1
|
Hammes UZ, Pedersen BP. Structure and Function of Auxin Transporters. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:185-209. [PMID: 38211951 DOI: 10.1146/annurev-arplant-070523-034109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Auxins, a group of central hormones in plant growth and development, are transported by a diverse range of transporters with distinct biochemical and structural properties. This review summarizes the current knowledge on all known auxin transporters with respect to their biochemical and biophysical properties and the methods used to characterize them. In particular, we focus on the recent advances that were made concerning the PIN-FORMED family of auxin exporters. Insights derived from solving their structures have improved our understanding of the auxin export process, and we discuss the current state of the art on PIN-mediated auxin transport, including the use of biophysical methods to examine their properties. Understanding the mechanisms of auxin transport is crucial for understanding plant growth and development, as well as for the development of more effective strategies for crop production and plant biotechnology.
Collapse
Affiliation(s)
- Ulrich Z Hammes
- School of Life Sciences, Plant Systems Biology, Technical University of Munich, Freising, Germany;
| | | |
Collapse
|
2
|
Kefi M, Balabanidou V, Sarafoglou C, Charamis J, Lycett G, Ranson H, Gouridis G, Vontas J. ABCH2 transporter mediates deltamethrin uptake and toxicity in the malaria vector Anopheles coluzzii. PLoS Pathog 2023; 19:e1011226. [PMID: 37585450 PMCID: PMC10461823 DOI: 10.1371/journal.ppat.1011226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/28/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
Contact insecticides are primarily used for the control of Anopheles malaria vectors. These chemicals penetrate mosquito legs and other appendages; the first barriers to reaching their neuronal targets. An ATP-Binding Cassette transporter from the H family (ABCH2) is highly expressed in Anopheles coluzzii legs, and further induced upon insecticide exposure. RNAi-mediated silencing of the ABCH2 caused a significant increase in deltamethrin mortality compared to control mosquitoes, coincident with a corresponding increase in 14C-deltamethrin penetration. RT-qPCR analysis and immunolocalization revealed ABCH2 to be mainly localized in the legs and head appendages, and more specifically, the apical part of the epidermis, underneath the cuticle. To unravel the molecular mechanism underlying the role of ABCH2 in modulating pyrethroid toxicity, two hypotheses were investigated: An indirect role, based on the orthology with other insect ABCH transporters involved with lipid transport and deposition of CHC lipids in Anopheles legs which may increase cuticle thickness, slowing down the penetration rate of deltamethrin; or the direct pumping of deltamethrin out of the organism. Evaluation of the leg cuticular hydrocarbon (CHC) content showed no affect by ABCH2 silencing, indicating this protein is not associated with the transport of leg CHCs. Homology-based modeling suggested that the ABCH2 half-transporter adopts a physiological homodimeric state, in line with its ability to hydrolyze ATP in vitro when expressed on its own in insect cells. Docking analysis revealed a deltamethrin pocket in the homodimeric transporter. Furthermore, deltamethrin-induced ATP hydrolysis in ABCH2-expressing cell membranes, further supports that deltamethrin is indeed an ABCH2 substrate. Overall, our findings pinpoint ABCH2 participating in deltamethrin toxicity regulation.
Collapse
Affiliation(s)
- Mary Kefi
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Vasileia Balabanidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Chara Sarafoglou
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Jason Charamis
- Department of Biology, University of Crete, Vassilika Vouton, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Gareth Lycett
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Giorgos Gouridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
- Pesticide Science Laboratory, Department of Crop Science, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
3
|
Stein NV, Eder M, Brameyer S, Schwenkert S, Jung H. The ABC transporter family efflux pump PvdRT-OpmQ of Pseudomonas putida KT2440: purification and initial characterization. FEBS Lett 2023; 597:1403-1414. [PMID: 36807028 DOI: 10.1002/1873-3468.14601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/20/2023]
Abstract
Tripartite efflux systems of the ABC-type family transport a variety of substrates and contribute to the antimicrobial resistance of Gram-negative bacteria. PvdRT-OpmQ, a member of this family, is thought to be involved in the secretion of the newly synthesized and recycled siderophore pyoverdine in Pseudomonas species. Here, we purified and characterized the inner membrane component PvdT and the periplasmic adapter protein PvdR of the plant growth-promoting soil bacterium Pseudomonas putida KT2440. We show that PvdT possesses an ATPase activity that is stimulated by the addition of PvdR. In addition, we provide the first biochemical evidence for direct interactions between pyoverdine and PvdRT.
