1
|
Kusakin AV, Goleva OV, Danilov LG, Krylov AV, Tsay VV, Kalinin RS, Tian NS, Eismont YA, Mukomolova AL, Chukhlovin AB, Komissarov AS, Glotov OS. The Telomeric Repeats of HHV-6A Do Not Determine the Chromosome into Which the Virus Is Integrated. Genes (Basel) 2023; 14:521. [PMID: 36833448 PMCID: PMC9957103 DOI: 10.3390/genes14020521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Human herpes virus 6A (HHV-6A) is able to integrate into the telomeric and subtelomeric regions of human chromosomes representing chromosomally integrated HHV-6A (ciHHV-6A). The integration starts from the right direct repeat (DRR) region. It has been shown experimentally that perfect telomeric repeats (pTMR) in the DRR region are required for the integration, while the absence of the imperfect telomeric repeats (impTMR) only slightly reduces the frequency of HHV-6 integration cases. The aim of this study was to determine whether telomeric repeats within DRR may define the chromosome into which the HHV-6A integrates. We analysed 66 HHV-6A genomes obtained from public databases. Insertion and deletion patterns of DRR regions were examined. We also compared TMR within the herpes virus DRR and human chromosome sequences retrieved from the Telomere-to-Telomere consortium. Our results show that telomeric repeats in DRR in circulating and ciHHV-6A have an affinity for all human chromosomes studied and thus do not define a chromosome for integration.
Collapse
Affiliation(s)
- Aleksey V. Kusakin
- Pediatric Research and Clinical Center for Infectious Diseases, 197022 St. Petersburg, Russia
- SCAMT Institute, ITMO University, 191002 St. Petersburg, Russia
| | - Olga V. Goleva
- Pediatric Research and Clinical Center for Infectious Diseases, 197022 St. Petersburg, Russia
| | - Lavrentii G. Danilov
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 St. Petersburg, Russia
| | - Andrey V. Krylov
- Pediatric Research and Clinical Center for Infectious Diseases, 197022 St. Petersburg, Russia
| | - Victoria V. Tsay
- Pediatric Research and Clinical Center for Infectious Diseases, 197022 St. Petersburg, Russia
| | - Roman S. Kalinin
- Pediatric Research and Clinical Center for Infectious Diseases, 197022 St. Petersburg, Russia
| | - Natalia S. Tian
- Pediatric Research and Clinical Center for Infectious Diseases, 197022 St. Petersburg, Russia
| | - Yuri A. Eismont
- Pediatric Research and Clinical Center for Infectious Diseases, 197022 St. Petersburg, Russia
| | - Anna L. Mukomolova
- Pediatric Research and Clinical Center for Infectious Diseases, 197022 St. Petersburg, Russia
| | - Alexei B. Chukhlovin
- Pediatric Research and Clinical Center for Infectious Diseases, 197022 St. Petersburg, Russia
- R.M.Gorbacheva Memorial Institute of Oncology, Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University, 197022 St. Petersburg, Russia
| | | | - Oleg S. Glotov
- Pediatric Research and Clinical Center for Infectious Diseases, 197022 St. Petersburg, Russia
- D.O. Ott Research Institute of Obstetrics, Gynaecology, and Reproductology, 199034 St. Petersburg, Russia
| |
Collapse
|
2
|
Patil P, Toprak UH, Seufert J, Braun T, Bernhart SH, Wiehle L, Müller A, Schlesner M, Herling M, Lichter P, Stilgenbauer S, Siebert R, Zapatka M. Exploration of whole genome and transcriptome sequencing data lacks evidence for oncogenic viral elements to drive the pathogenesis of T-cell prolymphocytic leukemia. Leuk Lymphoma 2022; 63:3253-3256. [PMID: 36083597 DOI: 10.1080/10428194.2022.2116933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Paurnima Patil
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Umut H Toprak
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Division Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany
| | - Julian Seufert
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Division Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Till Braun
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne (UoC), Cologne, Germany
| | - Stephan H Bernhart
- Interdisciplinary Center for Bioinformatics, Transcriptome Bioinformatics, University of Leipzig, Germany
| | - Laura Wiehle
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Annika Müller
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Informatics and Medical Faculty, Augsburg University, Augsburg, Germany
| | - Marco Herling
- Department I of Internal Medicine, Center for Integrated Oncology (CIO), Aachen-Bonn-Cologne-Duesseldorf, Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne (UoC), Cologne, Germany.,Clinic of Hematology, Cellular Therapy and Hemostaseology, University of Leipzig, Leipzig, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Marc Zapatka
