1
|
da Silva AAS, de Santi F, Hinton BT, Cerri PS, Sasso-Cerri E. Venlafaxine increases aromatization, reduces apical V-ATPase in clear cells and induces increased number of mast cells and smooth muscle cells death in rat cauda epididymis. Life Sci 2023; 315:121329. [PMID: 36584913 DOI: 10.1016/j.lfs.2022.121329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Depressive disorders (DD) have affected millions of people worldwide. Venlafaxine, antidepressant of the class of serotonin and norepinephrine reuptake inhibitors, has been prescribed for the treatment of DD. In rat testes, venlafaxine induces testosterone (T) aromatization and increases estrogen levels. Aromatase is a key enzyme for the formation of estrogen in the epididymis, an essential organ for male fertility. We investigated the impact of serotonergic/noradrenergic venlafaxine effect on the epididymal cauda region, focusing on aromatase, V-ATPase and EGF epithelial immunoexpression, smooth muscle (SM) integrity and mast cells number (MCN). Male rats were distributed into control (CG; n = 10) and venlafaxine (VFG, n = 10) groups. VFG received 30 mg/kg b.w. of venlafaxine for 35 days. The epididymal cauda was processed for light and transmission electron microscopy (TEM). The expression of connexin 43 (Cx43) and estrogen alpha (Esr1), adrenergic (Adra1a) and serotonergic (Htr1b) receptors were analyzed. Clear cells (CCs) area, SM thickness, viable spermatozoa (VS) and MCN were evaluated. Apoptosis was confirmed by TUNEL and TEM. The following immunoreactions were performed: T, aromatase, T/aromatase co-localization, V-ATPase, EGF, Cx43 and PCNA. The increased Adra1a and reduced Htr1b expressions confirmed the noradrenergic and serotonergic venlafaxine effects, respectively, corroborating the increased MCN, apoptosis and atrophy of SM. In VFG, the epithelial EGF increased, explaining Cx43 overexpression and basal cells mitotic activity. T aromatization and Esr1 downregulation indicate high estrogen levels, explaining CCs hypertrophy and changes in the V-ATPase localization, corroborating VS reduction. Thus, in addition to serotonergic/noradrenergic effects, T/estrogen imbalance, induced by venlafaxine, impairs epididymal structure and function.
Collapse
Affiliation(s)
- André Acácio Souza da Silva
- São Paulo State University (Unesp), School of Dentistry, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, Brazil
| | - Fabiane de Santi
- Federal University of São Paulo, Department of Morphology and Genetics, São Paulo, Brazil
| | - Barry T Hinton
- University of Virginia, School of Medicine, Department of Cell Biology, Charlottesville, USA
| | - Paulo Sérgio Cerri
- São Paulo State University (Unesp), School of Dentistry, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, Brazil
| | - Estela Sasso-Cerri
- São Paulo State University (Unesp), School of Dentistry, Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, Araraquara, Brazil.
| |
Collapse
|
2
|
Le Gars Santoni B, Niggli L, Dolder S, Loeffel O, Sblendorio G, Heuberger R, Maazouz Y, Stähli C, Döbelin N, Bowen P, Hofstetter W, Bohner M. Effect of minor amounts of β-calcium pyrophosphate and hydroxyapatite on the physico-chemical properties and osteoclastic resorption of β-tricalcium phosphate cylinders. Bioact Mater 2022; 10:222-235. [PMID: 34901541 PMCID: PMC8636826 DOI: 10.1016/j.bioactmat.2021.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 01/21/2023] Open
Abstract
β-Tricalcium Phosphate (β-TCP), one of the most used bone graft substitutes, may contain up to 5 wt% foreign phase according to standards. Typical foreign phases include β-calcium pyrophosphate (β-CPP) and hydroxyapatite (HA). Currently, the effect of small amounts of impurities on β-TCP resorption is unknown. This is surprising since pyrophosphate is a very potent osteoclast inhibitor. The main aim of this study was to assess the effect of small β-CPP fractions (<1 wt%) on the in vitro osteoclastic resorption of β-TCP. A minor aim was to examine the effect of β-CPP and HA impurities on the physico-chemical properties of β-TCP powders and sintered cylinders. Twenty-six batches of β-TCP powder were produced with a Ca/P molar ratio varying between 1.440 and 1.550. Fifteen were further processed to obtain dense and polished β-TCP cylinders. Finally, six of them, with a Ca/P molar ratio varying between 1.496 (1 wt% β-CPP) and 1.502 (1 wt% HA), were incubated in the presence of osteoclasts. Resorption was quantified by white-light interferometry. Osteoclastic resorption was significantly inhibited by β-CPP fraction in a linear manner. The presence of 1% β-CPP reduced β-TCP resorption by 40%, which underlines the importance of controlling β-CPP content when assessing β-TCP biological performance.
