1
|
Wu KY, Belaiche M, Wen Y, Choulakian MY, Tran SD. Advancements in Polymer Biomaterials as Scaffolds for Corneal Endothelium Tissue Engineering. Polymers (Basel) 2024; 16:2882. [PMID: 39458711 PMCID: PMC11511139 DOI: 10.3390/polym16202882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Corneal endothelial dysfunction is a leading cause of vision loss globally, frequently requiring corneal transplantation. However, the limited availability of donor tissues, particularly in developing countries, has spurred on the exploration of tissue engineering strategies, with a focus on polymer biomaterials as scaffolds for corneal endotlhelium regeneration. This review provides a comprehensive overview of the advancements in polymer biomaterials, focusing on their role in supporting the growth, differentiation, and functional maintenance of human corneal endothelial cells (CECs). Key properties of scaffold materials, including optical clarity, biocompatibility, biodegradability, mechanical stability, permeability, and surface wettability, are discussed in detail. The review also explores the latest innovations in micro- and nano-topological morphologies, fabrication techniques such as electrospinning and 3D/4D bioprinting, and the integration of drug delivery systems into scaffolds. Despite significant progress, challenges remain in translating these technologies to clinical applications. Future directions for research are highlighted, including the need for improved biomaterial combinations, a deeper understanding of CEC biology, and the development of scalable manufacturing processes. This review aims to serve as a resource for researchers and clinician-scientists seeking to advance the field of corneal endothelium tissue engineering.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Myriam Belaiche
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ying Wen
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Mazen Y. Choulakian
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
2
|
França RKA, Studart IC, Bezerra MRL, Pontes LQ, Barbosa AMA, Brigido MM, Furtado GP, Maranhão AQ. Progress on Phage Display Technology: Tailoring Antibodies for Cancer Immunotherapy. Viruses 2023; 15:1903. [PMID: 37766309 PMCID: PMC10536222 DOI: 10.3390/v15091903] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The search for innovative anti-cancer drugs remains a challenge. Over the past three decades, antibodies have emerged as an essential asset in successful cancer therapy. The major obstacle in developing anti-cancer antibodies is the need for non-immunogenic antibodies against human antigens. This unique requirement highlights a disadvantage to using traditional hybridoma technology and thus demands alternative approaches, such as humanizing murine monoclonal antibodies. To overcome these hurdles, human monoclonal antibodies can be obtained directly from Phage Display libraries, a groundbreaking tool for antibody selection. These libraries consist of genetically engineered viruses, or phages, which can exhibit antibody fragments, such as scFv or Fab on their capsid. This innovation allows the in vitro selection of novel molecules directed towards cancer antigens. As foreseen when Phage Display was first described, nowadays, several Phage Display-derived antibodies have entered clinical settings or are undergoing clinical evaluation. This comprehensive review unveils the remarkable progress in this field and the possibilities of using clever strategies for phage selection and tailoring the refinement of antibodies aimed at increasingly specific targets. Moreover, the use of selected antibodies in cutting-edge formats is discussed, such as CAR (chimeric antigen receptor) in CAR T-cell therapy or ADC (antibody drug conjugate), amplifying the spectrum of potential therapeutic avenues.
Collapse
Affiliation(s)
- Renato Kaylan Alves França
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
- Graduate Program in Molecular Pathology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Igor Cabral Studart
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Marcus Rafael Lobo Bezerra
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Larissa Queiroz Pontes
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Antonio Marcos Aires Barbosa
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Applied Informatics, University of Fortaleza, Fortaleza 60811-905, Brazil
| | - Marcelo Macedo Brigido
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
| | - Gilvan Pessoa Furtado
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Andréa Queiroz Maranhão
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
| |
Collapse
|
3
|
Kitazawa K, Sotozono C, Kinoshita S. Current Advancements in Corneal Cell-Based Therapy. Asia Pac J Ophthalmol (Phila) 2022; 11:335-345. [PMID: 36041148 DOI: 10.1097/apo.0000000000000530] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
Corneal epithelial stem cells (CEpSCs) mostly reside at the limbal area and are responsible for tissue homeostasis throughout life. Once complete CEpSC deficiency occurs, regenerative medicine cell-based therapy using CEpSCs or their alternatives can provide successful clinical outcomes. Due to an improved understanding of CEpSCs and mucosal epithelial stem cells, major advancements have been made over the past few decades in in vivo and ex vivo cell-based ocular surface reconstruction therapies for the treatment of severe ocular surface diseases. New therapeutic concepts and clinical strategies are emerging for the treatment of corneal endothelial dysfunction. For example, unlike corneal epithelial cells, in vivo corneal endothelial cells (CECs) stop proliferating and are arrested in the G1 phase of the cell cycle due to cell-to-cell contact inhibition and exposure to a high concentration of transforming growth factor-beta in the aqueous humor. Thus, the production of CECs with good functionality in culture has consistently been difficult. To solve this problem, Rho-associated protein kinase inhibition has taken center stage, as it not only makes the production of human CECs in culture closely mimic the functional characteristics of in vivo healthy CECs possible but also helps sustain those biological properties. Thus, cultured human CEC injection therapy is now moving to the forefront for the treatment of corneal endothelial failure. Herein, we summarize key historical discoveries in corneal cell-based regenerative medicine and illustrate the concept of corneal cell therapy for the treatment of refractory corneal epithelial and endothelial diseases.
