Eyring–Kramers equation was introduced for proteins whose folding kinetics were originally measured at temperatures other than 25 °C. We verified the temperature correction by comparing the logarithmic rate constants predicted and experimentally observed at 25 °C for 14 different proteins, and the results demonstrated improvement of the quality of the database. PFDB consists of 141 (89 two-state and 52 non-two-state) single-domain globular proteins, which has the largest number among the currently available databases of protein folding kinetics. PFDB is thus intended to be used as a standard for developing and testing future predictive and theoretical studies of protein folding. PFDB can be accessed from the following link: http://lee.kias.re.kr/~bala/PFDB.
Collapse
|
15
|
Castro IH, Pignataro MF, Sewell KE, Espeche LD, Herrera MG, Noguera ME, Dain L, Nadra AD, Aran M, Smal C, Gallo M, Santos J. Frataxin Structure and Function. Subcell Biochem 2019; 93:393-438. [PMID: 31939159 DOI: 10.1007/978-3-030-28151-9_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mammalian frataxin is a small mitochondrial protein involved in iron sulfur cluster assembly. Frataxin deficiency causes the neurodegenerative disease Friedreich's Ataxia. Valuable knowledge has been gained on the structural dynamics of frataxin, metal-ion-protein interactions, as well as on the effect of mutations on protein conformation, stability and internal motions. Additionally, laborious studies concerning the enzymatic reactions involved have allowed for understanding the capability of frataxin to modulate Fe-S cluster assembly function. Remarkably, frataxin biological function depends on its interaction with some proteins to form a supercomplex, among them NFS1 desulfurase and ISCU, the scaffolding protein. By combining multiple experimental tools including high resolution techniques like NMR and X-ray, but also SAXS, crosslinking and mass-spectrometry, it was possible to build a reliable model of the structure of the desulfurase supercomplex NFS1/ACP-ISD11/ISCU/frataxin. In this chapter, we explore these issues showing how the scientific view concerning frataxin structure-function relationships has evolved over the last years.
Collapse
Affiliation(s)
- Ignacio Hugo Castro
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencia Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160-Ciudad Universitaria, 1428EGA, C.A.B.A, Argentina
- Intituto de Química y Fisicoquímica Biológicas, Dr. Alejandro Paladini Universidad de Buenos Aires, CONICET, Junín 956, 1113AAD, C.A.B.A, Argentina
| | - María Florencia Pignataro
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencia Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160-Ciudad Universitaria, 1428EGA, C.A.B.A, Argentina
- Intituto de Química y Fisicoquímica Biológicas, Dr. Alejandro Paladini Universidad de Buenos Aires, CONICET, Junín 956, 1113AAD, C.A.B.A, Argentina
| | - Karl Ellioth Sewell
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencia Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160-Ciudad Universitaria, 1428EGA, C.A.B.A, Argentina
- Intituto de Química y Fisicoquímica Biológicas, Dr. Alejandro Paladini Universidad de Buenos Aires, CONICET, Junín 956, 1113AAD, C.A.B.A, Argentina
| | - Lucía Daniela Espeche
- Departamento de Diagnóstico Genético, Centro Nacional de Genética Médica "Dr. Eduardo E. Castilla"-A.N.L.I.S, Av. Las Heras 2670, C1425ASQ, C.A.B.A, Argentina
| | - María Georgina Herrera
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencia Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160-Ciudad Universitaria, 1428EGA, C.A.B.A, Argentina
| | - Martín Ezequiel Noguera
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencia Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160-Ciudad Universitaria, 1428EGA, C.A.B.A, Argentina
- Intituto de Química y Fisicoquímica Biológicas, Dr. Alejandro Paladini Universidad de Buenos Aires, CONICET, Junín 956, 1113AAD, C.A.B.A, Argentina
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Provincia de Buenos Aires, Argentina
| | - Liliana Dain
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencia Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160-Ciudad Universitaria, 1428EGA, C.A.B.A, Argentina
- Departamento de Diagnóstico Genético, Centro Nacional de Genética Médica "Dr. Eduardo E. Castilla"-A.N.L.I.S, Av. Las Heras 2670, C1425ASQ, C.A.B.A, Argentina
| | - Alejandro Daniel Nadra
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencia Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160-Ciudad Universitaria, 1428EGA, C.A.B.A, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Martín Aran
- Fundación Instituto Leloir E IIBBA-CONICET, Av. Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina
| | - Clara Smal
- Fundación Instituto Leloir E IIBBA-CONICET, Av. Patricias Argentinas 435, C1405BWE, Buenos Aires, Argentina
| | - Mariana Gallo
- IRBM Science Park S.p.A, Via Pontina km 30,600, 00071, Pomezia, RM, Italy
| | - Javier Santos
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencia Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biomedicina (iB3), Universidad de Buenos Aires, Intendente Güiraldes 2160-Ciudad Universitaria, 1428EGA, C.A.B.A, Argentina.
