1
|
Guan Y, Cui Y, Qu X, Li B, Zhang L. Post-acidification of fermented milk and its molecular regulatory mechanism. Int J Food Microbiol 2025; 426:110920. [PMID: 39316924 DOI: 10.1016/j.ijfoodmicro.2024.110920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/08/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
The fermented milk products with lactic acid bacteria (LAB) are widely accepted by consumers. During the chilled-chain transportation and storage, LAB in the product keep producing lactic acid, and this will lead to post-acidification, which can affect the flavor, consumer acceptance and even shelf-life of the product. LAB is the determining factor affecting post-acidification. The acid production pathway in LAB and methods inhibiting post-acidification received widespread attention. This review will focus on the post-acidification from the perspective of fermentation starters, including acid production pathway in LAB, main factors and key enzymes affecting post-acidification. Lactobacillus delbrueckii subsp. bulgaricus is a key bacterial species responsible for post acidification in the fermented milk products. The different species and strains presented various differences in process like acid production, acid resistance and post-acidification. Furthermore, multiple factors, such as milk composition, fermentation temperature, and homogenization, also can influence post-acidification. Lactose transport and utilization pathways, as well as its subsequent products metabolic pathway directly influence the post-acidification. F0F1-ATPase, β-galactosidase, and lactate dehydrogenase are recognized as important enzymes related to post-acidification. The degree of post-acidification is mainly related to the acid production and acid resistance abilities of the fermentation starters, so the key enzymes related to post-acidification are mostly taking part in these two capacities. Recently, some new post-acidification related biomarker genes were found, providing a reference adjusting post-acidification without affecting fermentation rate and bacteria viability. To clarify the post-acidification mechanism at the molecular level will help control post- acidification.
Collapse
Affiliation(s)
- Yuxuan Guan
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China
| | - Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150090, China.
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China
| | - Baolei Li
- National Center of Technology Innovation for Dairy, Hohhot 010000, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
2
|
Dikmen H, Goktas H, Demirbas F, Kayacan S, Ispirli H, Arici M, Turker M, Sagdic O, Dertli E. Multilocus sequence typing of L. bulgaricus and S. thermophilus strains from Turkish traditional yoghurts and characterisation of their techno-functional roles. Food Sci Biotechnol 2024; 33:625-635. [PMID: 38274192 PMCID: PMC10805743 DOI: 10.1007/s10068-023-01366-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 01/27/2024] Open
Abstract
In this study, Streptococcus thermophilus and Lactobacillus bulgaricus strains from traditional Turkish yoghurts were isolated, identified by 16S rRNA sequencing and genotypically 14 S. thermophilus and 6 L. bulgaricus strains were obtained as distinct strains by MLST analysis. Lactic acid production levels of the L. bulgaricus strains were higher than S. thermophilus strains. HPLC analysis showed that EPS monosaccharide composition of the strains mainly consisted of glucose and galactose. In general, all strains were found to be susceptible for antibiotics, except some strains were resistance to gentamicin and kanamycin. Apart from two strains of S. thermophilus, all strains displayed strong auto-aggregation level greater than 95% at 24 h incubation. S. thermophilus strains showed higher cell surface hydrophobicity than L. bulgaricus strains. This study demonstrated the isolation, identification, genotypic discrimination and techno-functional features of wild type yoghurt starter cultures which can potentially find place in industrial applications. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01366-2.
Collapse
Affiliation(s)
- Hilal Dikmen
- Food Engineering Department, Chemical and Metallurgical Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Hamza Goktas
- Food Technology Programme, Vocational School, Istinye University, Topkapi Campus, Zeytinburnu, Istanbul, Turkey
| | - Fatmanur Demirbas
- Food Engineering Department, Chemical and Metallurgical Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Selma Kayacan
- Food Engineering Department, Chemical and Metallurgical Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Humeyra Ispirli
- Central Research Laboratory, Bayburt University, Bayburt, Turkey
| | - Muhammet Arici
- Food Engineering Department, Chemical and Metallurgical Faculty, Yildiz Technical University, Istanbul, Turkey
| | | | - Osman Sagdic
- Food Engineering Department, Chemical and Metallurgical Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Enes Dertli
- Food Engineering Department, Chemical and Metallurgical Faculty, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
3
|
Elean M, Albarracin L, Villena J, Kitazawa H, Saavedra L, Hebert EM. In Silico Comparative Genomic Analysis Revealed a Highly Conserved Proteolytic System in Lactobacillus delbrueckii. Int J Mol Sci 2023; 24:11309. [PMID: 37511069 PMCID: PMC10379286 DOI: 10.3390/ijms241411309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Lactobacillus delbrueckii, the type species of the genus Lactobacillus, is widely recognized as the primary starter culture in the dairy industry due to its proteolytic activity, which enables it to growth in milk. In this study, a comprehensive genomic analysis of the proteolytic system was conducted on L. delbrueckii strains. The analysis included 27 genomes of L. delbrueckii, with a specific focus on the key enzyme involved in this system, the cell envelope-associated proteinase (CEP). The amino acid sequences, as well as the protein-structure prediction of the CEPs, were compared. Additionally, syntenic analysis of the genomic locus related to the CEPs revealed high conservation in L. delbrueckii subsp. bulgaricus strains, while L. delbrueckii subsp. lactis strains exhibited greater variability, including the presence of insertion sequences, deletions, and rearrangements. Finally, the CEP promoter region and putative regulatory elements responsible for controlling the expression of the proteolytic system in lactobacilli were investigated. Our genomic analysis and in silico characterization of the CEPs contribute to our understanding of proteolytic activity and the potential applications of these lactic acid bacteria in the dairy industry. Further research in this area will expand our knowledge and potential practical uses of these findings.