Collapse
Affiliation(s)
- B. Le Gars Santoni
- RMS Foundation, Bioceramics and Biocompatibility Group, Bischmattstrasse 12, CH-2544, Bettlach, Switzerland
- University of Bern, Graduate School for Cellular and Biomedical Sciences, Mittelstrasse 43, CH-3012, Bern, Switzerland
| | - L. Niggli
- RMS Foundation, Bioceramics and Biocompatibility Group, Bischmattstrasse 12, CH-2544, Bettlach, Switzerland
| | - S. Dolder
- University of Bern, Department for BioMedical Research (DBMR), Murtenstrasse 35, CH-3008, Bern, Switzerland
| | - O. Loeffel
- RMS Foundation, Materials Group, Bischmattstrasse 12, CH-2544, Bettlach, Switzerland
| | - G.A. Sblendorio
- EPFL, Ecole Polytechnique Fédérale de Lausanne, Construction Materials Laboratory, Station 12, CH-1015, Lausanne, Switzerland
| | - R. Heuberger
- RMS Foundation, Materials Group, Bischmattstrasse 12, CH-2544, Bettlach, Switzerland
| | - Y. Maazouz
- RMS Foundation, Bioceramics and Biocompatibility Group, Bischmattstrasse 12, CH-2544, Bettlach, Switzerland
| | - C. Stähli
- RMS Foundation, Bioceramics and Biocompatibility Group, Bischmattstrasse 12, CH-2544, Bettlach, Switzerland
| | - N. Döbelin
- RMS Foundation, Bioceramics and Biocompatibility Group, Bischmattstrasse 12, CH-2544, Bettlach, Switzerland
| | - P. Bowen
- EPFL, Ecole Polytechnique Fédérale de Lausanne, Construction Materials Laboratory, Station 12, CH-1015, Lausanne, Switzerland
| | - W. Hofstetter
- University of Bern, Department for BioMedical Research (DBMR), Murtenstrasse 35, CH-3008, Bern, Switzerland
| | - M. Bohner
- RMS Foundation, Bioceramics and Biocompatibility Group, Bischmattstrasse 12, CH-2544, Bettlach, Switzerland
| |
Collapse
|
3
|
Manzato MC, de Santi F, da Silva AAS, Beltrame FL, Cerri PS, Sasso‐Cerri E. Cimetidine-induced androgenic failure causes cell death and changes in actin, EGF and V-ATPase immunoexpression in rat submandibular glands. J Anat 2021; 239:136-150. [PMID: 33713423 PMCID: PMC8197950 DOI: 10.1111/joa.13408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 01/18/2023] Open
Abstract
Submandibular gland (SMG) is responsive to androgens via androgen receptor (AR). We verified whether cimetidine induces androgenic dysfunction in SMG, and evaluated the structural integrity, cell death and immunoexpression of actin, EGF and V-ATPase in androgen-deficient SMG. Male rats received cimetidine (CMTG) and control animals (CG) received saline. Granular convoluted tubules (GCTs) diameter and number of acinar cell nuclei were evaluated. TUNEL and immunofluorescence reactions for detection of AR, testosterone, actin, EGF and V-ATPase were quantitatively analysed. In CG, testosterone immunolabelling was detected in acinar and ductal cells cytoplasm. AR-immunolabelled nuclei were observed in acinar cells whereas ductal cells showed AR-immunostained cytoplasm, indicating a non-genomic AR action. In CMTG, the weak testosterone and AR immunoexpression confirmed cimetidine-induced androgenic failure. A high cell death index was correlated with decreased number of acinar cells, GCTs diameter and EGF immunoexpression under androgenic dysfunction. Actin immunofluorescence decreased in the SMG cells, but an increased and diffuse cytoplasmic V-ATPase immunolabelling was observed in striated ducts, suggesting a disruption in the actin-dependent V-ATPase recycling due to androgenic failure. Our findings reinforce the androgenic role in the maintenance of SMG histophysiology, and point to a potential clinical use of cimetidine against androgen-dependent glandular tumour cells.