Collapse
Affiliation(s)
- Koji Kitazawa
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chie Sotozono
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shigeru Kinoshita
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Català P, Thuret G, Skottman H, Mehta JS, Parekh M, Ní Dhubhghaill S, Collin RWJ, Nuijts RMMA, Ferrari S, LaPointe VLS, Dickman MM. Approaches for corneal endothelium regenerative medicine. Prog Retin Eye Res 2021; 87:100987. [PMID: 34237411 DOI: 10.1016/j.preteyeres.2021.100987] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022]
Abstract
The state of the art therapy for treating corneal endothelial disease is transplantation. Advances in the reproducibility and accessibility of surgical techniques are increasing the number of corneal transplants, thereby causing a global deficit of donor corneas and leaving 12.7 million patients with addressable visual impairment. Approaches to regenerate the corneal endothelium offer a solution to the current tissue scarcity and a treatment to those in need. Methods for generating corneal endothelial cells into numbers that could address the current tissue shortage and the possible strategies used to deliver them have now become a therapeutic reality with clinical trials taking place in Japan, Singapore and Mexico. Nevertheless, there is still a long way before such therapies are approved by regulatory bodies and become clinical practice. Moreover, acellular corneal endothelial graft equivalents and certain drugs could provide a treatment option for specific disease conditions without the need of donor tissue or cells. Finally, with the emergence of gene modulation therapies to treat corneal endothelial disease, it would be possible to treat presymptomatic patients or those presenting early symptoms, drastically reducing the need for donor tissue. It is necessary to understand the most recent developments in this rapidly evolving field to know which conditions could be treated with which approach. This article provides an overview of the current and developing regenerative medicine therapies to treat corneal endothelial disease and provides the necessary guidance and understanding towards the treatment of corneal endothelial disease.
Collapse
Affiliation(s)
- Pere Català
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Gilles Thuret
- Laboratory of Biology, Engineering and Imaging of Corneal Graft, BiiGC, Faculty of Medicine, University of Saint Etienne, Saint Etienne, France; Institut Universitaire de France, Paris, France
| | - Heli Skottman
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jodhbir S Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-National University Singapore Medical School, Singapore; Singapore National Eye Centre, Singapore
| | - Mohit Parekh
- Institute of Ophthalmology, University College London, London, UK; The Veneto Eye Bank Foundation, Venice, Italy; Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Sorcha Ní Dhubhghaill
- Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium; Ophthalmology, Visual Optics and Visual Rehabilitation, Department of Translational Neurosciences, University of Antwerp, Wilrijk, Belgium
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rudy M M A Nuijts
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | - Vanessa L S LaPointe
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Mor M Dickman
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
5
|
Antibody Identification for Antigen Detection in Formalin-Fixed Paraffin-Embedded Tissue Using Phage Display and Naïve Libraries. Antibodies (Basel) 2021; 10:antib10010004. [PMID: 33466676 PMCID: PMC7839037 DOI: 10.3390/antib10010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/15/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Immunohistochemistry is a widely used technique for research and diagnostic purposes that relies on the recognition by antibodies of antigens expressed in tissues. However, tissue processing and particularly formalin fixation affect the conformation of these antigens through the formation of methylene bridges. Although antigen retrieval techniques can partially restore antigen immunoreactivity, it is difficult to identify antibodies that can recognize their target especially in formalin-fixed paraffin-embedded tissues. Most of the antibodies currently used in immunohistochemistry have been obtained by animal immunization; however, in vitro display techniques represent alternative strategies that have not been fully explored yet. This review provides an overview of phage display-based antibody selections using naïve antibody libraries on various supports (fixed cells, dissociated tissues, tissue fragments, and tissue sections) that have led to the identification of antibodies suitable for immunohistochemistry.