Collapse
Affiliation(s)
- Mariano Elean
- Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina
| | | | - Julio Villena
- Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| | - Lucila Saavedra
- Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina
| | - Elvira M Hebert
- Reference Centre for Lactobacilli (CERELA-CONICET), Tucumán 4000, Argentina
| |
Collapse
|
4
|
Wang J, Wang T, Li Y, Fan Z, Lv Z, Liu L, Li X, Li B. Comparative genomic analysis of Lacticaseibacillus paracasei SMN-LBK from koumiss. Front Microbiol 2022; 13:1042117. [DOI: 10.3389/fmicb.2022.1042117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Lacticaseibacillus paracasei SMN-LBK, which was isolated in Xinjiang, has been shown to be a probiotic strain and used as the auxiliary starter for dairy fermentation. Comparative genomic analysis was performed to investigate the metabolic preference and ethanol tolerance mechanisms of L. paracasei SMN-LBK. The results of comparative genomics showed that L. paracasei strains had high conservation and genetic diversity. SMN-LBK encoded various genes related to carbohydrate and amino acid metabolism pathways, which endow this strain with good fermentation potential. In addition, 6 CRISPR sequences and 8 cas proteins were found in SMN-LBK, and these could play vital roles in the immune system. Furthermore, a unique cluster of potential secondary metabolism genes related to bacteriocins was detected in the genome of SMN-LBK, and this could be important for the preservation of fermented foods. Multiple genes related to alcohol tolerance were also identified. In conclusion, our study explained the traits that were previously demonstrated for SMN-LBK as phenotypes and provided a theoretical basis for the application of SMN-LBK in the food industry.
Collapse
|
5
|
Zhao J, Wu L, Li W, Wang Y, Zheng H, Sun T, Zhang H, Xi R, Liu W, Sun Z. Genomics landscape of 185 Streptococcus thermophilus and identification of fermentation biomarkers. Food Res Int 2021; 150:110711. [PMID: 34865746 DOI: 10.1016/j.foodres.2021.110711] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/14/2021] [Accepted: 09/07/2021] [Indexed: 01/21/2023]
Abstract
Streptococcus (S.) thermophilus, an indispensable dairy starter, has been used in autochthonous as well as industrial milk fermentation. However, the genetic architecture underlying S. thermophilus traits and phenotypes is largely unknown. Here, we sequenced 185 S. thermophilus strains, isolated from natural fermented dairy products of China and Mongolia and used comparative genomic and genome wide association study to provide novel point for genetic architecture underlying its traits and phenotypes. Genome analysis of S. thermophilus showed association of phylogeny with environmental and phenotypic features and revealed clades with high acid production potential or with substantial genome decay. A few S. thermophilus isolated from areas with high chloramphenicol emissions had a chloramphenicol-resistant gene CatB8. Most importantly, we defined a growth score and identified a missense mutation G1118698T located at the gene AcnA that were both predictive of acidification capability of S. thermophilus. Our findings provide novel insight in S. thermophilus genetic traits, antibiotic resistant and predictive of acidification capability which both may had huge help in culture starter screening.
