1
|
Komiyama M. Monomeric, Oligomeric, Polymeric, and Supramolecular Cyclodextrins as Catalysts for Green Chemistry. RESEARCH (WASHINGTON, D.C.) 2024; 7:0466. [PMID: 39253101 PMCID: PMC11381675 DOI: 10.34133/research.0466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024]
Abstract
This review comprehensively covers recent developments of cyclodextrin-mediated chemical transformations for green chemistry. These cyclic oligomers of glucose are nontoxic, eco-friendly, and recyclable to accomplish eminent functions in water. Their most important feature is to form inclusion complexes with reactants, intermediates, and/or catalysts. As a result, their cavities serve as sterically restricted and apolar reaction fields to promote the efficiency and selectivity of reactions. Furthermore, unstable reagents and intermediates are protected from undesired side reactions. The scope of their applications has been further widened through covalent or noncovalent modifications. Combinations of them with metal catalysis are especially successful. In terms of these effects, various chemical reactions are achieved with high selectivity and yield so that valuable chemicals are synthesized from multiple components in one-pot reactions. Furthermore, cyclodextrin units are orderly assembled in oligomers and polymers to show their cooperation for advanced properties. Recently, cyclodextrin-based metal-organic frameworks and polyoxometalate-cyclodextrin frameworks have been fabricated and employed for unique applications. Cyclodextrins fulfill many requirements for green chemistry and should make enormous contributions to this growing field.
Collapse
Affiliation(s)
- Makoto Komiyama
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
2
|
One-stage chiral enrichment process by continuous flow electrodialysis with molecularly imprinted membrane. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
3
|
Rahman AB, Okamoto H, Miyazawa Y, Aoki S. Design and Synthesis of Supramolecular Phosphatases Formed from a Bis(Zn
2+
‐Cyclen) Complex, Barbital‐Crown‐K
+
Conjugate and Cu
2+
for the Catalytic Hydrolysis of Phosphate Monoester. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Akib Bin Rahman
- Faculty of Pharmaceutical Science Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Hirokazu Okamoto
- Faculty of Pharmaceutical Science Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Yuya Miyazawa
- Faculty of Pharmaceutical Science Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Science Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
- Research Institute for Science and Technology Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
- Research Institute for Biomedical Sciences Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| |
Collapse
|
4
|
Molnár Á. Synthetic Application of Cyclodextrins in Combination with Metal Ions, Complexes, and Metal Particles. ChemCatChem 2020. [DOI: 10.1002/cctc.202001610] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Árpád Molnár
- Department of Organic Chemistry University of Szeged Dóm tér 8 6720 Szeged Hungary
| |
Collapse
|
5
|
Thompson Z, Cowan JA. Artificial Metalloenzymes: Recent Developments and Innovations in Bioinorganic Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000392. [PMID: 32372559 DOI: 10.1002/smll.202000392] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Cellular life is orchestrated by the biochemical components of cells that include nucleic acids, lipids, carbohydrates, proteins, and cofactors such as metabolites and metals, all of which coalesce and function synchronously within the cell. Metalloenzymes allow for such complex chemical processes, as they catalyze a myriad of biochemical reactions both efficiently and selectively, where the metal cofactor provides additional functionality to promote reactivity not readily achieved in their absence. While the past 60 years have yielded considerable insight on how enzymes catalyze these reactions, a need to engineer and develop artificial metalloenzymes has been driven not only by industrial and therapeutic needs, but also by innate human curiosity. The design of miniature enzymes, both rationally and through serendipity, using both organic and inorganic building blocks has been explored by many scientists over the years and significant progress has been made. Herein, recent developments over the past 5 years in areas that have not been recently reviewed are summarized, and prospects for future research in these areas are addressed.