Collapse
Affiliation(s)
- Nicola Victoria Stein
- Microbiology, Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Michelle Eder
- Microbiology, Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Sophie Brameyer
- Microbiology, Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany.,Service Unit Bioanalytics, Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Serena Schwenkert
- Service Unit Mass Spectrometry of Biomolecules, Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany
| | - Heinrich Jung
- Microbiology, Faculty of Biology, Ludwig Maximilians University Munich, Martinsried, Germany
| |
Collapse
|
4
|
The lysosomal transporter TAPL has a dual role as peptide translocator and phosphatidylserine floppase. Nat Commun 2022; 13:5851. [PMID: 36195619 PMCID: PMC9532399 DOI: 10.1038/s41467-022-33593-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 09/23/2022] [Indexed: 11/08/2022] Open
Abstract
TAPL is a lysosomal ATP-binding cassette transporter that translocates a broad spectrum of polypeptides from the cytoplasm into the lysosomal lumen. Here we report that, in addition to its well-known role as a peptide translocator, TAPL exhibits an ATP-dependent phosphatidylserine floppase activity that is the possible cause of its high basal ATPase activity and of the lack of coupling between ATP hydrolysis and peptide efflux. We also present the cryo-EM structures of mouse TAPL complexed with (i) phospholipid, (ii) cholesteryl hemisuccinate (CHS) and 9-mer peptide, and (iii) ADP·BeF3. The inward-facing structure reveals that F449 protrudes into the cylindrical transport pathway and divides it into a large hydrophilic central cavity and a sizable hydrophobic upper cavity. In the structure, the peptide binds to TAPL in horizontally-stretched fashion within the central cavity, while lipid molecules plug vertically into the upper cavity. Together, our results suggest that TAPL uses different mechanisms to function as a peptide translocase and a phosphatidylserine floppase.
Collapse
|
5
|
Vesga LC, Kronenberger T, Tonduru AK, Kita DH, Zattoni IF, Bernal CC, Bohórquez ARR, Mendez‐Sánchez SC, Ambudkar SV, Valdameri G, Poso A. Tetrahydroquinoline/4,5-Dihydroisoxazole Molecular Hybrids as Inhibitors of Breast Cancer Resistance Protein (BCRP/ABCG2). ChemMedChem 2021; 16:2686-2694. [PMID: 33844464 PMCID: PMC8518119 DOI: 10.1002/cmdc.202100188] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 11/28/2022]
Abstract
Multidrug resistance (MDR) is one of the major factors in the failure of many chemotherapy approaches. In cancer cells, MDR is mainly associated with the expression of ABC transporters such as P-glycoprotein, MRP1 and ABCG2. Despite major efforts to develop new selective and potent inhibitors of ABC drug transporters, no ABCG2-specific inhibitors for clinical use are yet available. Here, we report the evaluation of sixteen tetrahydroquinoline/4,5-dihydroisoxazole derivatives as a new class of ABCG2 inhibitors. The affinity of the five best inhibitors was further investigated by the vanadate-sensitive ATPase assay. Molecular modelling data, proposing a potential binding mode, suggest that they can inhibit the ABCG2 activity by binding on site S1, previously reported as inhibitors binding region, as well targeting site S2, a selective region for substrates, and by specifically interacting with residues Asn436, Gln398, and Leu555. Altogether, this study provided new insights into THQ/4,5-dihydroisoxazole molecular hybrids, generating great potential for the development of novel most potent ABCG2 inhibitors.