Collapse
Affiliation(s)
- Jie Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Linjie Wu
- School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing 100871, China
| | - Weicheng Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yu Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Huijuan Zheng
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tiansong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ruibin Xi
- School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing 100871, China
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
6
|
Dutra-Silva L, Matteoli FP, Arisi ACM. Distribution of Genes Related to Probiotic Effects Across Lacticaseibacillus rhamnosus Revealed by Population Structure. Probiotics Antimicrob Proteins 2021; 15:548-557. [PMID: 34699013 DOI: 10.1007/s12602-021-09868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 11/24/2022]
Abstract
The Gram-positive Lacticaseibacillus rhamnosus has been broadly reported as capable of exerting beneficial health effects. Bacterial genomic diversity may promote niche specialization, thus creating subpatterns within populations. As L. rhamnosus advantageous effects have been widely reported at strain level and few is known regarding the distribution of beneficial genes among L. rhamnosus strains, we investigated all publicly available genomes of Lactobacillus and Lacticaseibacillus genera to study the pangenome and general population structure of L. rhamnosus. Core genome multilocus sequence typing detected eight L. rhamnosus phylogroups (PG1 to PG8). L. rhamnosus harbors an open pangenome; PG1, PG3, PG4, and PG5 exhibited highly conserved gene distribution patterns. Genes significantly associated to the PG1, which comprises L. rhamnosus GG, are mainly phage-related. The adhesion operon spaCBA-srtC1 was found in 44 (24.7%) genomes; however, considering only the PG1, the prevalence was of 65%. In PG2 the spaCBA-srtC1 prevalence was of 43%. Nevertheless, both human and milk-derived strains harbored this operon. Further, two main types of bacteriocin clusters were found (Bact1 and Bact2). Bact1 predictions indicate the presence of garQ, encoding the class II bacteriocin garvieacin Q, that is mainly present in the closely related PG8A and a PG2 subcluster. PG2 harbors two distinct subclusters, harboring either spaCBA-srtC1 or Bact1. Our findings provide novel insights on the distribution of biotechnological relevant genes across L. rhamnosus population, uncovering intra-species patterns that may bring forth the development of more efficient probiotic products.
Collapse
Affiliation(s)
- Lorena Dutra-Silva
- Food Science and Technology Department, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Filipe P Matteoli
- Department of Soil Science, Luiz de Queiroz College of Agriculture, Piracicaba, SP, Brazil.
| | | |
Collapse
|
7
|
Safety Evaluation of Lactobacillus delbrueckii subsp. lactis CIDCA 133: a Health-Promoting Bacteria. Probiotics Antimicrob Proteins 2021; 14:816-829. [PMID: 34403080 DOI: 10.1007/s12602-021-09826-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
Lactobacillus delbrueckii subsp. lactis CIDCA is a new potential probiotic strain whose molecular basis attributed to the host's benefit has been reported. This study investigated the safety aspects of Lactobacillus delbrueckii subsp. lactis CIDCA 133 based on whole-genome sequence and phenotypic analysis to avoid future questions about the harmful effects of this strain consumption. Genomic analysis showed that L. delbrueckii subsp. lactis CIDCA 133 harbors virulence, harmful metabolites, and antimicrobial resistance-associated genes. However, none of these genetic elements is flanked or located within prophage regions and plasmid sequence. At a phenotypic level, it was observed L. delbrueckii subsp. lactis CIDCA 133 antimicrobial resistance to aminoglycosides streptomycin and gentamicin antibiotics, but no hemolytic and mucin degradation activity was exhibited by strain. Furthermore, no adverse effects were observed regarding mice clinical and histopathological analysis after the strain consumption (5 × 107 CFU/mL). Overall, these findings reveal the safety of Lactobacillus delbrueckii subsp. lactis CIDCA 133 for consumption and future probiotic applications.
Collapse
|
8
|
Kuhl GC, Mazzon RR, Duarte RTD, De Dea Lindner J. Draft genome sequence of Lactobacillus delbrueckii subsp. bulgaricus LBP UFSC 2230: a tool for preliminary identification of enzymes involved in CLA metabolism. Braz J Microbiol 2021; 52:1557-1563. [PMID: 33891284 DOI: 10.1007/s42770-021-00479-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 03/29/2021] [Indexed: 10/21/2022] Open
Abstract
Several Lactobacillus ssp. are recognized as potential conjugated linoleic acid (CLA) producers. We have previously reported the ability of a range of Lactobacillus delbrueckii subsp. bulgaricus strains to produce CLA in fermented milk, being a potential candidate for the fermented dairy food chain. This study reports the draft genome sequence of L. bulgaricus strain LBP UFSC 2230, isolated from Italian Grana Padano cheese. Draft genome sequence originated in a total of 4,310,842 paired-end reads that were quality trimmed and assembled into 135 contigs with a total length of 604,745,873 bp, including 2086 protein coding genes and an average GC content of 49.7%. Draft genome sequence represents an important tool to identify the enzymes involved in this strain's CLA metabolism. We identified a gene encoding an enzyme involved in biohydrogenation of linoleic acid pathway, oleate hydratase.