Collapse
|
6
|
Ting DSJ, Peh GSL, Adnan K, Mehta JS. Translational and Regulatory Challenges of Corneal Endothelial Cell Therapy: A Global Perspective. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:52-62. [PMID: 33267724 DOI: 10.1089/ten.teb.2020.0319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell therapies are emerging as a unique class of clinical therapeutics in medicine. In 2015, Holoclar (ex vivo expanded autologous human corneal epithelial cells containing stem cells) gained the regulatory approval for treating limbal stem cell deficiency after chemical eye burn. This has set a precedent in ophthalmology and in medicine, reinforcing the therapeutic promise of cell therapy. However, to generalize and commercialize cell therapies on a global scale, stringent translational and regulatory requirements need to be fulfilled at both local and international levels. Over the past decade, the Singapore group has taken significant steps in developing human corneal endothelial cell (HCEnC) therapy for treating corneal endothelial diseases, which are currently the leading indication for corneal transplantation in many countries. Successful development of HCEnC therapy may serve as a novel solution to the current global shortage of donor corneas. Based on the experience in Singapore, this review aims to provide a global perspective on the translational and regulatory challenges for bench-to-bedside translation of cell therapy. Specifically, we discussed about the characterization of the critical quality attributes (CQA), the challenges that can affect the CQA, and the variations in the regulatory framework embedded within different regions, including Singapore, Europe, and the United States. Impact statement Functional corneal endothelium is critical to normal vision. Corneal endothelial disease-secondary to trauma, surgery, or pathology-represents an important cause of visual impairment and blindness in both developed and developing countries. Currently, corneal transplantation serves as the current gold standard for treating visually significant corneal endothelial diseases, although limited by the shortage of donor corneas. Over the past decade, human corneal endothelial cell therapy has emerged as a promising treatment option for treating corneal endothelial diseases. To allow widespread application of this therapy, significant regulatory challenges will need to be systematically overcome.
Collapse
Affiliation(s)
- Darren Shu Jeng Ting
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Department of Ophthalmology, Queen's Medical Centre, Nottingham, United Kingdom.,Singapore Eye Research Institute, Singapore, Singapore
| | - Gary S L Peh
- Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| | | | - Jodhbir S Mehta
- Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore.,Schools of Material Science and Engineering, Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
7
|
Price MO, Mehta JS, Jurkunas UV, Price FW. Corneal endothelial dysfunction: Evolving understanding and treatment options. Prog Retin Eye Res 2020; 82:100904. [PMID: 32977001 DOI: 10.1016/j.preteyeres.2020.100904] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 12/13/2022]
Abstract
The cornea is exquisitely designed to protect the eye while transmitting and focusing incoming light. Precise control of corneal hydration by the endothelial cell layer that lines the inner surface of the cornea is required for optimal transparency, and endothelial dysfunction or damage can result in corneal edema and visual impairment. Advances in corneal transplantation now allow selective replacement of dysfunctional corneal endothelium, providing rapid visual rehabilitation. A series of technique improvements have minimized complications and various adaptations allow use even in eyes with complicated anatomy. While selective endothelial keratoplasty sets a very high standard for safety and efficacy, a shortage of donor corneas in many parts of the world restricts access, prompting a search for alternatives. Clinical trials are underway to evaluate the potential for self-recovery after removal of dysfunctional central endothelium in patients with healthy peripheral endothelium. Various approaches to using cultured human corneal endothelial cells are also in clinical trials; these aim to multiply cells from a single donor cornea for use in potentially hundreds of patients. Pre-clinical studies are underway with induced pluripotent stem cells, endothelial stem cell regeneration, gene therapy, anti-sense oligonucleotides, and various biologic/pharmacologic approaches designed to treat, prevent, or retard corneal endothelial dysfunction. The availability of more therapeutic options will hopefully expand access around the world while also allowing treatment to be more precisely tailored to each individual patient.