Collapse
Affiliation(s)
- Luis C. Vesga
- Faculty of Health SciencesUniversity of Eastern FinlandKuopio70211Finland
- Escuela de QuímicaUniversidad Industrial de SantanderA. A. 678BucaramangaColombia
- Grupo de Investigación en Compuestos Orgánicos de Interés Medicinal CODEIMUniversidad Industrial de SantanderA. A. 678PiedecuestaColombia
| | - Thales Kronenberger
- Faculty of Health SciencesUniversity of Eastern FinlandKuopio70211Finland
- Department of Medical Oncology and PneumologyInternal Medicine VIIIUniversity Hospital of TübingenOtfried-Müller-Strasse 1472076TübingenGermany
| | - Arun Kumar Tonduru
- Faculty of Health SciencesUniversity of Eastern FinlandKuopio70211Finland
| | - Diogo Henrique Kita
- Laboratory of Cancer Drug ResistanceFederal University of ParanáPR 80210-170CuritibaBrazil
- Laboratory of Cell BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Ingrid Fatima Zattoni
- Laboratory of Cancer Drug ResistanceFederal University of ParanáPR 80210-170CuritibaBrazil
| | - Cristian Camilo Bernal
- Grupo de Investigación en Compuestos Orgánicos de Interés Medicinal CODEIMUniversidad Industrial de SantanderA. A. 678PiedecuestaColombia
| | - Arnold R. Romero Bohórquez
- Grupo de Investigación en Compuestos Orgánicos de Interés Medicinal CODEIMUniversidad Industrial de SantanderA. A. 678PiedecuestaColombia
| | - Stelia Carolina Mendez‐Sánchez
- Escuela de QuímicaUniversidad Industrial de SantanderA. A. 678BucaramangaColombia
- Grupo de Investigación en Compuestos Orgánicos de Interés Medicinal CODEIMUniversidad Industrial de SantanderA. A. 678PiedecuestaColombia
| | - Suresh V. Ambudkar
- Laboratory of Cell BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Glaucio Valdameri
- Laboratory of Cancer Drug ResistanceFederal University of ParanáPR 80210-170CuritibaBrazil
| | - Antti Poso
- Faculty of Health SciencesUniversity of Eastern FinlandKuopio70211Finland
- Department of Medical Oncology and PneumologyInternal Medicine VIIIUniversity Hospital of TübingenOtfried-Müller-Strasse 1472076TübingenGermany
| |
Collapse
|
6
|
Möhle L, Schwarzová B, Krohn M, Stefan SM, Pahnke J. Using a qPCR device to screen for modulators of ABC transporter activity: A step-by-step protocol. J Pharmacol Toxicol Methods 2020; 104:106882. [PMID: 32474136 DOI: 10.1016/j.vascn.2020.106882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are transmembrane proteins which actively transport a large variety of substrates across biological membranes. ABC transporter overexpression can be the underlying cause of multidrug resistance in oncology. Moreover, it has been revealed that increased ABCC1 transporter activity can ameliorate behavioural changes and Aβ pathology in a rodent model of Alzheimer's disease and it is currently tested in AD patients. METHODS Finding substances that modulate ABC transporter activity (inhibitors and activators) is of high relevance and thus, different methods have been developed to screen for potential modulators. For this purpose, we have developed a cell-based assay to measure the kinetics of ABCC1-mediated efflux of a fluorescent dye using a common qPCR device (Agilent AriaMx). RESULTS We validated the specificity of our method with vanadate and benzbromarone controls. Furthermore, we provide a step-by-step protocol including statistical analysis of the resulting data and suggestions how to modify the protocol specifically to screen for activators of ABCC1. DISCUSSION Our approach is biologically more relevant than cell-free assays. The continuous detection of kinetics allows for a more precise quantification compared with assays with single end-point measurements.
Collapse
Affiliation(s)
- Luisa Möhle
- Department of Neuro-/Pathology, University of Oslo & Oslo University Hospital, Oslo, Norway; Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Halle, Germany.
