1
|
Ryu DG, Yu F, Yoon KT, Liu H, Lee SS. The Cardiomyocyte in Cirrhosis: Pathogenic Mechanisms Underlying Cirrhotic Cardiomyopathy. Rev Cardiovasc Med 2024; 25:457. [PMID: 39742234 PMCID: PMC11683693 DOI: 10.31083/j.rcm2512457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 01/03/2025] Open
Abstract
Cirrhotic cardiomyopathy is defined as systolic and diastolic dysfunction in patients with cirrhosis, in the absence of any primary heart disease. These changes are mainly due to the malfunction or abnormalities of cardiomyocytes. Similar to non-cirrhotic heart failure, cardiomyocytes in cirrhotic cardiomyopathy demonstrate a variety of abnormalities: from the cell membrane to the cytosol and nucleus. At the cell membrane level, biophysical plasma membrane fluidity, and membrane-bound receptors such as the beta-adrenergic, muscarinic and cannabinoid receptors are abnormal either functionally or structurally. Other changes include ion channels such as L-type calcium channels, potassium channels, and sodium transporters. In the cytosol, calcium release and uptake processes are dysfunctional and the myofilaments such as myosin heavy chain and titin, are either functionally abnormal or have structural alterations. Like the fibrotic liver, the heart in cirrhosis also shows fibrotic changes such as a collagen isoform switch from more compliant collagen III to stiffer collagen I which also impacts diastolic function. Other abnormalities include the secondary messenger cyclic adenosine monophosphate, cyclic guanosine monophosphate, and their downstream effectors such as protein kinase A and G-proteins. Finally, other changes such as excessive apoptosis of cardiomyocytes also play a critical role in the pathogenesis of cirrhotic cardiomyopathy. The present review aims to summarize these changes and review their critical role in the pathogenesis of cirrhotic cardiomyopathy.
Collapse
Affiliation(s)
- Dae Gon Ryu
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Division of Gastroenterology, Yangsan Hospital, Pusan National University Faculty of Medicine, 50612 Pusan, Republic of Korea
| | - Fengxue Yu
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Telemedicine Center, Second Hospital of Hebei Medical University, 050004 Shijiazhuang, Hebei, China
| | - Ki Tae Yoon
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Division of Gastroenterology, Yangsan Hospital, Pusan National University Faculty of Medicine, 50612 Pusan, Republic of Korea
| | - Hongqun Liu
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| | - Samuel S. Lee
- Liver Unit, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
2
|
Samartsev VN, Khoroshavina EI, Pavlova EK, Dubinin MV, Semenova AA. Bile Acids as Inducers of Protonophore and Ionophore Permeability of Biological and Artificial Membranes. MEMBRANES 2023; 13:membranes13050472. [PMID: 37233533 DOI: 10.3390/membranes13050472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
It is now generally accepted that the role of bile acids in the organism is not limited to their participation in the process of food digestion. Indeed, bile acids are signaling molecules and being amphiphilic compounds, are also capable of modifying the properties of cell membranes and their organelles. This review is devoted to the analysis of data on the interaction of bile acids with biological and artificial membranes, in particular, their protonophore and ionophore effects. The effects of bile acids were analyzed depending on their physicochemical properties: namely the structure of their molecules, indicators of the hydrophobic-hydrophilic balance, and the critical micelle concentration. Particular attention is paid to the interaction of bile acids with the powerhouse of cells, the mitochondria. It is of note that bile acids, in addition to their protonophore and ionophore actions, can also induce Ca2+-dependent nonspecific permeability of the inner mitochondrial membrane. We consider the unique action of ursodeoxycholic acid as an inducer of potassium conductivity of the inner mitochondrial membrane. We also discuss a possible relationship between this K+ ionophore action of ursodeoxycholic acid and its therapeutic effects.