- Intituto de Química y Fisicoquímica Biológicas, Dr. Alejandro Paladini Universidad de Buenos Aires, CONICET, Junín 956, 1113AAD, C.A.B.A, Argentina.
| |
Collapse
|
16
|
Castro IH, Ferrari A, Herrera MG, Noguera ME, Maso L, Benini M, Rufini A, Testi R, Costantini P, Santos J. Biophysical characterisation of the recombinant human frataxin precursor. FEBS Open Bio 2018; 8:390-405. [PMID: 29511616 PMCID: PMC5832983 DOI: 10.1002/2211-5463.12376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/25/2017] [Accepted: 12/27/2017] [Indexed: 11/10/2022] Open
Abstract
Friedreich's ataxia is a disease caused by a decrease in the levels of expression or loss of functionality of the mitochondrial protein frataxin (FXN). The development of an active and stable recombinant variant of FXN is important for protein replacement therapy. Although valuable data about the mature form FXN81-210 has been collected, not enough information is available about the conformation of the frataxin precursor (FXN1-210). We investigated the conformation, stability and function of a recombinant precursor variant (His6-TAT-FXN1-210), which includes a TAT peptide in the N-terminal region to assist with transport across cell membranes. His6-TAT-FXN1-210 was expressed in Escherichia coli and conditions were found for purifying folded protein free of aggregation, oxidation or degradation, even after freezing and thawing. The protein was found to be stable and monomeric, with the N-terminal stretch (residues 1-89) mostly unstructured and the C-terminal domain properly folded. The experimental data suggest a complex picture for the folding process of full-length frataxin in vitro: the presence of the N-terminal region increased the tendency of FXN to aggregate at high temperatures but this could be avoided by the addition of low concentrations of GdmCl. The purified precursor was translocated through cell membranes. In addition, immune response against His6-TAT-FXN1-210 was measured, suggesting that the C-terminal fragment was not immunogenic at the assayed protein concentrations. Finally, the recognition of recombinant FXN by cellular proteins was studied to evaluate its functionality. In this regard, cysteine desulfurase NFS1/ISD11/ISCU was activated in vitro by His6-TAT-FXN1-210. Moreover, the results showed that His6-TAT-FXN1-210 can be ubiquitinated in vitro by the recently identified frataxin E3 ligase RNF126, in a similar way as the FXN1-210, suggesting that the His6-TAT extension does not interfere with the ubiquitination machinery.
Collapse
Affiliation(s)
- Ignacio Hugo Castro
- Institute of Biological Chemistry and Physicochemistry Dr Alejandro Paladini (UBA-CONICET) University of Buenos Aires Argentina
| | - Alejandro Ferrari
- Institute of Biological Chemistry and Physicochemistry Dr Alejandro Paladini (UBA-CONICET) University of Buenos Aires Argentina
| | - María Georgina Herrera
- Institute of Biological Chemistry and Physicochemistry Dr Alejandro Paladini (UBA-CONICET) University of Buenos Aires Argentina
| | - Martín Ezequiel Noguera
- Institute of Biological Chemistry and Physicochemistry Dr Alejandro Paladini (UBA-CONICET) University of Buenos Aires Argentina
| | - Lorenzo Maso
- Department of Biology University of Padova Italy
| | - Monica Benini
- Laboratory of Signal Transduction Department of Biomedicine and Prevention University of Rome ''Tor Vergata'' Italy.,Fratagene Therapeutics srl Rome Italy
| | - Alessandra Rufini
- Laboratory of Signal Transduction Department of Biomedicine and Prevention University of Rome ''Tor Vergata'' Italy.,Fratagene Therapeutics srl Rome Italy
| | - Roberto Testi
- Laboratory of Signal Transduction Department of Biomedicine and Prevention University of Rome ''Tor Vergata'' Italy.,Fratagene Therapeutics srl Rome Italy
| | | | - Javier Santos
- Institute of Biological Chemistry and Physicochemistry Dr Alejandro Paladini (UBA-CONICET) University of Buenos Aires Argentina
| |
Collapse
|
17
|
Noguera ME, Aran M, Smal C, Vazquez DS, Herrera MG, Roman EA, Alaimo N, Gallo M, Santos J. Insights on the conformational dynamics of human frataxin through modifications of loop-1. Arch Biochem Biophys 2017; 636:123-137. [PMID: 29097312 DOI: 10.1016/j.abb.2017.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/20/2017] [Accepted: 10/28/2017] [Indexed: 02/07/2023]
Abstract
