1
|
Villalba-Benito L, Torroglosa A, Luzón-Toro B, Fernández RM, Moya-Jiménez MJ, Antiñolo G, Borrego S. ChIP-Seq-Based Approach in Mouse Enteric Precursor Cells Reveals New Potential Genes with a Role in Enteric Nervous System Development and Hirschsprung Disease. Int J Mol Sci 2020; 21:ijms21239061. [PMID: 33260622 PMCID: PMC7730166 DOI: 10.3390/ijms21239061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 01/11/2023] Open
Abstract
Hirschsprung disease (HSCR) is a neurocristopathy characterized by intestinal aganglionosis which is attributed to a failure in neural crest cell (NCC) development during the embryonic stage. The colonization of the intestine by NCCs is a process finely controlled by a wide and complex gene regulatory system. Several genes have been associated with HSCR, but many aspects still remain poorly understood. The present study is focused on deciphering the PAX6 interaction network during enteric nervous system (ENS) formation. A combined experimental and computational approach was performed to identify PAX6 direct targets, as well as gene networks shared among such targets as potential susceptibility factors for HSCR. As a result, genes related to PAX6 either directly (RABGGTB and BRD3) or indirectly (TGFB1, HRAS, and GRB2) were identified as putative genes associated with HSCR. Interestingly, GRB2 is involved in the RET/GDNF/GFRA1 signaling pathway, one of the main pathways implicated in the disease. Our findings represent a new contribution to advance in the knowledge of the genetic basis of HSCR. The investigation of the role of these genes could help to elucidate their implication in HSCR onset.
Collapse
Affiliation(s)
- Leticia Villalba-Benito
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (L.V.-B.); (A.T.); (B.L.-T.); (R.M.F.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (L.V.-B.); (A.T.); (B.L.-T.); (R.M.F.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Berta Luzón-Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (L.V.-B.); (A.T.); (B.L.-T.); (R.M.F.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Raquel María Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (L.V.-B.); (A.T.); (B.L.-T.); (R.M.F.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - María José Moya-Jiménez
- Department of Pediatric Surgery, University Hospital Virgen del Rocío, 41013 Seville, Spain;
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (L.V.-B.); (A.T.); (B.L.-T.); (R.M.F.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (L.V.-B.); (A.T.); (B.L.-T.); (R.M.F.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
- Correspondence:
| |
Collapse
|
2
|
Liu YR, Ba F, Cheng LJ, Li X, Zhang SW, Zhang SC. Efficacy of Sox10 Promoter Methylation in the Diagnosis of Intestinal Neuronal Dysplasia From the Peripheral Blood. Clin Transl Gastroenterol 2019; 10:e00093. [PMID: 31789936 PMCID: PMC6970557 DOI: 10.14309/ctg.0000000000000093] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/19/2019] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Intestinal neuronal dysplasia (IND) is a common malformation of the enteric nervous system. Diagnosis requires a full-thickness colonic specimen and an experienced pathologist, emphasizing the need for noninvasive analytical methods. Recently, the methylation level of the Sox10 promoter has been found to be critical for enteric nervous system development. However, whether it can be used for diagnostic purposes in IND is unclear. METHODS Blood and colon specimens were collected from 32 patients with IND, 60 patients with Hirschsprung disease (HD), and 60 controls. Sox10 promoter methylation in the blood and the Sox10 expression level in the colon were determined, and their correlation was analyzed. The diagnostic efficacy of blood Sox10 promoter methylation was analyzed by receiver operating characteristic curve. RESULTS The blood level of Sox10 promoter methylation at the 32nd locus was 100% (90%-100%; 95% confidence interval [CI], 92.29%-96.37%) in control, 90% (80%-90%; 95% CI, 82.84%-87.83%) in HD, and 60% (50%-80%; 95% CI, 57.12%-69.76%) in IND specimens. Sox10 promoter methylation in the peripheral blood was negatively correlated with Sox10 expression in the colon, which was low in control, moderate in HD, and high in IND specimens (r = -0.89). The area under the curve of Sox10 promoter methylation in the diagnosis of IND was 0.94 (95% CI, 0.874-1.000, P = 0.000), with a cutoff value of 85% (sensitivity, 90.6%; specificity, 95.0%). By applying a cutoff value of 65%, promoter methylation was more indicative of IND than HD. DISCUSSION The analysis of Sox10 promoter methylation in the peripheral blood can be used as a noninvasive method for IND diagnosis.