Collapse
Affiliation(s)
- Marianne O Price
- Cornea Research Foundation of America, 9002 N. Meridian St., Suite 212, Indianapolis, IN, USA.
| | - Jodhbir S Mehta
- Singapore National Eye Centre, 11 Third Hospital Ave #08-00, 168751, Singapore
| | - Ula V Jurkunas
- Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, USA
| | - Francis W Price
- Price Vision Group, 9002 N. Meridian St., Suite 100, Indianapolis, IN, USA
| |
Collapse
|
8
|
Xu H, Cao B, Li Y, Mao C. Phage nanofibers in nanomedicine: Biopanning for early diagnosis, targeted therapy, and proteomics analysis. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1623. [PMID: 32147974 DOI: 10.1002/wnan.1623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/02/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
Abstract
Display of a peptide or protein of interest on the filamentous phage (also known as bacteriophage), a biological nanofiber, has opened a new route for disease diagnosis and therapy as well as proteomics. Earlier phage display was widely used in protein-protein or antigen-antibody studies. In recent years, its application in nanomedicine is becoming increasingly popular and encouraging. We aim to review the current status in this research direction. For better understanding, we start with a brief introduction of basic biology and structure of the filamentous phage. We present the principle of phage display and library construction method on the basis of the filamentous phage. We summarize the use of the phage displayed peptide library for selecting peptides with high affinity against cells or tissues. We then review the recent applications of the selected cell or tissue targeting peptides in developing new targeting probes and therapeutics to advance the early diagnosis and targeted therapy of different diseases in nanomedicine. We also discuss the integration of antibody phage display and modern proteomics in discovering new biomarkers or target proteins for disease diagnosis and therapy. Finally, we propose an outlook for further advancing the potential impact of phage display on future nanomedicine. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Hong Xu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Binrui Cao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Yan Li
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
9
|
Abstract
Phage display antibody libraries have proven an invaluable resource for the isolation of diagnostic and potentially therapeutic antibodies, the latter usually being antibody fragments converted into IgG formats. Recent advances in the production of highly diverse and functional antibody libraries are considered here, including for Fabs, scFvs and nanobodies. These advances include codon optimisation during generation of CDR diversity, improved display levels using novel signal sequences, molecular chaperones and isomerases and the use of highly stable scaffolds with relatively high expression levels. In addition, novel strategies for the batch reformatting of scFv and Fab phagemid libraries, derived from phage panning, into IgG formats are described. These strategies allow the screening of antibodies in the end-use format, facilitating more efficient selection of potential therapeutics.
Collapse
|
10
|
Di Zazzo A, Lee SM, Sung J, Niutta M, Coassin M, Mashaghi A, Inomata T. Variable Responses to Corneal Grafts: Insights from Immunology and Systems Biology. J Clin Med 2020; 9:E586. [PMID: 32098130 PMCID: PMC7074162 DOI: 10.3390/jcm9020586] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
Corneal grafts interact with their hosts via complex immunobiological processes that sometimes lead to graft failure. Prediction of graft failure is often a tedious task due to the genetic and nongenetic heterogeneity of patients. As in other areas of medicine, a reliable prediction method would impact therapeutic decision-making in corneal transplantation. Valuable insights into the clinically observed heterogeneity of host responses to corneal grafts have emerged from multidisciplinary approaches, including genomics analyses, mechanical studies, immunobiology, and theoretical modeling. Here, we review the emerging concepts, tools, and new biomarkers that may allow for the prediction of graft survival.
Collapse
Affiliation(s)
- Antonio Di Zazzo
- Ophthalmology Complex Operative Unit, Campus Bio Medico University, 00128 Rome, Italy; (A.D.Z.); (M.N.); (M.C.)
| | - Sang-Mok Lee
- Department of Ophthalmology, Catholic Kwandong University College of Medicine, Gangneung-si, Gangwon-do 25601, Korea;
- Department of Cornea, External Disease & Refractive Surgery, HanGil Eye Hospital, Incheon 21388, Korea
| | - Jaemyoung Sung
- University of South Florida, Morsani College of Medicine, Tampa, FL 33612, USA;
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan
| | - Matteo Niutta
- Ophthalmology Complex Operative Unit, Campus Bio Medico University, 00128 Rome, Italy; (A.D.Z.); (M.N.); (M.C.)
| | - Marco Coassin
- Ophthalmology Complex Operative Unit, Campus Bio Medico University, 00128 Rome, Italy; (A.D.Z.); (M.N.); (M.C.)