Collapse
Affiliation(s)
- Gabriela Christina Kuhl
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, 88034-001, Brazil
| | - Ricardo Ruiz Mazzon
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, 88034-001, Brazil
| | - Rubens Tadeu Delgado Duarte
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC, 88034-001, Brazil
| | - Juliano De Dea Lindner
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC, 88034-001, Brazil.
| |
Collapse
|
9
|
Kim E, Cho EJ, Yang SM, Kim HY. Identification and Monitoring of Lactobacillus delbrueckii Subspecies Using Pangenomic-Based Novel Genetic Markers. J Microbiol Biotechnol 2021; 31:280-289. [PMID: 33144553 PMCID: PMC9705890 DOI: 10.4014/jmb.2009.09034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Genetic markers currently used for the discrimination of Lactobacillus delbrueckii subspecies have low efficiency for identification at subspecies level. Therefore, our objective in this study was to select novel genetic markers for accurate identification and discrimination of six L. delbrueckii subspecies based on pangenome analysis. We evaluated L. delbrueckii genomes to avoid making incorrect conclusions in the process of selecting genetic markers due to mislabeled genomes. Genome analysis showed that two genomes of L. delbrueckii subspecies deposited at NCBI were misidentified. Based on these results, subspecies-specific genetic markers were selected by comparing the core and pangenomes. Genetic markers were confirmed to be specific for 59,196,562 genome sequences via in silico analysis. They were found in all strains of the same subspecies, but not in other subspecies or bacterial strains. These genetic markers also could be used to accurately identify genomes at the subspecies level for genomes known at the species level. A real-time PCR method for detecting three main subspecies (L. delbrueckii subsp. delbrueckii, lactis, and bulgaricus) was developed to cost-effectively identify them using genetic markers. Results showed 100% specificity for each subspecies. These genetic markers could differentiate each subspecies from 44 other lactic acid bacteria. This real-time PCR method was then applied to monitor 26 probiotics and dairy products. It was also used to identify 64 unknown strains isolated from raw milk samples and dairy products. Results confirmed that unknown isolates and subspecies contained in the product could be accurately identified using this real-time PCR method.
Collapse
Affiliation(s)
- Eiseul Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eun-Ji Cho
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Seung-Min Yang
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea,Corresponding author Phone: +82-31-201-2123 Fax: +82-31-204-8116 E-mail:
| |
Collapse
|
10
|
Mo L, Jin H, Pan L, Hou Q, Li C, Darima I, Zhang H, Yu J. Biodiversity of lactic acid bacteria isolated from fermented milk products in Xinjiang, China. FOOD BIOTECHNOL 2019. [DOI: 10.1080/08905436.2019.1574230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Lanxin Mo
- Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Products Processing, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Hao Jin
- Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Products Processing, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Lin Pan
- Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Products Processing, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Qiangchuan Hou
- Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Products Processing, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Chuanjuan Li
- Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Products Processing, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Iaptueva Darima
- Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Products Processing, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Products Processing, Inner Mongolia Agricultural University, Hohhot, P.R. China
| | - Jie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Key Laboratory of Dairy Products Processing, Inner Mongolia Agricultural University, Hohhot, P.R. China
| |
Collapse
|
11
|
Zhao X, Qian Y, Li G, Yi R, Park KY, Song JL. Lactobacillus plantarum YS2 (yak yogurt Lactobacillus) exhibited an activity to attenuate activated carbon-induced constipation in male Kunming mice. J Dairy Sci 2019; 102:26-36. [DOI: 10.3168/jds.2018-15206] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/29/2018] [Indexed: 01/30/2023]
|
12
|
Inglin RC, Meile L, Stevens MJA. Clustering of Pan- and Core-genome of Lactobacillus provides Novel Evolutionary Insights for Differentiation. BMC Genomics 2018; 19:284. [PMID: 29690879 PMCID: PMC5937832 DOI: 10.1186/s12864-018-4601-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/13/2018] [Indexed: 01/21/2023] Open
Abstract
Background Bacterial taxonomy aims to classify bacteria based on true evolutionary events and relies on a polyphasic approach that includes phenotypic, genotypic and chemotaxonomic analyses. Until now, complete genomes are largely ignored in taxonomy. The genus Lactobacillus consists of 173 species and many genomes are available to study taxonomy and evolutionary events. Results We analyzed and clustered 98 completely sequenced genomes of the genus Lactobacillus and 234 draft genomes of 5 different Lactobacillus species, i.e. L. reuteri, L. delbrueckii, L. plantarum, L. rhamnosus and L. helveticus. The core-genome of the genus Lactobacillus contains 266 genes and the pan-genome 20′800 genes. Clustering of the Lactobacillus pan- and core-genome resulted in two highly similar trees. This shows that evolutionary history is traceable in the core-genome and that clustering of the core-genome is sufficient to explore relationships. Clustering of core- and pan-genomes at species’ level resulted in similar trees as well. Detailed analyses of the core-genomes showed that the functional class “genetic information processing” is conserved in the core-genome but that “signaling and cellular processes” is not. The latter class encodes functions that are involved in environmental interactions. Evolution of lactobacilli seems therefore directed by the environment. The type species L. delbrueckii was analyzed in detail and its pan-genome based tree contained two major clades whose members contained different genes yet identical functions. In addition, evidence for horizontal gene transfer between strains of L. delbrueckii, L. plantarum, and L. rhamnosus, and between species of the genus Lactobacillus is presented. Our data provide evidence for evolution of some lactobacilli according to a parapatric-like model for species differentiation. Conclusions Core-genome trees are useful to detect evolutionary relationships in lactobacilli and might be useful in taxonomic analyses. Lactobacillus’ evolution is directed by the environment and HGT. Electronic supplementary material The online version of this article (10.1186/s12864-018-4601-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Raffael C Inglin
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland
| | - Leo Meile
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland.