Collapse
Affiliation(s)
- Zechariah Thompson
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - James Allan Cowan
- Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
6
|
Kanagaraj K, Liang W, Rao M, Yao J, Wu W, Cheng G, Ji J, Wei X, Peng C, Yang C. pH-Controlled Chirality Inversion in Enantiodifferentiating Photocyclodimerization of 2-Antharacenecarboxylic Acid Mediated by γ-Cyclodextrin Derivatives. Org Lett 2020; 22:5273-5278. [PMID: 32418431 DOI: 10.1021/acs.orglett.0c01194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Several γ-cyclodextrin (γ-CDx) derivatives were used as chiral hosts for the photocyclodimerization of 2-anthracenecarboxylic acid (AC). The effect of pH on photoreactivity and stereochemical outcome of photoproducts was investigated. Upon changing the solution pH, the stereochemical outcome of HH cyclodimer 3 was inverted from 25.2% to -64.4% and 41.2% to -76.2%, respectively, in the photocyclodimerization of AC mediated by bis-quinoline-modified γ-CDx 7 and its N-methylated derivative 8.
Collapse
Affiliation(s)
- Kuppusamy Kanagaraj
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Wenting Liang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China.,Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Ming Rao
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Jiabin Yao
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Guo Cheng
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Jiecheng Ji
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Xueqin Wei
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Chao Peng
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
7
|
Miyazawa Y, Rahman AB, Saga Y, Imafuku H, Hisamatsu Y, Aoki S. Catalytic Hydrolysis of Phosphate Monoester by Supramolecular Complexes Formed by the Self-Assembly of a Hydrophobic Bis(Zn 2+-cyclen) Complex, Copper, and Barbital Units That Are Functionalized with Amino Acids in a Two-Phase Solvent System. MICROMACHINES 2019; 10:mi10070452. [PMID: 31277494 PMCID: PMC6680849 DOI: 10.3390/mi10070452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 06/30/2019] [Accepted: 07/01/2019] [Indexed: 12/02/2022]
Abstract
We previously reported on the preparation of supramolecular complexes by the 2:2:2 assembly of a dinuclear Zn2+-cyclen (cyclen = 1,4,7,10-tetraazacyclododecane) complex having a 2,2′-bipyridyl linker equipped with 0~2 long alkyl chains (Zn2L1~Zn2L3), 5,5-diethylbarbituric acid (Bar) derivatives, and a copper(II) ion (Cu2+) in aqueous solution and two-phase solvent systems and their phosphatase activities for the hydrolysis of mono(4-nitrophenyl) phosphate (MNP). These supermolecules contain Cu2(μ-OH)2 core that mimics the active site of alkaline phosphatase (AP), and one of the ethyl groups of the barbital moiety is located in close proximity to the Cu2(μ-OH)2 core. The generally accepted knowledge that the amino acids around the metal center in the active site of AP play important roles in its hydrolytic activity inspired us to modify the side chain of Bar with various functional groups in an attempt to mimic the active site of AP in the artificial system, especially in two-phase solvent system. In this paper, we report on the design and synthesis of new supramolecular complexes that are prepared by the combined use of bis(Zn2+-cyclen) complexes (Zn2L1, Zn2L2, and Zn2L3), Cu2+, and Bar derivatives containing amino acid residues. We present successful formation of these artificial AP mimics with respect to the kinetics of the MNP hydrolysis obeying Michaelis–Menten scheme in aqueous solution and a two-phase solvent system and to the mode of the product inhibition by inorganic phosphate.