Collapse
Affiliation(s)
- Victor N Samartsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Ekaterina I Khoroshavina
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Evgeniya K Pavlova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Mikhail V Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Alena A Semenova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| |
Collapse
|
3
|
Nsengimana B, Okpara ES, Hou W, Yan C, Han S. Involvement of oxidative species in cyclosporine-mediated cholestasis. Front Pharmacol 2022; 13:1004844. [PMID: 36425570 PMCID: PMC9679297 DOI: 10.3389/fphar.2022.1004844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/24/2022] [Indexed: 04/11/2025] Open
Abstract
Cyclosporine is an established medication for the prevention of transplant rejection. However, adverse consequences such as nephrotoxicity, hepatotoxicity, and cholestasis have been associated with prolonged usage. In cyclosporine-induced obstructive and chronic cholestasis, for example, the overproduction of oxidative stress is significantly increased. Additionally, cyclosporine exerts adverse effects on liver function and redox balance responses in treated rats, as evidenced by its increasing levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and bilirubin while also decreasing the levels of glutathione and NADPH. Cyclosporine binds to cyclophilin to produce its therapeutic effects, and the resulting complex inhibits calcineurin, causing calcium to accumulate in the mitochondria. Accumulating calcium with concomitant mitochondrial abnormalities induces oxidative stress, perturbation in ATP balance, and failure of calcium pumps. Also, cyclosporine-induced phagocyte oxidative stress generation via the interaction of phagocytes with Toll-like receptor-4 has been studied. The adverse effect of cyclosporine may be amplified by the release of mitochondrial DNA, mediated by oxidative stress-induced mitochondrial damage. Given the uncertainty surrounding the mechanism of cyclosporine-induced oxidative stress in cholestasis, we aim to illuminate the involvement of oxidative stress in cyclosporine-mediated cholestasis and also explore possible strategic interventions that may be applied in the future.
Collapse
Affiliation(s)
| | | | | | | | - Shuxin Han
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
4
|
Caldwell A, Grundy L, Harrington AM, Garcia-Caraballo S, Castro J, Bunnett NW, Brierley SM. TGR5 agonists induce peripheral and central hypersensitivity to bladder distension. Sci Rep 2022; 12:9920. [PMID: 35705684 PMCID: PMC9200837 DOI: 10.1038/s41598-022-14195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022] Open
Abstract
The mechanisms underlying chronic bladder conditions such as interstitial cystitis/bladder pain syndrome (IC/BPS) and overactive bladder syndrome (OAB) are incompletely understood. However, targeting specific receptors mediating neuronal sensitivity to specific stimuli is an emerging treatment strategy. Recently, irritant-sensing receptors including the bile acid receptor TGR5, have been identified within the viscera and are thought to play a key role in neuronal hypersensitivity. Here, in mice, we identify mRNA expression of TGR5 (Gpbar1) in all layers of the bladder as well as in the lumbosacral dorsal root ganglia (DRG) and in isolated bladder-innervating DRG neurons. In bladder-innervating DRG neurons Gpbar1 mRNA was 100% co-expressed with Trpv1 and 30% co-expressed with Trpa1. In vitro live-cell calcium imaging of bladder-innervating DRG neurons showed direct activation of a sub-population of bladder-innervating DRG neurons with the synthetic TGR5 agonist CCDC, which was diminished in Trpv1-/- but not Trpa1-/- DRG neurons. CCDC also activated a small percentage of non-neuronal cells. Using an ex vivo mouse bladder afferent recording preparation we show intravesical application of endogenous (5α-pregnan-3β-ol-20-one sulphate, Pg5α) and synthetic (CCDC) TGR5 agonists enhanced afferent mechanosensitivity to bladder distension. Correspondingly, in vivo intravesical administration of CCDC increased the number of spinal dorsal horn neurons that were activated by bladder distension. The enhanced mechanosensitivity induced by CCDC ex vivo and in vivo was absent using Gpbar1-/- mice. Together, these results indicate a role for the TGR5 receptor in mediating bladder afferent hypersensitivity to distension and thus may be important to the symptoms associated with IC/BPS and OAB.
Collapse
Affiliation(s)
- Ashlee Caldwell
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, 5042, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, Level 7, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
- Discipline of Medicine, University of Adelaide, Level 7, SAHMRI, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, 5042, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, Level 7, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
| | - Andrea M Harrington
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, 5042, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, Level 7, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
| | - Sonia Garcia-Caraballo
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, 5042, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, Level 7, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
| | - Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, 5042, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, Level 7, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY, USA
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, 5042, Australia.
- Hopwood Centre for Neurobiology, Lifelong Health Theme, Level 7, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia.