| | - Marc J A Stevens
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zurich, Switzerland.,Present address: Institute for Food Hygiene and Safety, University of Zurich, Winterthurerstrasse 272, 8057, Zurich, Switzerland
| |
Collapse
|
13
|
Genetic diversity analysis of Leuconostoc mesenteroides from Korean vegetables and food products by multilocus sequence typing. Appl Microbiol Biotechnol 2018; 102:4853-4861. [PMID: 29619504 DOI: 10.1007/s00253-018-8942-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/07/2018] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
Abstract
In the present study, 35 Leuconostoc mesenteroides strains isolated from vegetables and food products from South Korea were studied by multilocus sequence typing (MLST) of seven housekeeping genes (atpA, groEL, gyrB, pheS, pyrG, rpoA, and uvrC). The fragment sizes of the seven amplified housekeeping genes ranged in length from 366 to 1414 bp. Sequence analysis indicated 27 different sequence types (STs) with 25 of them being represented by a single strain indicating high genetic diversity, whereas the remaining 2 were characterized by five strains each. In total, 220 polymorphic nucleotide sites were detected among seven housekeeping genes. The phylogenetic analysis based on the STs of the seven loci indicated that the 35 strains belonged to two major groups, A (28 strains) and B (7 strains). Split decomposition analysis showed that intraspecies recombination played a role in generating diversity among strains. The minimum spanning tree showed that the evolution of the STs was not correlated with food source. This study signifies that the multilocus sequence typing is a valuable tool to access the genetic diversity among L. mesenteroides strains from South Korea and can be used further to monitor the evolutionary changes.
Collapse
|
14
|
Molecular discrimination of Lactobacillus brevis strains isolated from food products in South Korea using multilocus sequence typing. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Metagenomic approach reveals microbial diversity and predictive microbial metabolic pathways in Yucha, a traditional Li fermented food. Sci Rep 2016; 6:32524. [PMID: 27578483 PMCID: PMC5006176 DOI: 10.1038/srep32524] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/10/2016] [Indexed: 11/23/2022] Open
Abstract
Yucha is a typical traditional fermented food of the Li population in the Hainan province of China, and it is made up of cooked rice and fresh fish. In the present study, metagenomic approach and culture-dependent technology were applied to describe the diversity of microbiota and identify beneficial microbes in the Yucha. At the genus level, Lactobacillus was the most abundant genus (43.82% of the total reads), followed by Lactococcus, Enterococcus, Vibrio, Weissella, Pediococcus, Enterobacter, Salinivibrio, Acinetobacter, Macrococcus, Kluyvera and Clostridium; this result was confirmed by q-PCR. PCoA based on Weighted UniFrac distances showed an apparent clustering pattern for Yucha samples from different locations, and Lactobacillus sakei, Lactobacillus saniviri and Staphylococcus sciuri represented OTUs according to the major identified markers. At the microbial functional level, it was observed that there was an enrichment of metabolic functional features, including amino acid and carbohydrate metabolism, which implied that the microbial metabolism in the Yucha samples tended to be vigorous. Accordingly, we further investigated the correlation between the predominant microbes and metabolic functional features. Thirteen species of Lactobacillus (147 strains) were isolated, and Lactobacillus plantarum (60 isolates) and Lactobacillus pentosus (34 isolates) were isolated from every sample.
Collapse
|