Collapse
Affiliation(s)
- Mariane Castro Manzato
- Department of Morphology, Genetics, Orthodontics and Pediatric DentistrySchool of DentistrySão Paulo State University (Unesp)AraraquaraBrazil
| | - Fabiane de Santi
- Department of Morphology and GeneticsFederal University of São PauloSão PauloBrazil
| | - André Acácio Souza da Silva
- Department of Morphology, Genetics, Orthodontics and Pediatric DentistrySchool of DentistrySão Paulo State University (Unesp)AraraquaraBrazil
| | - Flávia L. Beltrame
- Department of Morphology and GeneticsFederal University of São PauloSão PauloBrazil
| | - Paulo S. Cerri
- Department of Morphology, Genetics, Orthodontics and Pediatric DentistrySchool of DentistrySão Paulo State University (Unesp)AraraquaraBrazil
| | - Estela Sasso‐Cerri
- Department of Morphology, Genetics, Orthodontics and Pediatric DentistrySchool of DentistrySão Paulo State University (Unesp)AraraquaraBrazil
| |
Collapse
|
4
|
Chen S, Wang Q, Eltit F, Guo Y, Cox M, Wang R. An Ammonia-Induced Calcium Phosphate Nanostructure: A Potential Assay for Studying Osteoporosis and Bone Metastasis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17207-17219. [PMID: 33845570 DOI: 10.1021/acsami.1c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Osteoclastic resorption of bones plays a central role in both osteoporosis and bone metastasis. A reliable in vitro assay that simulates osteoclastic resorption in vivo would significantly speed up the process of developing effective therapeutic solutions for those diseases. Here, we reported the development of a novel and robust nanostructured calcium phosphate coating with unique functions on the track-etched porous membrane by using an ammonia-induced mineralization (AiM) technique. The calcium phosphate coating uniformly covers one side of the PET membrane, enabling testing for osteoclastic resorption. The track-etched pores in the PET membrane allow calcium phosphate mineral pins to grow inside, which, on the one hand, enhances coating integration with a membrane substrate and, on the other hand, provides diffusion channels for delivering drugs from the lower chamber of a double-chamber cell culture system. The applications of the processed calcium phosphate coating were first demonstrated as a drug screening device by using alendronate, a widely used drug for osteoporosis. It was confirmed that the delivery of alendronate significantly decreased both the number of monocyte-differentiated osteoclasts and coating resorption. To demonstrate the application in studying bone metastasis, we delivered a PC3 prostate cancer-conditioned medium and confirmed that both the differentiation of monocytes into osteoclasts and the osteoclastic resorption of the calcium phosphate coating were significantly enhanced. This novel assay thus provides a new platform for studying osteoclastic activities and assessing drug efficacy in vitro.
Collapse
Affiliation(s)
- Sijia Chen
- Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Qiong Wang
- Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Felipe Eltit
- Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Yubin Guo
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Michael Cox
- Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Rizhi Wang
- Department of Materials Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Hip Health and Mobility, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW One aim in bone tissue engineering is to develop human cell-based, 3D in vitro bone models to study bone physiology and pathology. Due to the heterogeneity of cells among patients, patient's own cells are needed to be obtained, ideally, from one single cell source. This review attempts to identify the appropriate cell sources for development of such models. RECENT FINDINGS Bone marrow and peripheral blood are considered as suitable sources for extraction of osteoblast/osteocyte and osteoclast progenitor cells. Recent studies on these cell sources have shown no significant differences between isolated progenitor cells. However, various parameters such as medium composition affect the cell's proliferation and differentiation potential which could make the peripheral blood-derived stem cells superior to the ones from bone marrow. Peripheral blood can be considered a suitable source for osteoblast/osteocyte and osteoclast progenitor cells, being less invasive for the patient. However, more investigations are needed focusing on extraction and differentiation of both cell types from the same donor sample of peripheral blood.