- Discipline of Medicine, University of Adelaide, Level 7, SAHMRI, North Terrace, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
5
|
Zhu J, Fan Y, Lu Q, Yang Y, Li H, Liu X, Zhang H, Sun B, Liu Q, Zhao J, Yang Z, Li L, Feng H, Xu J. Increased transient receptor potential canonical 3 activity is involved in the pathogenesis of detrusor overactivity by dynamic interaction with Na +/Ca 2+ exchanger 1. J Transl Med 2022; 102:48-56. [PMID: 34497367 DOI: 10.1038/s41374-021-00665-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/08/2022] Open
Abstract
Transient receptor potential canonical 3 (TRPC3) is a nonselective cation channel, and its dysfunction is the basis of many clinical diseases. However, little is known about its possible role in the bladder. The purpose of this study was to explore the function and mechanism of TRPC3 in partial bladder outlet obstruction (PBOO)-induced detrusor overactivity (DO). We studied 31 adult female rats with DO induced by PBOO (the DO group) and 40 sham-operated rats (the control group). Here we report that the expression of TRPC3 in the bladder of DO rats increased significantly. Furthermore, PYR10, which can selectively inhibit the TRPC3 channel, significantly reduced bladder excitability in DO and control rats, but the decrease of the bladder excitability of DO rats was more obvious. PYR10 significantly reduced the intracellular calcium concentration in smooth muscle cells (SMCs) in DO and control rats. Finally, Na+/Ca2+ exchanger 1 (NCX1) colocalizes with TRPC3 and affects its expression and function. Collectively, these results indicate that TRPC3 plays an important role in the pathogenesis of DO through a synergistic effect with NCX1. TRPC3 and NCX1 may be new therapeutic targets for DO.
Collapse
Affiliation(s)
- Jingzhen Zhu
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yi Fan
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Qudong Lu
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yang Yang
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Hui Li
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xin Liu
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Hengshuai Zhang
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Bishao Sun
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Qian Liu
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jiang Zhao
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhenxing Yang
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Longkun Li
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Huan Feng
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China.
| | - Jie Xu
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
6
|
Hsu CC, Cheng KC, Li Y, Hsu PH, Cheng JT, Niu HS. TGR5 Expression Is Associated with Changes in the Heart and Urinary Bladder of Rats with Metabolic Syndrome. Life (Basel) 2021; 11:life11070695. [PMID: 34357066 PMCID: PMC8306239 DOI: 10.3390/life11070695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022] Open
Abstract
Adipose-derived cytokines may contribute to the inflammation that occurs in metabolic syndrome (MetS). The Takeda G protein-coupled receptor (TGR5) regulates energy expenditure and affects the production of pro-inflammatory biomarkers in metabolic diseases. Etanercept, which acts as a tumor necrosis factor (TNF)-α antagonist, can also block the inflammatory response. Therefore, the interaction between TNF-α and TGR5 expression was investigated in rats with high-fat diet (HFD)-induced obesity. Heart tissues isolated from the HFD-induced MetS rats were analyzed. Changes in TGR5 expression were investigated with lithocholic acid (LCA) as the agonist. Betulinic acid (BA) was used to activate TGR5 in urinary bladders. LCA was more effective in the heart tissues of HFD-fed rats, although etanercept alleviated the function of LCA. STAT3 activation and higher TGR5 expression were observed in the heart tissues collected from HFD-fed rats. Thus, cardiac TGR5 expression is promoted by HFD through STAT3 activation in rats. Moreover, the urinary bladders of female rats fed a HFD showed a low response, which was reversed by etanercept. Relaxation by BA in the bladders was more marked in HFD-fed rats. The high TGR5 expression in HFD-fed rats was characterized using a mRNA assay, and the increased cAMP levels were found to be stimulated by BA in the isolated bladders. Therefore, TGR5 expression increases with a HFD in both the hearts and urinary bladders. Collectively, cytokine-medicated TGR5 activation was observed in the hearts and urinary bladders of rats.
