1
|
Jia J, Peng H, Tian R, Zhou H, Zheng H, Liu B, Lu Y. Gm527 deficiency in dentate gyrus improves memory through upregulating dopamine D1 receptor pathway. CNS Neurosci Ther 2023; 29:3290-3306. [PMID: 37248637 PMCID: PMC10580352 DOI: 10.1111/cns.14259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/29/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023] Open
Abstract
AIMS Dopamine D1 receptor (D1R) hypofunction is associated with negative and cognitive symptoms in schizophrenia; therefore, the mechanism of D1R function modulation needs further investigation. Gm527 is the rodent homologous of the schizophrenia-related gene C14orf28, encoding a predicated D1R-interacting protein. However, the role of Gm527-D1R interaction in schizophrenia needs to be clarified. METHODS Gm527-floxed mice were generated and crossed with D1-Cre mice (D1:Gm527-/-) to knockout Gm527 in D1R-positive neurons. Then behavioral tests were performed to explore the schizophrenia-related phenotypes. Immunofluorescence, fluorescence in situ hybridization, electrophysiological recording, quantitative real-time PCR, and western blotting were conducted to investigate the mechanisms. RESULTS Working memory, long-term memories, and adult neurogenesis in the DG were enhanced in D1:Gm527-/- mice. LTP was also increased in the DG in D1:Gm527-/- mice, resulting from the Gm527 knockout-induced D1R expression enhancement on the plasma membrane and subsequently cAMP signaling and NMDA receptor pathways activation. The requirement of Gm527 knockout in the DG was confirmed by reversing Gm527 expression or knockdown Gm527 in the DG D1R-positive neurons through AAV-CAG-FLEX-Gm527-GFP or AAV-CMV-FLEX-EGFP-Gm527-RNAi injection. CONCLUSIONS The DG Gm527 knockout induces D1R hyperfunction in improving schizophrenia cognitive symptoms.
Collapse
Affiliation(s)
- Jie Jia
- Department of Physiology, School of Basic MedicineTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Hualing Peng
- Department of Physiology, School of Basic MedicineTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Rui Tian
- Department of Physiology, School of Basic MedicineTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Hong Zhou
- Department of Physiology, School of Basic MedicineTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Hua Zheng
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric AnesthesiaTongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Bo Liu
- Department of Otorhinolaryngology, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yisheng Lu
- Department of Physiology, School of Basic MedicineTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Institute of Brain Research, Collaborative Innovation Center for Brain ScienceHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
2
|
Ostrom KF, LaVigne JE, Brust TF, Seifert R, Dessauer CW, Watts VJ, Ostrom RS. Physiological roles of mammalian transmembrane adenylyl cyclase isoforms. Physiol Rev 2022; 102:815-857. [PMID: 34698552 PMCID: PMC8759965 DOI: 10.1152/physrev.00013.2021] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. Mammals possess nine isoforms of transmembrane ACs, dubbed AC1-9, that serve as major effector enzymes of G protein-coupled receptors (GPCRs). The transmembrane ACs display varying expression patterns across tissues, giving the potential for them to have a wide array of physiological roles. Cells express multiple AC isoforms, implying that ACs have redundant functions. Furthermore, all transmembrane ACs are activated by Gαs, so it was long assumed that all ACs are activated by Gαs-coupled GPCRs. AC isoforms partition to different microdomains of the plasma membrane and form prearranged signaling complexes with specific GPCRs that contribute to cAMP signaling compartments. This compartmentation allows for a diversity of cellular and physiological responses by enabling unique signaling events to be triggered by different pools of cAMP. Isoform-specific pharmacological activators or inhibitors are lacking for most ACs, making knockdown and overexpression the primary tools for examining the physiological roles of a given isoform. Much progress has been made in understanding the physiological effects mediated through individual transmembrane ACs. GPCR-AC-cAMP signaling pathways play significant roles in regulating functions of every cell and tissue, so understanding each AC isoform's role holds potential for uncovering new approaches for treating a vast array of pathophysiological conditions.