| | - Barbora Schwarzová
- Department of Neuro-/Pathology, University of Oslo & Oslo University Hospital, Oslo, Norway
| | - Markus Krohn
- Department of Neuro-/Pathology, University of Oslo & Oslo University Hospital, Oslo, Norway
| | - Sven Marcel Stefan
- Department of Neuro-/Pathology, University of Oslo & Oslo University Hospital, Oslo, Norway; Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn, Germany
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo & Oslo University Hospital, Oslo, Norway; Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry, Halle, Germany; LIED, University of Lübeck, Germany; Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia
| |
Collapse
|
7
|
Stan RC, Bhatt DK, Camargo MM. Cellular Adaptation Relies on Regulatory Proteins Having Episodic Memory. Bioessays 2019; 42:e1900115. [DOI: 10.1002/bies.201900115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/06/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Razvan C. Stan
- Cantacuzino National Military‐Medical Institute for Research‐Development Bucharest 050096 Romania
- Department of ImmunologyUniversity of São Paulo São Paulo 05508‐900 Brazil
| | - Darshak K. Bhatt
- Faculty of Medical SciencesGroningen University Groningen 9700 AB The Netherlands
| | | |
Collapse
|
8
|
Yang M, Livnat Levanon N, Acar B, Aykac Fas B, Masrati G, Rose J, Ben-Tal N, Haliloglu T, Zhao Y, Lewinson O. Single-molecule probing of the conformational homogeneity of the ABC transporter BtuCD. Nat Chem Biol 2018; 14:715-722. [PMID: 29915236 DOI: 10.1038/s41589-018-0088-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/15/2018] [Indexed: 02/07/2023]
Abstract
ATP-binding cassette (ABC) transporters use the energy of ATP hydrolysis to move molecules through cellular membranes. They are directly linked to human diseases, cancer multidrug resistance, and bacterial virulence. Very little is known of the conformational dynamics of ABC transporters, especially at the single-molecule level. Here, we combine single-molecule spectroscopy and a novel molecular simulation approach to investigate the conformational dynamics of the ABC transporter BtuCD. We observe a single dominant population of molecules in each step of the transport cycle and tight coupling between conformational transitions and ligand binding. We uncover transient conformational changes that allow substrate to enter the transporter. This is followed by a 'squeezing' motion propagating from the extracellular to the intracellular side of the translocation cavity. This coordinated sequence of events provides a mechanism for the unidirectional transport of vitamin B12 by BtuCD.
Collapse
Affiliation(s)
- Min Yang
- National Laboratory of Macromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Nurit Livnat Levanon
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Burçin Acar
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey
| | - Burcu Aykac Fas
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey
| | - Gal Masrati
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jessica Rose
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Turkan Haliloglu
- Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey.
| | - Yongfang Zhao
- National Laboratory of Macromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Oded Lewinson
- Department of Biochemistry and the Rappaport Institute for Medical Sciences, Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
9
|
Li MJ, Guttman M, Atkins WM. Conformational dynamics of P-glycoprotein in lipid nanodiscs and detergent micelles reveal complex motions on a wide time scale. J Biol Chem 2018; 293:6297-6307. [PMID: 29511086 DOI: 10.1074/jbc.ra118.002190] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/26/2018] [Indexed: 11/06/2022] Open
Abstract
P-glycoprotein (P-gp) is a highly substrate-promiscuous efflux transporter that plays a critical role in drug disposition. P-gp utilizes ATP hydrolysis by nucleotide-binding domains (NBDs) to drive transitions between inward-facing (IF) conformations that bind drugs and outward-facing (OF) conformations that release them to the extracellular solution. However, the details of the protein dynamics within either macroscopic IF or OF conformation remain uncharacterized, and the functional role of local dynamics has not been determined. In this work we measured the local dynamics of the IF state of P-gp in lipid nanodiscs and in detergent solution by hydrogen-deuterium (H/D) exchange MS. We observed "EX1 exchange kinetics," or bimodal kinetics, for several peptides distributed in both NBDs, particularly for P-gp in the lipid nanodiscs. Remarkably, the EX1 kinetics occurred on several time scales, ranging from seconds to hours, suggesting highly complex, and correlated, motions. The results indicate at least three distinct conformational states in the ligand-free P-gp and suggest a rough conformational landscape. Addition of excess ATP and vanadate, to favor the OF conformations, caused a generalized, but modest, decrease in H/D exchange throughout the NBDs and slowed the EX1 kinetic transitions of several peptides. The functional implications of the results are consistent with the possibility that conformational selection provides a source of substrate promiscuity.