Collapse
Affiliation(s)
- Sana Ansari
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands.
| |
Collapse
|
6
|
Kuo CH, Chen JY, Chen CM, Huang CW, Liou YM. Effects of varying gelatin coating concentrations on RANKL induced osteoclastogenesis. Exp Cell Res 2021; 400:112509. [PMID: 33529711 DOI: 10.1016/j.yexcr.2021.112509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 01/21/2023]
Abstract
Here, we assessed the effects of varying concentrations of gelatin coating on Receptor Activator of Nuclear Factor κ-B Ligand (RANKL)-induced RAW264.7 murine macrophage differentiation into osteoclast (OC) via osteoclastogenesis. The microstructures of coating surfaces with different concentrations of gelatin were examined by scanning electron microscopy and atomic force microscopy. Increased gelatin coating concentrations led to decreased gel rigidity but increased surface adhesion force attenuated OC differentiation and the decreased actin ring formation in RANKL-induced osteoclastogenesis. The decreased actin ring formation is associated with decreased lysosomal-associated membrane protein 1 (LAMP1) activity and bone resorption in the differentiated OCs with different gelatin coating concentrations as compared to the cells differentiated without gelatin coatings. In addition, increasing concentrations of gelatin coating attenuated the medium TGF-β1 protein levels and the expression levels of TGF-β and type-I (R1) and type-II (R2) TGF-β receptors in OCs, suggesting the gelatin-induced suppression of TGF-β signaling for the regulation of RNAKL-induced OC differentiation. Taken together, these findings showed that changes in gelatin coating concentrations, which were associated with altered gel thickness and substrate rigidity, might attenuate TGF-β signaling events to modulate OC differentiation and concomitant actin ring formation and bone matrix resorption in RANKL-induced osteoclastogenesis.
Collapse
Affiliation(s)
- Chia-Hsiao Kuo
- Department of Orthopedics, Tungs' Taichung MetroHarbor Hospital, Taichung, 435, Taiwan
| | - Jiann-Yeu Chen
- Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan; The IEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Cian Wei Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Ying-Ming Liou
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 40227, Taiwan; The IEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
7
|
Mira-Pascual L, Patlaka C, Desai S, Paulie S, Näreoja T, Lång P, Andersson G. A Novel Sandwich ELISA for Tartrate-Resistant Acid Phosphatase 5a and 5b Protein Reveals that Both Isoforms are Secreted by Differentiating Osteoclasts and Correlate to the Type I Collagen Degradation Marker CTX-I In Vivo and In Vitro. Calcif Tissue Int 2020; 106:194-207. [PMID: 31654098 DOI: 10.1007/s00223-019-00618-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/21/2019] [Indexed: 10/25/2022]
Abstract
Tartrate-resistant acid phosphatase type 5 (TRAP) exists as two isoforms, 5a and 5b. 5b is a marker of osteoclast number and 5a of chronic inflammation; however, its association with bone resorption is unknown. In this study, a double-TRAP 5a/5b sandwich ELISA measuring 5a and 5b protein in the same sample was developed. TRAP 5a and 5b protein levels were evaluated as osteoclast differentiation/activity markers in serum and in culture, and their correlation to the resorption marker CTX-I was examined. Serum TRAP 5a and 5b concentrations in healthy men were 4.4 ± 0.6 ng/ml and 1.3 ± 0.2 ng/ml, respectively, and they correlated moderately to each other suggesting that their secretion is coupled under healthy conditions. A correlation was also observed between serum TRAP 5a and 5b with CTX-I, suggesting that both TRAP isoforms associate with osteoclast number. During osteoclast differentiation on plastic/bone, predominantly 5b increased in media/lysate from M-CSF/RANKL-stimulated CD14+ PBMCs. However, substantial levels of 5a were detected at later stages suggesting that both isoforms are secreted from differentiating OCs. More TRAP 5b was released on bone indicating a connection to osteoclast resorptive activity, and a peak in TRAP 5b/5a-ratio coincided with rapid CTX-I release. At the end of the culture period of M-CSF + RANKL-stimulated CD14+ PBMCs, there was a correlation between the secretion of TRAP 5a and 5b proteins with CTX-I. The correlation of not only 5b but also 5a with collagen degradation, both in serum and osteoclast cultures indicates that a considerable proportion of the TRAP 5a originates from osteoclasts and may reflect a hitherto undisclosed regulatory mechanism during bone resorption and bone remodeling.