Collapse
Affiliation(s)
| | - Justin E LaVigne
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Tarsis F Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| |
Collapse
|
3
|
Chang CP, Chang YG, Chuang PY, Nguyen TNA, Wu KC, Chou FY, Cheng SJ, Chen HM, Jin LW, Carvalho K, Huin V, Buée L, Liao YF, Lin CJ, Blum D, Chern Y. Equilibrative nucleoside transporter 1 inhibition rescues energy dysfunction and pathology in a model of tauopathy. Acta Neuropathol Commun 2021; 9:112. [PMID: 34158119 PMCID: PMC8220833 DOI: 10.1186/s40478-021-01213-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/07/2021] [Indexed: 01/08/2023] Open
Abstract
Tau pathology is instrumental in the gradual loss of neuronal functions and cognitive decline in tauopathies, including Alzheimer's disease (AD). Earlier reports showed that adenosine metabolism is abnormal in the brain of AD patients while consequences remained ill-defined. Herein, we aimed at investigating whether manipulation of adenosine tone would impact Tau pathology, associated molecular alterations and subsequent neurodegeneration. We demonstrated that treatment with an inhibitor (J4) of equilibrative nucleoside transporter 1 (ENT1) exerted beneficial effects in a mouse model of Tauopathy. Treatment with J4 not only reduced Tau hyperphosphorylation but also rescued memory deficits, mitochondrial dysfunction, synaptic loss, and abnormal expression of immune-related gene signatures. These beneficial effects were particularly ascribed to the ability of J4 to suppress the overactivation of AMPK (an energy reduction sensor), suggesting that normalization of energy dysfunction mitigates neuronal dysfunctions in Tauopathy. Collectively, these data highlight that targeting adenosine metabolism is a novel strategy for tauopathies.
Collapse
Affiliation(s)
- Ching-Pang Chang
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Ya-Gin Chang
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Pei-Yun Chuang
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Thi Ngoc Anh Nguyen
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Kuo-Chen Wu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Fang-Yi Chou
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Sin-Jhong Cheng
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| | - Hui-Mei Chen
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA, USA
| | - Kevin Carvalho
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, 59000, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France
| | - Vincent Huin
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, 59000, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, 59000, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France
| | - Yung-Feng Liao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chun-Jung Lin
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - David Blum
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, 59000, Lille, France.
- Alzheimer & Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France.
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan.
| |
Collapse
|
4
|
Kelly MP, Heckman PRA, Havekes R. Genetic manipulation of cyclic nucleotide signaling during hippocampal neuroplasticity and memory formation. Prog Neurobiol 2020; 190:101799. [PMID: 32360536 DOI: 10.1016/j.pneurobio.2020.101799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/14/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022]
Abstract
Decades of research have underscored the importance of cyclic nucleotide signaling in memory formation and synaptic plasticity. In recent years, several new genetic techniques have expanded the neuroscience toolbox, allowing researchers to measure and modulate cyclic nucleotide gradients with high spatiotemporal resolution. Here, we will provide an overview of studies using genetic approaches to interrogate the role cyclic nucleotide signaling plays in hippocampus-dependent memory processes and synaptic plasticity. Particular attention is given to genetic techniques that measure real-time changes in cyclic nucleotide levels as well as newly-developed genetic strategies to transiently manipulate cyclic nucleotide signaling in a subcellular compartment-specific manner with high temporal resolution.
Collapse
Affiliation(s)
- Michy P Kelly
- Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, VA Bldg1, 3(rd) Fl, D-12, Columbia, 29209, SC, USA.
| | - Pim R A Heckman
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Robbert Havekes
- Neurobiology Expertise Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
5
|
Lee CC, Chang CP, Lin CJ, Lai HL, Kao YH, Cheng SJ, Chen HM, Liao YP, Faivre E, Buée L, Blum D, Fang JM, Chern Y. Adenosine Augmentation Evoked by an ENT1 Inhibitor Improves Memory Impairment and Neuronal Plasticity in the APP/PS1 Mouse Model of Alzheimer's Disease. Mol Neurobiol 2018; 55:8936-8952. [PMID: 29616397 DOI: 10.1007/s12035-018-1030-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive impairment and synaptic dysfunction. Adenosine is an important homeostatic modulator that controls the bioenergetic network in the brain through regulating receptor-evoked signaling pathways, bioenergetic machineries, and epigenetic-mediated gene regulation. Equilibrative nucleoside transporter 1 (ENT1) is a major adenosine transporter that recycles adenosine from the extracellular space. In the present study, we report that a small adenosine analogue (designated J4) that inhibited ENT1 prevented the decline in spatial memory in an AD mouse model (APP/PS1). Electrophysiological and biochemical analyses further demonstrated that chronic treatment with J4 normalized the impaired basal synaptic transmission and long-term potentiation (LTP) at Schaffer collateral synapses as well as the aberrant expression of synaptic proteins (e.g., NR2A and NR2B), abnormal neuronal plasticity-related signaling pathways (e.g., PKA and GSK3β), and detrimental elevation in astrocytic A2AR expression in the hippocampus and cortex of APP/PS1 mice. In conclusion, our findings suggest that modulation of adenosine homeostasis by J4 is beneficial in a mouse model of AD. Our study provides a potential therapeutic strategy to delay the progression of AD.