Human frataxin (FXN) is a highly conserved mitochondrial protein involved in iron homeostasis and activation of the iron-sulfur cluster assembly. FXN deficiency causes the neurodegenerative disease Friedreich's Ataxia. Here, we investigated the effect of alterations in loop-1, a stretch presumably essential for FXN function, on the conformational stability and dynamics of the native state. We generated four loop-1 variants, carrying substitutions, insertions and deletions. All of them were stable and well-folded proteins. Fast local motions (ps-ns) and slower long-range conformational dynamics (μs-ms) were altered in some mutants as judged by NMR. Particularly, loop-1 modifications impact on the dynamics of a distant region that includes residues from the β-sheet, helix α1 and the C-terminal. Remarkably, all the mutants retain the ability to activate cysteine desulfurase, even when two of them exhibit a strong decrease in iron binding, revealing a differential sensitivity of these functional features to loop-1 perturbation. Consequently, we found that even for a small and relatively rigid protein, engineering a loop segment enables to alter conformational dynamics through a long-range effect, preserving the native-state structure and important aspects of function.
Collapse
Affiliation(s)
- Martín E Noguera
- Instituto de Química y Físico-Química Biológicas, University of Buenos Aires, Junín 956, 1113AAD, Buenos Aires, Argentina
| | - Martín Aran
- The Leloir Institute Foundation and IIBBA-CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Clara Smal
- The Leloir Institute Foundation and IIBBA-CONICET, Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Diego S Vazquez
- Instituto de Química y Físico-Química Biológicas, University of Buenos Aires, Junín 956, 1113AAD, Buenos Aires, Argentina
| | - María Georgina Herrera
- Instituto de Química y Físico-Química Biológicas, University of Buenos Aires, Junín 956, 1113AAD, Buenos Aires, Argentina
| | - Ernesto A Roman
- Instituto de Química y Físico-Química Biológicas, University of Buenos Aires, Junín 956, 1113AAD, Buenos Aires, Argentina
| | - Nadine Alaimo
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome "Tor Vergata", Via della Ricerca Scientifica snc, 00133 Roma, Italy
| | - Mariana Gallo
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome "Tor Vergata", Via della Ricerca Scientifica snc, 00133 Roma, Italy; IRBM Science Park S.p.A., Via Pontina km 30,600., 00071 Pomezia (RM), Italy.
| | - Javier Santos
- Instituto de Química y Físico-Química Biológicas, University of Buenos Aires, Junín 956, 1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Sargsyan K, Grauffel C, Lim C. How Molecular Size Impacts RMSD Applications in Molecular Dynamics Simulations. J Chem Theory Comput 2017; 13:1518-1524. [PMID: 28267328 DOI: 10.1021/acs.jctc.7b00028] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The root-mean-square deviation (RMSD) is a similarity measure widely used in analysis of macromolecular structures and dynamics. As increasingly larger macromolecular systems are being studied, dimensionality effects such as the "curse of dimensionality" (a diminishing ability to discriminate pairwise differences between conformations with increasing system size) may exist and significantly impact RMSD-based analyses. For such large bimolecular systems, whether the RMSD or other alternative similarity measures might suffer from this "curse" and lose the ability to discriminate different macromolecular structures had not been explicitly addressed. Here, we show such dimensionality effects for both weighted and nonweighted RMSD schemes. We also provide a mechanism for the emergence of the "curse of dimensionality" for RMSD from the law of large numbers by showing that the conformational distributions from which RMSDs are calculated become increasingly similar as the system size increases. Our findings suggest the use of weighted RMSD schemes for small proteins (less than 200 residues) and nonweighted RMSD for larger proteins when analyzing molecular dynamics trajectories.
Collapse
Affiliation(s)
- Karen Sargsyan
- Institute of Biomedical Sciences, Academia Sinica , Taipei 115, Taiwan
| | - Cédric Grauffel
- Institute of Biomedical Sciences, Academia Sinica , Taipei 115, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica , Taipei 115, Taiwan.,Department of Chemistry, National Tsinghua University , Hsinchu 300, Taiwan
| |
Collapse
|