Collapse
Affiliation(s)
- Chia-Chen Hsu
- Graduate Institute of Gerontology and Health Care Management, Chang Gung University of Science and Technology, Taoyuan City 33303, Taiwan;
- Department of Otorhinolaryngology, Taipei City Hospital, Taipei City 10341, Taiwan
- Department of Exercise and Health Sciences, University of Taipei, Taipei City 11153, Taiwan
| | - Kai-Chun Cheng
- Department of Pharmacy, College of Pharmacy, Tajen University, Pingtung 90741, Taiwan;
- Pharmacological Department of Herbal Medicine, Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Yingxiao Li
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, 970302, Taiwan;
| | - Ping-Hao Hsu
- School of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan;
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Tainan City 71004, Taiwan;
| | - Ho-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, 970302, Taiwan;
- Correspondence: ; Tel.: +886-3-857-2158
| |
Collapse
|
7
|
Li Y, Cheng KC, Niu CS, Lo SH, Cheng JT, Niu HS. Investigation of triamterene as an inhibitor of the TGR5 receptor: identification in cells and animals. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1127-1134. [PMID: 28435224 PMCID: PMC5391213 DOI: 10.2147/dddt.s131892] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background G-protein-coupled bile acid receptor 1 (GPBAR1, also known as TGR5) has been shown to participate in glucose homeostasis. In animal models, a TGR5 agonist increases incretin secretion to reduce hyperglycemia. Many agonists have been developed for clinical use. However, the effects of TGR5 blockade have not been studied extensively, with the exception of studies using TGR5 knockout mice. Therefore, we investigated the potential effect of triamterene on TGR5. Methods We transfected the TGR5 gene into cultured Chinese hamster ovary cells (CHO-K1 cells) to express TGR5. Then, we applied a fluorescent indicator to examine the glucose uptake of these transfected cells. In addition, NCI-H716 cells that secrete incretin were also evaluated. Fura-2, a fluorescence indicator, was applied to determine the changes in calcium concentrations. The levels of cyclic adenosine monophosphate (cAMP) and glucagon-like peptide (GLP-1) were estimated using enzyme-linked immunosorbent assay kits. Moreover, rats with streptozotocin (STZ)-induced type 1-like diabetes were used to investigate the effects in vivo. Results Triamterene dose dependently inhibits the increase in glucose uptake induced by TGR5 agonists in CHO-K1 cells expressing the TGR5 gene. In cultured NCI-H716 cells, TGR5 activation also increases GLP-1 secretion by increasing calcium levels. Triamterene inhibits the increased calcium levels by TGR5 activation through competitive antagonism. Moreover, the GLP-1 secretion and increased cAMP levels induced by TGR5 activation are both dose dependently reduced by triamterene. However, treatment with KB-R7943 at a dose sufficient to block the Na+/Ca2+ exchanger (NCX) failed to modify the responses to TGR5 activation in NCI-H716 cells or CHO-K1 cells expressing TGR5. Therefore, the inhibitory effects of triamterene on TGR5 activation do not appear to be related to NCX inhibition. Blockade of TGR5 activation by triamterene was further characterized in vivo using the STZ-induced diabetic rats. Conclusion Based on the obtained data, we identified triamterene as a reliable inhibitor of TGR5. Therefore, triamterene can be developed as a clinical inhibitor of TGR5 activation in future studies.