Collapse
Affiliation(s)
- Chia-Chia Lee
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Ching-Pang Chang
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Chun-Jung Lin
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Hsing-Lin Lai
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Yu-Han Kao
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Sin-Jhong Cheng
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan.,Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| | - Hui-Mei Chen
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Yu-Ping Liao
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | - Emilie Faivre
- Université de Lille, Inserm, CHU-Lille, LabEx DISTALZ, Jean-Pierre Aubert research centre UMR-S1172, Lille, France
| | - Luc Buée
- Université de Lille, Inserm, CHU-Lille, LabEx DISTALZ, Jean-Pierre Aubert research centre UMR-S1172, Lille, France
| | - David Blum
- Université de Lille, Inserm, CHU-Lille, LabEx DISTALZ, Jean-Pierre Aubert research centre UMR-S1172, Lille, France
| | - Jim-Min Fang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Nankang, Taipei, 115, Taiwan.
| |
Collapse
|
6
|
Chien T, Weng YT, Chang SY, Lai HL, Chiu FL, Kuo HC, Chuang DM, Chern Y. GSK3β negatively regulates TRAX, a scaffold protein implicated in mental disorders, for NHEJ-mediated DNA repair in neurons. Mol Psychiatry 2018; 23:2375-2390. [PMID: 29298990 PMCID: PMC6294740 DOI: 10.1038/s41380-017-0007-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/28/2017] [Accepted: 10/30/2017] [Indexed: 12/27/2022]
Abstract
Translin-associated protein X (TRAX) is a scaffold protein with various functions and has been associated with mental illnesses, including schizophrenia. We have previously demonstrated that TRAX interacts with a Gsα protein-coupled receptor, the A2A adenosine receptor (A2AR), and mediates the function of this receptor in neuritogenesis. In addition, stimulation of the A2AR markedly ameliorates DNA damage evoked by elevated oxidative stress in neurons derived from induced pluripotent stem cells (iPSCs). Here, we report that glycogen synthase kinase 3 beta (GSK3β) and disrupted-in-schizophrenia 1 (DISC1) are two novel interacting proteins of TRAX. We present evidence to suggest that the stimulation of A2AR markedly facilitated DNA repair through the TRAX/DISC1/GSK3β complex in a rat neuronal cell line (PC12), primary mouse neurons, and human medium spiny neurons derived from iPSCs. A2AR stimulation led to the inhibition of GSK3β, thus dissociating the TRAX/DISC1/GSK3β complex and facilitating the non-homologous end-joining pathway (NHEJ) by enhancing the activation of a DNA-dependent protein kinase via phosphorylation at Thr2609. Similarly, pharmacological inhibition of GSK3β by SB216763 also facilitated the TRAX-mediated repair of oxidative DNA damage. Collectively, GSK3β binds with TRAX and negatively affects its ability to facilitate NHEJ repair. The suppression of GSK3β by A2AR activation or a GSK3β inhibitor releases TRAX for the repair of oxidative DNA damage. Our findings shed new light on the molecular mechanisms underlying diseases associated with DNA damage and provides a novel target (i.e., the TRAX/DISC1/GSK3β complex) for future therapeutic development for mental disorders.
Collapse
Affiliation(s)
- Ting Chien
- 0000 0004 0634 0356grid.260565.2Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan ,0000 0004 0633 7958grid.482251.8Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Ting Weng
- 0000 0004 0633 7958grid.482251.8Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan ,0000 0001 2287 1366grid.28665.3fProgram in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Shu-Yung Chang
- 0000 0004 0633 7958grid.482251.8Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan ,0000 0001 0425 5914grid.260770.4Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Hsing-Lin Lai
- 0000 0004 0633 7958grid.482251.8Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Feng-Lan Chiu
- 0000 0001 2287 1366grid.28665.3fInstitute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Chih Kuo
- 0000 0001 2287 1366grid.28665.3fInstitute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - De-Maw Chuang
- 0000 0004 0464 0574grid.416868.5Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Yijuang Chern
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan. .,Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan. .,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.
| |
Collapse
|