Collapse
Affiliation(s)
- Mavis Jiarong Li
- From the Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610
| | - Miklos Guttman
- From the Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610
| | - William M Atkins
- From the Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195-7610
| |
Collapse
|
10
|
Energy Coupling Efficiency in the Type I ABC Transporter GlnPQ. J Mol Biol 2018; 430:853-866. [PMID: 29432725 DOI: 10.1016/j.jmb.2018.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/28/2018] [Accepted: 02/01/2018] [Indexed: 01/29/2023]
Abstract
Solute transport via ATP binding cassette (ABC) importers involves receptor-mediated substrate binding, which is followed by ATP-driven translocation of the substrate across the membrane. How these steps are exactly initiated and coupled, and how much ATP it takes to complete a full transport cycle, are subject of debate. Here, we reconstitute the ABC importer GlnPQ in nanodiscs and in proteoliposomes and determine substrate-(in)dependent ATP hydrolysis and transmembrane transport. We determined the conformational states of the substrate-binding domains (SBDs) by single-molecule Förster resonance energy transfer measurements. We find that the basal ATPase activity (ATP hydrolysis in the absence of substrate) is mainly caused by the docking of the closed-unliganded state of the SBDs onto the transporter domain of GlnPQ and that, unlike glutamine, arginine binds both SBDs but does not trigger their closing. Furthermore, comparison of the ATPase activity in nanodiscs with glutamine transport in proteoliposomes shows that the stoichiometry of ATP per substrate is close to two. These findings help understand the mechanism of transport and the energy coupling efficiency in ABC transporters with covalently linked SBDs, which may aid our understanding of Type I ABC importers in general.
Collapse
|
11
|
W1038 near D-loop of NBD2 is a focal point for inter-domain communication in multidrug transporter Cdr1 of Candida albicans. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:965-972. [PMID: 29410026 DOI: 10.1016/j.bbamem.2018.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/22/2017] [Accepted: 01/29/2018] [Indexed: 11/21/2022]
Abstract
Candida drug resistance 1 (Cdr1), a PDR subfamily ABC transporter mediates efflux of xenobiotics in Candida albicans. It is one of the prime factors contributing to multidrug resistance in the fungal pathogen. One hallmark of this transporter is its asymmetric nature, characterized by peculiar alterations in its nucleotide binding domains. As a consequence, there exists only one canonical ATP-binding site while the other is atypical. Here, we report suppressor analysis on the drug-susceptible transmembrane domain mutant V532D that identified the suppressor mutation W1038S, close to the D-loop of the non-catalytic ATP-binding site. Introduction of the W1038S mutation in the background of V532D mutant conferred resistance for most of the substrates to the latter. Such restoration is accompanied by a severe reduction of ATPase activity, of about 85%, while that of the V532D mutant is half-reduced. Conversely, alanine substitution of the highly conserved aspartate D1033A in that D-loop rendered cells selectively hyper-susceptible to miconazole without an impact on steady-state ATPase activity, suggesting altogether that ATP hydrolysis may not hold the key to restoration mechanism. Analysis of the ABCG5/ABCG8-based 3D-model of Cdr1p suggested that the W1038S substitution leads to the loss of hydrophobic interactions and H-bond with residues of the neighbor NBD1, in the non-catalytic ATP-binding site area. The compensatory effect within TMDs accounting for transport restoration in the V532D-W1038S variant may, therefore, be mainly due to an increase in NBDs mobility at the non-catalytic interface.
Collapse
|
12
|
Csermely P. The Wisdom of Networks: A General Adaptation and Learning Mechanism of Complex Systems: The Network Core Triggers Fast Responses to Known Stimuli; Innovations Require the Slow Network Periphery and Are Encoded by Core-Remodeling. Bioessays 2017; 40. [PMID: 29168203 DOI: 10.1002/bies.201700150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/12/2017] [Indexed: 12/30/2022]
Abstract
I hypothesize that re-occurring prior experience of complex systems mobilizes a fast response, whose attractor is encoded by their strongly connected network core. In contrast, responses to novel stimuli are often slow and require the weakly connected network periphery. Upon repeated stimulus, peripheral network nodes remodel the network core that encodes the attractor of the new response. This "core-periphery learning" theory reviews and generalizes the heretofore fragmented knowledge on attractor formation by neural networks, periphery-driven innovation, and a number of recent reports on the adaptation of protein, neuronal, and social networks. The core-periphery learning theory may increase our understanding of signaling, memory formation, information encoding and decision-making processes. Moreover, the power of network periphery-related "wisdom of crowds" inventing creative, novel responses indicates that deliberative democracy is a slow yet efficient learning strategy developed as the success of a billion-year evolution. Also see the video abstract here: https://youtu.be/IIjP7zWGjVE.