Collapse
Affiliation(s)
- Yuya Miyazawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Akib Bin Rahman
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yutaka Saga
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Hiroki Imafuku
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yosuke Hisamatsu
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
8
|
Rahman AB, Imafuku H, Miyazawa Y, Kafle A, Sakai H, Saga Y, Aoki S. Catalytic Hydrolysis of Phosphate Monoester by Supramolecular Phosphatases Formed from a Monoalkylated Dizinc(II) Complex, Cyclic Diimide Units, and Copper(II) in Two-Phase Solvent System. Inorg Chem 2019; 58:5603-5616. [PMID: 30969761 DOI: 10.1021/acs.inorgchem.8b03586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Design and synthesis of enzyme mimic with programmed molecular interaction among several building blocks including metal complexes and metal chelators is of intellectual and practical significance. The preparation of artificial enzymes that mimic the natural enzymes such as hydrolases, phosphatases, etc. remains a great challenge in the field of supramolecular chemistry. Herein we report on the design and synthesis of asymmetric (nonsymmetric) supermolecules by the 2:2:2 self-assembly of an amphiphilic zinc(II)-cyclen complex containing a 2,2'-bipyridyl linker and one long alkyl chain (Zn2L3), barbital analogues, and Cu2+ as model compounds of an enzyme alkaline phosphatase that catalyzes the hydrolysis of phosphate monoesters such as mono(4-nitrophenyl)phosphate at neutral pH in two-phase solvent system (H2O/CHCl3) in pH 7.4 and 37 °C. Hydrolytic activity of these complexes was found to be catalytic, and their catalytic turnover numbers are 3-4. The mechanistic studies based on the UV/vis and emission spectra of the H2O and CHCl3 phases of the reaction mixtures suggest that the hydrophilicity/hydrophobicity balance of the supramolecular catalysts is an important factor for catalytic activity.
Collapse
|
9
|
|
10
|
Hönig M, Sondermann P, Turner NJ, Carreira EM. Enantioselective Chemo- and Biocatalysis: Partners in Retrosynthesis. Angew Chem Int Ed Engl 2017; 56:8942-8973. [DOI: 10.1002/anie.201612462] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Moritz Hönig
- Laboratorium für Organische Chemie; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Philipp Sondermann
- Laboratorium für Organische Chemie; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Nicholas J. Turner
- Manchester Institute of Biotechnology & School of Chemistry; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Erick M. Carreira
- Laboratorium für Organische Chemie; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
11
|
Hönig M, Sondermann P, Turner NJ, Carreira EM. Enantioselektive Chemo- und Biokatalyse: Partner in der Retrosynthese. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612462] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Moritz Hönig
- Laboratorium für Organische Chemie; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| | - Philipp Sondermann
- Laboratorium für Organische Chemie; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| | - Nicholas J. Turner
- Manchester Institute of Biotechnology & School of Chemistry; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Erick M. Carreira
- Laboratorium für Organische Chemie; Eidgenössische Technische Hochschule Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Schweiz
| |
Collapse
|
12
|
Barman SK, Lloret F, Mukherjee R. A Bioinspired Dinickel(II) Hydrolase: Solvent Vapor-Induced Hydrolysis of Carboxyesters under Ambient Conditions. Inorg Chem 2016; 55:12696-12706. [PMID: 27989161 DOI: 10.1021/acs.inorgchem.6b01895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
From the perspective of synthetic metallohydrolases, a phenoxo-bridged dinickel(II) complex [NiII2(L)(H2O)2(CH3OH)][ClO4]·CH3OH (1) (H3L = 2,6-bis[{{(5-bromo-2-hydroxybenzyl)(N',N″-(dimethylamino)ethyl)}amino}methyl]-4-methylphenol) has been synthesized and structurally characterized. The presence of a vacant coordination site and a weakly bound water molecule provides the scope for substrate binding to act as a metallohydrolase model. Ethyl acetate vapor diffusion at 298 K to a CH3CN/CH3OH solution of 1 results in the formation of a pentanuclear acetato-bridged complex [NiII5(H2L)2(μ3-OH)2(μ-O2CCH3)4][ClO4]2·CH3CO2C2H5 (2), demonstrating for the first time the metal-coordinated water-promoted hydrolysis of a carboxyester at room temperature. When the crystals of 