Collapse
Affiliation(s)
- Laia Mira-Pascual
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Allé, 8, 141 52, Stockholm, Sweden
| | - Christina Patlaka
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Allé, 8, 141 52, Stockholm, Sweden
| | - Suchita Desai
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Allé, 8, 141 52, Stockholm, Sweden
| | | | - Tuomas Näreoja
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Allé, 8, 141 52, Stockholm, Sweden.
| | - Pernilla Lång
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Allé, 8, 141 52, Stockholm, Sweden.
| | - Göran Andersson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Alfred Nobels Allé, 8, 141 52, Stockholm, Sweden
| |
Collapse
|
8
|
Shemesh M, Addadi L, Geiger B. Surface microtopography modulates sealing zone development in osteoclasts cultured on bone. J R Soc Interface 2017; 14:rsif.2016.0958. [PMID: 28202594 DOI: 10.1098/rsif.2016.0958] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/25/2017] [Indexed: 01/01/2023] Open
Abstract
Bone homeostasis is continuously regulated by the coordinated action of bone-resorbing osteoclasts and bone-forming osteoblasts. Imbalance between these two cell populations leads to pathological bone diseases such as osteoporosis and osteopetrosis. Osteoclast functionality relies on the formation of sealing zone (SZ) rings that define the resorption lacuna. It is commonly assumed that the structure and dynamic properties of the SZ depend on the physical and chemical properties of the substrate. Considering the unique complex structure of native bone, elucidation of the relevant parameters affecting SZ formation and stability is challenging. In this study, we examined in detail the dynamic response of the SZ to the microtopography of devitalized bone surfaces, taken from the same area in cattle femur. We show that there is a significant enrichment in large and stable SZs (diameter larger than 14 µm; lifespan of hours) in cells cultured on rough bone surfaces, compared with small and fast turning over SZ rings (diameter below 7 µm; lifespan approx. 7 min) formed on smooth bone surfaces. Based on these results, we propose that the surface roughness of the physiologically relevant substrate of osteoclasts, namely bone, affects primarily the local stability of growing SZs.
Collapse
Affiliation(s)
- Michal Shemesh
- Department of Structural Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel.,Department of Molecular Cell Biology, Weizmann Institute of Science, Wolfson Building for Biological Research, Room 618, 234 Herzl Street, 7610001 Rehovot, Israel
| | - Lia Addadi
- Department of Structural Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Wolfson Building for Biological Research, Room 618, 234 Herzl Street, 7610001 Rehovot, Israel
| |
Collapse
|
9
|
Pennanen P, Alanne MH, Fazeli E, Deguchi T, Näreoja T, Peltonen S, Peltonen J. Diversity of actin architecture in human osteoclasts: network of curved and branched actin supporting cell shape and intercellular micrometer-level tubes. Mol Cell Biochem 2017; 432:131-139. [PMID: 28293874 PMCID: PMC5532409 DOI: 10.1007/s11010-017-3004-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/04/2017] [Indexed: 12/17/2022]
Abstract
Osteoclasts are multinucleated bone-resorbing cells with a dynamic actin cytoskeleton. Osteoclasts are derived from circulating mononuclear precursors. Confocal and stimulated emission depletion (STED) super-resolution microscopy was used to investigate peripheral blood-derived human osteoclasts cultured on glass surfaces. STED and confocal microscopy demonstrated that the actin was curved and branched, for instance, in the vicinity of membrane ruffles. The overall architecture of the curved actin network extended from the podosomes to the top of the cell. The other novel finding was that a micrometer-level tube containing actin bridged the osteoclasts well above the level of the culture glass. The actin filaments of the tubes originated from the network of curved actin often surrounding a group of nuclei. Furthermore, nuclei were occasionally located inside the tubes. Our findings demonstrated the accumulation of c-Src, cortactin, cofilin, and actin around nuclei suggesting their role in nuclear processes such as the locomotion of nuclei. ARP2/3 labeling was abundant at the substratum level of osteoclasts and in the branched actin network, where it localized to the branching points. We speculate that the actin-containing tubes of osteoclasts may provide a means of transportation of nuclei, e.g., during the fusion of osteoclasts. These novel findings can pave the way for future studies aiming at the elucidation of the differentiation of multinucleated osteoclasts.