Collapse
Affiliation(s)
- Peter Csermely
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
13
|
Qasem-Abdullah H, Perach M, Livnat-Levanon N, Lewinson O. ATP binding and hydrolysis disrupt the high-affinity interaction between the heme ABC transporter HmuUV and its cognate substrate-binding protein. J Biol Chem 2017; 292:14617-14624. [PMID: 28710276 DOI: 10.1074/jbc.m117.779975] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/10/2017] [Indexed: 12/17/2022] Open
Abstract
Using the energy of ATP hydrolysis, ABC transporters catalyze the trans-membrane transport of molecules. In bacteria, these transporters partner with a high-affinity substrate-binding protein (SBP) to import essential micronutrients. ATP binding by Type I ABC transporters (importers of amino acids, sugars, peptides, and small ions) stabilizes the interaction between the transporter and the SBP, thus allowing transfer of the substrate from the latter to the former. In Type II ABC transporters (importers of trace elements, e.g. vitamin B12, heme, and iron-siderophores) the role of ATP remains debatable. Here we studied the interaction between the Yersinia pestis ABC heme importer (HmuUV) and its partner substrate-binding protein (HmuT). Using real-time surface plasmon resonance experiments and interaction studies in membrane vesicles, we find that in the absence of ATP the transporter and the SBP tightly bind. Substrate in excess inhibits this interaction, and ATP binding by the transporter completely abolishes it. To release the stable docked SBP from the transporter hydrolysis of ATP is required. Based on these results we propose a mechanism for heme acquisition by HmuUV-T where the substrate-loaded SBP docks to the nucleotide-free outward-facing conformation of the transporter. ATP binding leads to formation of an occluded state with the substrate trapped in the trans-membrane translocation cavity. Subsequent ATP hydrolysis leads to substrate delivery to the cytoplasm, release of the SBP, and resetting of the system. We propose that other Type II ABC transporters likely share the fundamentals of this mechanism.
Collapse
Affiliation(s)
- Hiba Qasem-Abdullah
- From the Department of Biochemistry, The Bruce and Ruth Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Michal Perach
- From the Department of Biochemistry, The Bruce and Ruth Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Nurit Livnat-Levanon
- From the Department of Biochemistry, The Bruce and Ruth Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | |
Collapse
|
14
|
Wagner M, Doehl K, Schmitt L. Transmitting the energy: interdomain cross-talk in Pdr5. Biol Chem 2017; 398:145-154. [PMID: 27543784 DOI: 10.1515/hsz-2016-0247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/16/2016] [Indexed: 01/24/2023]
Abstract
ABC (ATP-binding cassette) transporters are ubiquitous integral membrane proteins catalyzing the active export or import of structurally and functionally unrelated compounds. In humans, these proteins are clinically and economically important, as their dysfunction is responsible for a number of diseases. In the case of multidrug resistance (MDR) ABC exporters, they particularly confer resistance to a broad spectrum of toxic compounds, placing them in the focus of clinical research. However, ABC-mediated drug resistance is not only restricted to humans. In yeast for example, MDR is called pleiotropic drug resistance (PDR). Important and well-studied members of the PDR subfamily of ABC transporters are Pdr5 from Saccharomyces cerevisiae and its homolog Cdr1 from Candida albicans. Mutational studies of these two transporters provided many insights into the complexity and conceivable mechanism of the interdomain cross-talk that transmits the energy gained from ATP hydrolysis to the substrate translocation process across the membrane. In this review, we summarize and discuss our current knowledge of the interdomain cross-talk as well as new results obtained for asymmetric ABC transporters and derive possible structural and functional implications for Pdr5.