| | - Alireza Mashaghi
- Systems Biomedicine and Pharmacology Division, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands
| | - Takenori Inomata
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan
- Department of Strategic Operating Room Management and Improvement, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan
- Department of Hospital Administration, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan
| |
Collapse
|
11
|
Canassa-DeLeo T, Campo VL, Rodrigues LC, Marchiori MF, Fuzo C, Brigido MM, Sandomenico A, Ruvo M, Maranhão AQ, Dias-Baruffi M. Multifaceted antibodies development against synthetic α-dystroglycan mucin glycopeptide as promising tools for dystroglycanopathies diagnostic. Glycoconj J 2019; 37:77-93. [PMID: 31823246 DOI: 10.1007/s10719-019-09893-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/23/2019] [Accepted: 10/31/2019] [Indexed: 01/19/2023]
Abstract
Dystroglycanopathies are diseases characterized by progressive muscular degeneration and impairment of patient's quality of life. They are associated with altered glycosylation of the dystrophin-glycoprotein (DGC) complex components, such as α-dystroglycan (α-DG), fundamental in the structural and functional stability of the muscle fiber. The diagnosis of dystroglycanopathies is currently based on the observation of clinical manifestations, muscle biopsies and enzymatic measures, and the available monoclonal antibodies are not specific for the dystrophic hypoglycosylated muscle condition. Thus, modified α-DG mucins have been considered potential targets for the development of new diagnostic strategies toward these diseases. In this context, this work describes the synthesis of the hypoglycosylated α-DG mimetic glycopeptide NHAc-Gly-Pro-Thr-Val-Thr[αMan]-Ile-Arg-Gly-BSA (1) as a potential tool for the development of novel antibodies applicable to dystroglycanopathies diagnosis. Glycopeptide 1 was used for the development of polyclonal antibodies and recombinant monoclonal antibodies by Phage Display technology. Accordingly, polyclonal antibodies were reactive to glycopeptide 1, which enables the application of anti-glycopeptide 1 antibodies in immune reactive assays targeting hypoglycosylated α-DG. Regarding monoclonal antibodies, for the first time variable heavy (VH) and variable light (VL) immunoglobulin domains were selected by Phage Display, identified by NGS and described by in silico analysis. The best-characterized VH and VL domains were cloned, expressed in E. coli Shuffle T7 cells, and used to construct a single chain fragment variable that recognized the Glycopeptide 1 (GpαDG1 scFv). Molecular modelling of glycopeptide 1 and GpαDG1 scFv suggested that their interaction occurs through hydrogen bonds and hydrophobic contacts involving amino acids from scFv (I51, Y33, S229, Y235, and P233) and R8 and α-mannose from Glycopeptide 1.
Collapse
Affiliation(s)
- Thais Canassa-DeLeo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café S/N, CEP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Vanessa Leiria Campo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café S/N, CEP, Ribeirão Preto, SP, 14040-903, Brazil.,Centro Universitário Barão de Mauá, Rua Ramos de Azevedo 423, Jardim Paulista, CEP, Ribeirão Preto, 14090-180, SP, Brazil
| | - Lílian Cataldi Rodrigues
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café S/N, CEP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Marcelo Fiori Marchiori
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café S/N, CEP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Carlos Fuzo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café S/N, CEP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Marcelo Macedo Brigido
- Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, Brasília, DF, CEP 70910-900, Brazil
| | - Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone, 16, 80134, Naples, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, CNR, via Mezzocannone, 16, 80134, Naples, Italy
| | - Andrea Queiroz Maranhão
- Instituto de Ciências Biológicas, Universidade de Brasília, Asa Norte, Brasília, DF, CEP 70910-900, Brazil
| | - Marcelo Dias-Baruffi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. Café S/N, CEP, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
12
|
Van den Bogerd B, Zakaria N, Adam B, Matthyssen S, Koppen C, Ní Dhubhghaill S. Corneal Endothelial Cells Over the Past Decade: Are We Missing the Mark(er)? Transl Vis Sci Technol 2019; 8:13. [PMID: 31772824 PMCID: PMC6859829 DOI: 10.1167/tvst.8.6.13] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/22/2019] [Indexed: 12/24/2022] Open
Abstract
Corneal endothelial dysfunction is one of the leading causes of corneal edema and visual impairment, requiring corneal endothelial transplantation. The treatments are limited, however, by both logistics and a global donor shortage. As a result, corneal researchers are striving to develop tissue-engineered constructs as an alternative. Recently, the clinical results of the first patients treated using a novel corneal endothelial cell therapy were reported, and it is likely many more will follow shortly. As we move from lab to clinic, it is crucial that we establish accurate and robust methods of proving the cellular identity of these products, both in genotype and phenotype. In this review, we summarized all of the markers and techniques that have been reported during the development of corneal endothelial cell therapies over the past decade. The results show the most frequently used markers were very general, namely Na+/K+ ATPase and zonula occludens-1 (ZO-1). While these markers are expressed in nearly every epithelial cell, it is the hexagonal morphology that points to cells being corneal endothelium in nature. Only 11% of articles aimed at discovering novel markers, while 30% were already developing cell therapies. Finally, we discuss the potential of functional testing of cell products to demonstrate potency in parallel with identity markers. With this review, we would like to highlight that, while this is an exciting era in corneal endothelial cell therapies, there is still no accepted consensus on a unique endothelial marker panel. We must ask the question of whether or not we are getting ahead of ourselves and whether we need to refocus on basic science rather than enter clinics prematurely.