Collapse
Affiliation(s)
- Yingxiao Li
- Department of Psychosomatic Internal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Medical Research, Chi Mei Medical Center, Yong Kang, Tainan City
| | - Kai Chun Cheng
- Department of Psychosomatic Internal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Chiang-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien City
| | - Shih-Hsiang Lo
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien City.,Division of Cardiology, Department of Internal Medicine, Chung Hsing Branch of Taipei City Hospital
| | - Juei-Tang Cheng
- Department of Medical Research, Chi Mei Medical Center, Yong Kang, Tainan City.,Institute of Medical Sciences, College of Health Science, Chang-Jung Christian University, Guei-Ren, Tainan City, Taiwan
| | - Ho-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien City
| |
Collapse
|
8
|
Ding L, Su XX, Zhang WH, Xu YX, Pan XF. Gene Expressions Underlying Mishandled Calcium Clearance and Elevated Generation of Reactive Oxygen Species in the Coronary Artery Smooth Muscle Cells of Chronic Heart Failure Rats. Chin Med J (Engl) 2017; 130:460-469. [PMID: 28218221 PMCID: PMC5324384 DOI: 10.4103/0366-6999.199825] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The calcium clearance and reactive oxygen species (ROS) generations in the coronary artery smooth muscle cells in chronic heart failure (HF) have not been fully investigated. Therefore, we attempted to understand the gene expressions underlying the mishandling of calcium clearance and the accumulations of ROS. METHODS We initially established an animal model of chronic HF by making the left anterior descending coronary artery ligation (CAL) in rats, and then isolated the coronary artery vascular smooth muscle cells from the ischemic and the nonischemic parts of the coronary artery vessels in 12 weeks after CAL operation. The intracellular calcium concentration and ROS level were measured using flow cytometry, and the gene expressions of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a), encoding sarcoplasmic reticulum Ca2+-ATPase 2a, encoding sodium-calcium exchanger (NCX), and p47phox encoding a subunit of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase were examined using real-time quantitative reverse transcription polymerase chain reaction and Western blotting, respectively. RESULTS We found that the calcium accumulation and ROS generation in the coronary artery smooth muscle cells isolated from either the ischemic or the nonischemic part of the CAL coronary artery vessel were significantly increased irrespective of blood supply (all P < 0.01). Moreover, these were accompanied by the increased expressions of NCX and p47phox, the decreased expression of SERCA2a, and the increased amount of phosphorylated forms of p47phox in NADPH oxidase (all P < 0.05). CONCLUSIONS Our results demonstrated that the disordered calcium clearance and the increased ROS generation occurred in the coronary artery smooth muscle cells in rats with chronic HF produced by ligation of the left anterior descending coronary artery (CAL), and which was found to be disassociated from blood supply, and the increased generation of ROS in the cells was found to make concomitancy to the increased activity of NADPH oxidase in cytoplasm.
Collapse
Affiliation(s)
- Liang Ding
- Department of Pharmacology, School of Medicine, Hebei University, Baoding, Hebei 071000, China
| | - Xian-Xiu Su
- Department of Basic Medicine, School of Basic Medicine, Hebei University, Baoding, Hebei 071000, China
| | - Wen-Hui Zhang
- Department of Pharmacology, School of Medicine, Hebei University, Baoding, Hebei 071000, China
| | - Yu-Xiang Xu
- Department of Pharmacology, School of Medicine, Hebei University, Baoding, Hebei 071000, China
| | - Xue-Feng Pan
- Department of Pharmacology, School of Medicine, Hebei University, Baoding, Hebei 071000, China
- Department of Basic Medicine, School of Basic Medicine, Hebei University, Baoding, Hebei 071000, China
- Department of Biological Science, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
9
|
EP3 activation facilitates bladder excitability via HCN channels on ICCs. Biochem Biophys Res Commun 2017; 485:535-541. [PMID: 28131828 DOI: 10.1016/j.bbrc.2017.01.131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 01/23/2017] [Indexed: 12/20/2022]
Abstract
EP3 is a receptor for prostaglandin E2 (PGE2), and although its effect on bladder excitability has attracted considerable attention, the underlying mechanism remains unclear. To investigate whether the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in the interstitial cells of Cajal (ICCs) of the bladder are involved in the effect of EP3 activation on bladder excitability, wild-type mice, HCN1 knockout (HCN1-/-) mice and rats were used in our study. Double immunofluorescence staining and immunoprecipitation assays demonstrated the interaction between EP3 and the HCN channels. Sulprostone is a selective agonist of EP3. The current density of HCN channels was enhanced by sulprostone or PGE2 using whole-cell patch clamping. Western blot analyses showed that the expression levels of HCN1 and HCN4 were higher in bladders that had undergone intravesical instillation with sulprostone than in bladders treated with normal saline (NS). Both PGE2 and sulprostone increased the calcium concentration of the ICCs, and their effects were inhibited by ZD7288 (antagonist of HCN channels) treatment. In bladder detrusor strip testing, both PGE2 and sulprostone enhanced the amplitude of the bladder detrusor in HCN1-/- mice; however, these effects were less than those in the wild-type mice. Furthermore, the effects of PGE2 and sulprostone were inhibited by ZD7288. Taken together, our results indicate that EP3 is expressed in bladder ICCs and facilitates bladder excitability via HCN channels. This study provides more comprehensive insights into the mechanism between inflammation and bladder excitability and highlights methods that can resolve bladder hyperactivity.
Collapse
|