Collapse
|
15
|
L-glutamine Induces Expression of Listeria monocytogenes Virulence Genes. PLoS Pathog 2017; 13:e1006161. [PMID: 28114430 PMCID: PMC5289647 DOI: 10.1371/journal.ppat.1006161] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 02/02/2017] [Accepted: 12/30/2016] [Indexed: 12/27/2022] Open
Abstract
The high environmental adaptability of bacteria is contingent upon their ability to sense changes in their surroundings. Bacterial pathogen entry into host poses an abrupt and dramatic environmental change, during which successful pathogens gauge multiple parameters that signal host localization. The facultative human pathogen Listeria monocytogenes flourishes in soil, water and food, and in ~50 different animals, and serves as a model for intracellular infection. L. monocytogenes identifies host entry by sensing both physical (e.g., temperature) and chemical (e.g., metabolite concentrations) factors. We report here that L-glutamine, an abundant nitrogen source in host serum and cells, serves as an environmental indicator and inducer of virulence gene expression. In contrast, ammonia, which is the most abundant nitrogen source in soil and water, fully supports growth, but fails to activate virulence gene transcription. We demonstrate that induction of virulence genes only occurs when the Listerial intracellular concentration of L-glutamine crosses a certain threshold, acting as an on/off switch: off when L-glutamine concentrations are below the threshold, and fully on when the threshold is crossed. To turn on the switch, L-glutamine must be present, and the L-glutamine high affinity ABC transporter, GlnPQ, must be active. Inactivation of GlnPQ led to complete arrest of L-glutamine uptake, reduced type I interferon response in infected macrophages, dramatic reduction in expression of virulence genes, and attenuated virulence in a mouse infection model. These results may explain observations made with other pathogens correlating nitrogen metabolism and virulence, and suggest that gauging of L-glutamine as a means of ascertaining host localization may be a general mechanism.
Collapse
|
16
|
Lewinson O, Livnat-Levanon N. Mechanism of Action of ABC Importers: Conservation, Divergence, and Physiological Adaptations. J Mol Biol 2017; 429:606-619. [PMID: 28104364 DOI: 10.1016/j.jmb.2017.01.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 01/08/2023]
Abstract
The past decade has seen a remarkable surge in structural characterization of ATP binding cassette (ABC) transporters, which have spurred a more focused functional analysis of these elaborate molecular machines. As a result, it has become increasingly apparent that there is a substantial degree of mechanistic variation between ABC transporters that function as importers, which correlates with their physiological roles. Here, we summarize recent advances in ABC importers' structure-function studies and provide an explanation as to the origin of the different mechanisms of action.
Collapse
Affiliation(s)
- Oded Lewinson
- Department of Biochemistry, The Bruce and Ruth Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, 31096 Haifa, Israel.
| | - Nurit Livnat-Levanon
- Department of Biochemistry, The Bruce and Ruth Rappaport Faculty of Medicine, The Technion-Israel Institute of Technology, 31096 Haifa, Israel
| |
Collapse
|
17
|
Pan C, Weng J, Wang W. ATP Hydrolysis Induced Conformational Changes in the Vitamin B12 Transporter BtuCD Revealed by MD Simulations. PLoS One 2016; 11:e0166980. [PMID: 27870912 PMCID: PMC5117765 DOI: 10.1371/journal.pone.0166980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/07/2016] [Indexed: 12/17/2022] Open
Abstract
ATP binding cassette (ABC) transporters utilize the energy of ATP hydrolysis to uni-directionally transport substrates across cell membrane. ATP hydrolysis occurs at the nucleotide-binding domain (NBD) dimer interface of ABC transporters, whereas substrate translocation takes place at the translocation pathway between the transmembrane domains (TMDs), which is more than 30 angstroms away from the NBD dimer interface. This raises the question of how the hydrolysis energy released at NBDs is "transmitted" to trigger the conformational changes at TMDs. Using molecular dynamics (MD) simulations, we studied the post-hydrolysis state of the vitamin B12 importer BtuCD. Totally 3-μs MD trajectories demonstrate a predominantly asymmetric arrangement of the NBD dimer interface, with the ADP-bound site disrupted and the ATP-bound site preserved in most of the trajectories. TMDs response to ATP hydrolysis by separation of the L-loops and opening of the cytoplasmic gate II, indicating that hydrolysis of one ATP could facilitate substrate translocation by opening the cytoplasmic end of translocation pathway. It was also found that motions of the L-loops and the cytoplasmic gate II are coupled with each other through a contiguous interaction network involving a conserved Asn83 on the extended stretch preceding TM3 helix plus the cytoplasmic end of TM2/6/7 helix bundle. These findings entail a TMD-NBD communication mechanism for type II ABC importers.
Collapse
Affiliation(s)
- Chao Pan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Jingwei Weng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Wenning Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| |
Collapse
|