Collapse
Affiliation(s)
- Bert Van den Bogerd
- Ophthalmology, Visual Optics and Visual Rehabilitation, Translational Neurosciences, Faculty of Medicine, University of Antwerp, Wilrijk, Belgium
| | - Nadia Zakaria
- Ophthalmology, Visual Optics and Visual Rehabilitation, Translational Neurosciences, Faculty of Medicine, University of Antwerp, Wilrijk, Belgium.,Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Bianca Adam
- Ophthalmology, Visual Optics and Visual Rehabilitation, Translational Neurosciences, Faculty of Medicine, University of Antwerp, Wilrijk, Belgium
| | - Steffi Matthyssen
- Ophthalmology, Visual Optics and Visual Rehabilitation, Translational Neurosciences, Faculty of Medicine, University of Antwerp, Wilrijk, Belgium.,Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Carina Koppen
- Ophthalmology, Visual Optics and Visual Rehabilitation, Translational Neurosciences, Faculty of Medicine, University of Antwerp, Wilrijk, Belgium.,Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium
| | - Sorcha Ní Dhubhghaill
- Ophthalmology, Visual Optics and Visual Rehabilitation, Translational Neurosciences, Faculty of Medicine, University of Antwerp, Wilrijk, Belgium.,Department of Ophthalmology, Antwerp University Hospital, Edegem, Belgium.,Netherlands Institute for Innovative Ocular Surgery (NIIOS), Rotterdam, The Netherlands
| |
Collapse
|
13
|
Van den Bogerd B, Ní Dhubhghaill S, Zakaria N. Characterizing human decellularized crystalline lens capsules as a scaffold for corneal endothelial tissue engineering. J Tissue Eng Regen Med 2018; 12:e2020-e2028. [PMID: 29430874 PMCID: PMC5947733 DOI: 10.1002/term.2633] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/07/2017] [Accepted: 12/11/2017] [Indexed: 12/13/2022]
Abstract
The idea of transplanting a sheet of laboratory-grown corneal endothelium dates back to 1978; however, the ideal scaffold is still lacking. We hypothesized that human crystalline lens capsules (LCs) could qualify as a scaffold and aimed to characterize the properties of this material for endothelial tissue engineering. LCs were isolated from donor eyes, stored at -80 °C, and decellularized with water and trypsin-EDTA. The decellularization was investigated by nuclear staining and counting and the capsule thickness was determined by optical coherence tomography and compared with Descemet's membrane (DM). Transparency was examined by spectrometry, and collagenase degradation was performed to evaluate its resistance to degradation. Cell-scaffold interaction was assessed by measuring focal adhesions surface area on LC and plastic. Finally, primary corneal endothelial cells were grown on LCs to validate the phenotype. Trypsin-EDTA decellularized most effectively, removing 99% of cells. The mean LC thickness was 35.76 ± 0.43 μm, whereas DM measured 25.93 ± 0.26 μm (p < .0001). Light transmission was 90% for both LC and DM. On a collagenase challenge, LC and amniotic membrane were digested after 13 hr, whereas DM was digested after 17 hr. The surface area of focal adhesions for cells grown on coated LCs was at least double that compared with other conditions, whereas tight junctions, ion pumps, and hexagonal morphology were well maintained when endothelial cells were cultured on LCs. In conclusion, LCs demonstrate excellent scaffolding properties for tissue engineering and sustain the cell phenotype and can be considered a suitable substrate for ocular tissue engineering or as a template for future scaffolds.