Collapse
Affiliation(s)
- Paula Pennanen
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Maria Helena Alanne
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Elnaz Fazeli
- Laboratory of Biophysics, Department of Cell Biology and Anatomy and Medicity Research Laboratories, University of Turku, P.O. Box 123, 20521, Turku, Finland
| | - Takahiro Deguchi
- Laboratory of Biophysics, Department of Cell Biology and Anatomy and Medicity Research Laboratories, University of Turku, P.O. Box 123, 20521, Turku, Finland
| | - Tuomas Näreoja
- Laboratory of Biophysics, Department of Cell Biology and Anatomy and Medicity Research Laboratories, University of Turku, P.O. Box 123, 20521, Turku, Finland
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sirkku Peltonen
- Department of Dermatology, University of Turku and Turku University Hospital, PO BOX 52, 20521, Turku, Finland
| | - Juha Peltonen
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520, Turku, Finland.
| |
Collapse
|
10
|
Sage D, Donati L, Soulez F, Fortun D, Schmit G, Seitz A, Guiet R, Vonesch C, Unser M. DeconvolutionLab2: An open-source software for deconvolution microscopy. Methods 2017; 115:28-41. [PMID: 28057586 DOI: 10.1016/j.ymeth.2016.12.015] [Citation(s) in RCA: 291] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/21/2016] [Accepted: 12/30/2016] [Indexed: 10/20/2022] Open
Abstract
Images in fluorescence microscopy are inherently blurred due to the limit of diffraction of light. The purpose of deconvolution microscopy is to compensate numerically for this degradation. Deconvolution is widely used to restore fine details of 3D biological samples. Unfortunately, dealing with deconvolution tools is not straightforward. Among others, end users have to select the appropriate algorithm, calibration and parametrization, while potentially facing demanding computational tasks. To make deconvolution more accessible, we have developed a practical platform for deconvolution microscopy called DeconvolutionLab. Freely distributed, DeconvolutionLab hosts standard algorithms for 3D microscopy deconvolution and drives them through a user-oriented interface. In this paper, we take advantage of the release of DeconvolutionLab2 to provide a complete description of the software package and its built-in deconvolution algorithms. We examine several standard algorithms used in deconvolution microscopy, notably: Regularized inverse filter, Tikhonov regularization, Landweber, Tikhonov-Miller, Richardson-Lucy, and fast iterative shrinkage-thresholding. We evaluate these methods over large 3D microscopy images using simulated datasets and real experimental images. We distinguish the algorithms in terms of image quality, performance, usability and computational requirements. Our presentation is completed with a discussion of recent trends in deconvolution, inspired by the results of the Grand Challenge on deconvolution microscopy that was recently organized.
Collapse
Affiliation(s)
- Daniel Sage
- Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Lauréne Donati
- Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Ferréol Soulez
- Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Denis Fortun
- Center for Biomedical Imaging-Signal Processing Core (CIBM-SP), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Guillaume Schmit
- Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Arne Seitz
- BioImaging and Optics Platform, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Romain Guiet
- BioImaging and Optics Platform, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Cédric Vonesch
- Center for Biomedical Imaging-Signal Processing Core (CIBM-SP), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michael Unser
- Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|