1, moistened with a few drops of ethyl acetate, were kept for ethyl acetate vapor diffusion, it transforms into a monoacetato-bridged complex [NiII2(HL)(μ-O2CCH3)(H2O)2][ClO4]·4H2O (3). This kind of solvent (vapor)-induced single-crystal-to-single-crystal structural transformation concomitant with the hydrolysis of external substrate (ethyl acetate) is unprecedented. Reaction of H3L with 2 equiv of NiII(O2CCH3)2·4H2O, followed by the usual workup, and recrystallization from CH2Cl2 led to the isolation of [NiII2(H2L)(μ-O2CCH3)2][ClO4]·CH2Cl2·2H2O (4). Complex 4 is structurally different from 3, confirming that the reaction of NiII(O2CCH3)2·4H2O with H3L is a different phenomenon from the hydrolysis of ethyl acetate, promoted by NiII-coordinated water in 1. Complex 1 is also capable of hydrolyzing ethyl propionate to a propionato-bridged complex [NiII2(HL)(μ-O2CCH2CH3)(H2O)2][ClO4] (5). For the hydrolytic phenomena mentioned above, the coordinated ligand donor sites (phenolate and tertiary amine) provide a microenvironment around the dinickel(II) center to facilitate efficient stoichiometric hydrolysis of ethyl acetate and ethyl propionate under ambient conditions. Temperature-dependent magnetic studies of dimeric complexes 1, 4, and 5 reveal the presence of moderate antiferromagnetic coupling: J = -25.0(1) cm-1 for 1, J = -20.0(1) cm-1 for 4, and J = -18.80(8) cm-1 for 5. For pentanuclear complex 2, three types of magnetic-exchange interactions, two ferromagnetic (Ja = +16.02 cm-1, and Jb = +9.02 cm-1) and an antiferromagnetic (Jc = -49.7 cm-1), have been identified.
Collapse
Affiliation(s)
- Suman K Barman
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India
| | - Francesc Lloret
- Departament de Química Inorgànica/Instituto de Ciencia Molecular (ICMOL), Universitat de València , Polígono de la Coma, s/n, 46980 Paterna, València, Spain
| | - Rabindranath Mukherjee
- Department of Chemistry, Indian Institute of Technology Kanpur , Kanpur 208 016, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata , Mohanpur 741 246, India
| |
Collapse
|
13
|
Xue SS, Zhao M, Lan JX, Ye RR, Li Y, Ji LN, Mao ZW. Enantioselective hydrolysis of amino acid esters by non-chiral copper complexes equipped with bis (β-cyclodextrin)s. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcata.2016.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Zhou YH, Liu XW, Tao J, Wang SQ, Ren P, Ni P, Cheng Y. p-Nitrophenyl acetate hydrolysis promoted by Zn(II) and Co(II) complexes with the tripodal ligand of N,N′-bis(2-quinolinylmethyl)amantadine. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1247954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ying-Hua Zhou
- The Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecular-based Materials, Ministry of Education, Center for Nano Science and Technology, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Xian-Wen Liu
- The Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecular-based Materials, Ministry of Education, Center for Nano Science and Technology, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Jun Tao
- The Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecular-based Materials, Ministry of Education, Center for Nano Science and Technology, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Su-Qin Wang
- The Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecular-based Materials, Ministry of Education, Center for Nano Science and Technology, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Ping Ren
- The Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecular-based Materials, Ministry of Education, Center for Nano Science and Technology, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Ping Ni
- The Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecular-based Materials, Ministry of Education, Center for Nano Science and Technology, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Yong Cheng
- The Key Laboratory of Functional Molecular Solids, Anhui Laboratory of Molecular-based Materials, Ministry of Education, Center for Nano Science and Technology, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| |
Collapse
|
15
|
Zhou YH, Chen LQ, Tao J, Shen JL, Gong DY, Yun RR, Cheng Y. Effective cleavage of phosphodiester promoted by the zinc(II) and copper(II) inclusion complexes of β-cyclodextrin. J Inorg Biochem 2016; 163:176-184. [DOI: 10.1016/j.jinorgbio.2016.07.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 07/06/2016] [Accepted: 07/13/2016] [Indexed: 12/23/2022]
|