Collapse
Affiliation(s)
- Yu-Rong Liu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fang Ba
- Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lan-Jie Cheng
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xu Li
- Department of Pediatric Surgery, Capital Institute of Pediatrics of Capital Medical University, Beijing, China
| | - Shi-Wei Zhang
- Department of Pediatric Surgery, Harbin Children's Hospital, Harbin, China
| | - Shu-Cheng Zhang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Luzón‐Toro B, Villalba‐Benito L, Torroglosa A, Fernández RM, Antiñolo G, Borrego S. What is new about the genetic background of Hirschsprung disease? Clin Genet 2019; 97:114-124. [DOI: 10.1111/cge.13615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Berta Luzón‐Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Leticia Villalba‐Benito
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Raquel M. Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS)University Hospital Virgen del Rocío/CSIC/University of Seville Seville Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER) Seville Spain
| |
Collapse
|
4
|
Seelan RS, Pisano M, Greene RM. Nucleic acid methylation and orofacial morphogenesis. Birth Defects Res 2019; 111:1593-1610. [PMID: 31385455 DOI: 10.1002/bdr2.1564] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022]
Abstract
In this review, we highlight the current state of knowledge of the diverse roles nucleic acid methylation plays in the embryonic development of the orofacial region and how aberrant methylation may contribute to orofacial clefts. We also consider the role of methylation in the regulation of neural crest cell function as it pertains to orofacial ontogeny. Changes in DNA methylation, as a consequence of environmental effects, have been observed in the regulatory regions of several genes, potentially identifying new candidate genes for orofacial clefting and opening promising new avenues for further research. While the focus of this review is primarily on the nonsyndromic forms of orofacial clefting, syndromic forms are briefly discussed in the context of aberrant nucleic acid methylation.
Collapse
Affiliation(s)
- Ratnam S Seelan
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Michele Pisano
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, Kentucky
| | - Robert M Greene
- Department of Oral Immunology and Infectious Diseases, Division of Craniofacial Development and Anomalies, University of Louisville School of Dentistry, Louisville, Kentucky
| |
Collapse
|
5
|
Li G, Ni A, Yu M. Pretumor microenvironment of hepatocellular carcinoma: Cancerization or anticancerization? Gene 2019; 701:46-54. [PMID: 30902783 DOI: 10.1016/j.gene.2019.03.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/11/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Tumor microenvironment (TM) has been deeply concerned. However, the pretumor microenvironment (PTM) was poorly understood. The purpose in this study was to explore the possible pathophysiological features of PTM before hepatocellular carcinoma (HCC) appearance. METHODS Mouse livers with no swelling but with tumors present elsewhere in the body after subcutaneous injection of H22 in the fore underarm were considered a PTM, HCC tumors presenting far away from the PTM were regarded as a TM, and the healthy livers of mice without injection of H22 were regarded as a physiological microenvironment (PM). The transcriptomes of samples were generated using RNA-seq and validated using RT-qPCR. RESULTS Overall, 4483 differentially expressed genes (DEGs) were found in the TM compared with the PTM (TM/PTM), but only 194 were altered in the PTM compared with the PM (PTM/PM). Among those 194 DEGs, 104 displayed upregulation and 90 downregulation. Some of these DEGs could promote the ability to resist cancerization or facilitate cancer metastasis, while others indicated liver impairment. The DEGs were involved in 16 relevant pathways. Additionally, the frequency of alternative splicing (AS) in the DEGs in various samples was positively related to the expression of those DEGs. CONCLUSIONS The PTM initiatively armed itself to combat cancerization when its indications appeared although the PTM did not manifest any tissue swelling. However, the cancer cells were negatively influencing immunity to prevent clearance and positively promoting transformation to construct a suitable environment. During transformation by cancer cells, some genes with acquired AS participated in the construction of the PTM. This alteration created an invadable space and an appropriate environment for cancer cells.