Collapse
Affiliation(s)
- Bert Van den Bogerd
- Ophthalmology, Visual Optics and Visual Rehabilitation, Translational Neurosciences, Faculty of MedicineUniversity of AntwerpWilrijkBelgium
| | - Sorcha Ní Dhubhghaill
- Ophthalmology, Visual Optics and Visual Rehabilitation, Translational Neurosciences, Faculty of MedicineUniversity of AntwerpWilrijkBelgium
- Department of OphthalmologyAntwerp University HospitalEdegemBelgium
| | - Nadia Zakaria
- Ophthalmology, Visual Optics and Visual Rehabilitation, Translational Neurosciences, Faculty of MedicineUniversity of AntwerpWilrijkBelgium
- Department of OphthalmologyAntwerp University HospitalEdegemBelgium
- Centre for Cell Therapy and Regenerative MedicineAntwerp University HospitalEdegemBelgium
| |
Collapse
|
14
|
Alfaleh MA, Jones ML, Howard CB, Mahler SM. Strategies for Selecting Membrane Protein-Specific Antibodies using Phage Display with Cell-Based Panning. Antibodies (Basel) 2017; 6:E10. [PMID: 31548525 PMCID: PMC6698842 DOI: 10.3390/antib6030010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 12/14/2022] Open
Abstract
Membrane proteins are attractive targets for monoclonal antibody (mAb) discovery and development. Although several approved mAbs against membrane proteins have been isolated from phage antibody libraries, the process is challenging, as it requires the presentation of a correctly folded protein to screen the antibody library. Cell-based panning could represent the optimal method for antibody discovery against membrane proteins, since it allows for presentation in their natural conformation along with the appropriate post-translational modifications. Nevertheless, screening antibodies against a desired antigen, within a selected cell line, may be difficult due to the abundance of irrelevant organic molecules, which can potentially obscure the antigen of interest. This review will provide a comprehensive overview of the different cell-based phage panning strategies, with an emphasis placed on the optimisation of four critical panning conditions: cell surface antigen presentation, non-specific binding events, incubation time, and temperature and recovery of phage binders.
Collapse
Affiliation(s)
- Mohamed A Alfaleh
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Martina L Jones
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Stephen M Mahler
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.
- Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
15
|
Rezaei G, Habibi-Anbouhi M, Mahmoudi M, Azadmanesh K, Moradi-Kalbolandi S, Behdani M, Ghazizadeh L, Abolhassani M, Shokrgozar MA. Development of anti-CD47 single-chain variable fragment targeted magnetic nanoparticles for treatment of human bladder cancer. Nanomedicine (Lond) 2017; 12:597-613. [DOI: 10.2217/nnm-2016-0302] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: To develop a novel anti-CD47 single-chain variable fragment (scFv) functionalized magnetic nanoparticles (MNPs) for targeting bladder cell lines and its applicability in thermotherapy. Material & methods: An immunized murine antibody phage display library was constructed and screened to isolate anti-CD47 binders. A scFv was selected and conjugated to MNPs which was then utilized to discriminate CD47+ bladder cells along with assessing its efficacy in thermotherapy. Results: An scFv with high affinity to bladder cells was efficiently conjugated to MNPs. Following a hyperthermia treatment, the function of scFv–MNP conjugates led to a considerable reduction in cell viability. Conclusion: The anti-CD47 scFv–MNP conjugate was an effective cancer cell thermotherapy tool that might pave the way for development of bionano-based targeting techniques in both early detection and treatment of cancer.
Collapse
Affiliation(s)
- Gashin Rezaei
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | | | - Morteza Mahmoudi
- Nanotechnology Research Center & Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14155–6451, Iran
| | - Kayhan Azadmanesh
- Biotechnology Research Center, Venom & Biotherapeutics Molecules Lab, Pasteur Institute of Iran, Tehran, Iran
| | | | - Mahdi Behdani
- Immunology Department, Hybridoma Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Leila Ghazizadeh
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Mohsen Abolhassani
- Immunology Department, Hybridoma Lab, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|