Collapse
Affiliation(s)
- Genliang Li
- Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China.
| | - Anni Ni
- Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Mengyao Yu
- Donghai county hospital, Lianyungang 222000, Jiangsu, China
| |
Collapse
|
6
|
Wang G, Zhang L, Wang H, Cui M, Liu W, Liu Y, Wu X. Demethylation of GFRA4 Promotes Cell Proliferation and Invasion in Hirschsprung Disease. DNA Cell Biol 2018; 37:316-324. [PMID: 29634418 DOI: 10.1089/dna.2017.3928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hirschsprung disease (HSCR) is congenital intestinal aganglionosis attributed to a failure to migrate and survive of neural crest-derived cells. Glial cell-derived neurotrophic factor alpha 4 (GFRA4) is expressed in the derivatives of the neural crest in the enteric nervous system, but whether it is related with HSCR still remains unclear. This study was designed to investigate its role and epigenetic mechanisms in HSCR in vitro. The expression of GFRA4 mRNA in HSCR tissues was determined using quantitative real-time PCR analysis. In this study, we found that GFRA4 expression was significantly reduced in HSCR tissues and cells through GFRA4 methylation by quantitative real-time PCR analysis, methylation-specific PCR, and bisulfite sequencing PCR. DNA methyltransferase inhibitor, 5-AzaC, concomitantly upregulated the protein levels of GFRA4, as well as DNA methyltransferase1 (DNMT1) and DNMT2 in SH-5YSY cells. Moreover, we found upregulated GFRA4 significantly promoted cell proliferation, cell cycle progression and invasion, but inhibited apoptosis in SH-5YSY cells, whereas GFRA4 knockdown caused the opposite effects in SH-5YSY cells by CCK-8, 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and Transwell assays. In conclusion, our results support that aberrant CpG hypermethylation at least partly accounts for GFRA4 silencing in HSCR, which impairs its protective role in enteric nervous system.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China
| | - Lijuan Zhang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China
| | - Hefeng Wang
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China
| | - Mingyu Cui
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China
| | - Wei Liu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China
| | - Yang Liu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China
| | - Xiangyu Wu
- Department of Pediatric Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, China
| |
Collapse
|
7
|
Qin R, Cao S, Lyu T, Qi C, Zhang W, Wang Y. CDYL Deficiency Disrupts Neuronal Migration and Increases Susceptibility to Epilepsy. Cell Rep 2017; 18:380-390. [PMID: 28076783 DOI: 10.1016/j.celrep.2016.12.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/06/2016] [Accepted: 12/14/2016] [Indexed: 11/30/2022] Open
Abstract
During brain development, the correct migration of newborn neurons is one of the determinants of circuit formation, and neuronal migration defects may lead to neurological and psychiatric disorders. The molecular mechanisms underlying neuronal migration and related disorders are poorly understood. Here, we report that Chromodomain Y-like (CDYL) is critical for neuronal migration in mice. Knocking down CDYL caused neuronal migration defects and disrupted both mobility and multipolar-to-bipolar transition of migrating neurons. We find that CDYL regulates neuronal migration by transcriptionally repressing RhoA. In addition, CDYL deficiency increased the excitability of cortical pyramidal neurons and the susceptibility of mice to convulsant-induced seizures. These results demonstrate that CDYL is a regulator of neuronal migration and shed light on the pathogenesis of seizure-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Rui Qin
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Shuai Cao
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Tianjie Lyu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Cai Qi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China
| | - Weiguang Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing 100191, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| |
Collapse
|
8
|
Torroglosa A, Alves MM, Fernández RM, Antiñolo G, Hofstra RM, Borrego S. Epigenetics in ENS development and Hirschsprung disease. Dev Biol 2016; 417:209-16. [PMID: 27321561 DOI: 10.1016/j.ydbio.2016.06.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022]
Abstract
Hirschsprung disease (HSCR, OMIM 142623) is a neurocristopathy caused by a failure of the enteric nervous system (ENS) progenitors derived from neural crest cells (NCCs), to migrate, proliferate, differentiate or survive to and within the gastrointestinal tract, resulting in aganglionosis in the distal colon. The formation of the ENS is a complex process, which is regulated by a large range of molecules and signalling pathways involving both the NCCs and the intestinal environment. This tightly regulated process needs correct regulation of the expression of ENS specific genes. Alterations in the expression of these genes can have dramatic consequences. Several mechanisms that control the expression of genes have been described, such as DNA modification (epigenetic mechanisms), regulation of transcription (transcription factor, enhancers, repressors and silencers), post-transcriptional regulation (3'UTR and miRNAs) and regulation of translation. In this review, we focus on the epigenetic DNA modifications that have been described so far in the context of the ENS development. Moreover we describe the changes that are found in relation to the onset of HSCR.
Collapse
Affiliation(s)
- A Torroglosa
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - M M Alves
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - R M Fernández
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - G Antiñolo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - R M Hofstra
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands; Stem Cells and Regenerative Medicine, Birth Defects Research Centre UCL Institute of Child Health, London, UK
| | - S Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| |
Collapse
|