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
3
|
Aswad A, Aimola G, Wight D, Roychoudhury P, Zimmermann C, Hill J, Lassner D, Xie H, Huang ML, Parrish NF, Schultheiss HP, Venturini C, Lager S, Smith GCS, Charnock-Jones DS, Breuer J, Greninger AL, Kaufer BB. Evolutionary History of Endogenous Human Herpesvirus 6 Reflects Human Migration out of Africa. Mol Biol Evol 2021; 38:96-107. [PMID: 32722766 PMCID: PMC7782865 DOI: 10.1093/molbev/msaa190] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human herpesvirus 6A and 6B (HHV-6) can integrate into the germline, and as a result, ∼70 million people harbor the genome of one of these viruses in every cell of their body. Until now, it has been largely unknown if 1) these integrations are ancient, 2) if they still occur, and 3) whether circulating virus strains differ from integrated ones. Here, we used next-generation sequencing and mining of public human genome data sets to generate the largest and most diverse collection of circulating and integrated HHV-6 genomes studied to date. In genomes of geographically dispersed, only distantly related people, we identified clades of integrated viruses that originated from a single ancestral event, confirming this with fluorescent in situ hybridization to directly observe the integration locus. In contrast to HHV-6B, circulating and integrated HHV-6A sequences form distinct clades, arguing against ongoing integration of circulating HHV-6A or “reactivation” of integrated HHV-6A. Taken together, our study provides the first comprehensive picture of the evolution of HHV-6, and reveals that integration of heritable HHV-6 has occurred since the time of, if not before, human migrations out of Africa.
Collapse
Affiliation(s)
- Amr Aswad
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Giulia Aimola
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Darren Wight
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | - Pavitra Roychoudhury
- Department of Laboratory Medicine, University of Washington, Seattle, WA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Centre, Seattle, WA
| | | | - Joshua Hill
- Department of Laboratory Medicine, University of Washington, Seattle, WA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Centre, Seattle, WA.,Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Dirk Lassner
- HighTech Center, Vinmec Hospital, Hanoi, Vietnam.,Institut Kardiale Diagnostik und Therapie, Berlin, Germany
| | - Hong Xie
- Department of Laboratory Medicine, University of Washington, Seattle, WA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Centre, Seattle, WA
| | - Meei-Li Huang
- Department of Laboratory Medicine, University of Washington, Seattle, WA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Centre, Seattle, WA
| | - Nicholas F Parrish
- Genome Immunobiology RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Cristina Venturini
- Division of Infection and Immunity, UCL Research Department of Infection, UCL, London, United Kingdom
| | - Susanne Lager
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.,Department of Obstetrics and Gynaecology, Cambridge University, United Kingdom
| | - Gordon C S Smith
- Department of Obstetrics and Gynaecology, Cambridge University, United Kingdom
| | | | - Judith Breuer
- Division of Infection and Immunity, UCL Research Department of Infection, UCL, London, United Kingdom
| | - Alexander L Greninger
- Department of Laboratory Medicine, University of Washington, Seattle, WA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Centre, Seattle, WA
| | | |
Collapse
|
4
|
Primary human herpesvirus 8-negative effusion-based lymphoma: a large B-cell lymphoma with favorable prognosis. Blood Adv 2021; 4:4442-4450. [PMID: 32936906 DOI: 10.1182/bloodadvances.2020002293] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Primary effusion-based lymphoma (EBL) presents as a malignant effusion in a body cavity. The clinicopathologic features and prognosis of primary human herpesvirus 8 (HHV8)-negative EBL remain unclear. We therefore conducted a retrospective study of 95 patients with EBL, regardless of HHV8 status, in Japan. Of 69 patients with EBL tested for HHV8, a total of 64 were negative. The median age of patients with primary HHV8-negative EBL at diagnosis was 77 years (range, 57-98 years); all 58 tested patients were negative for HIV. Primary HHV8-negative EBL was most commonly diagnosed in pleural effusion (77%). Expression of at least 1 pan B-cell antigen (CD19, CD20, or CD79a) was observed in all cases. According to the Hans algorithm, 30 of the 38 evaluated patients had nongerminal center B-cell (non-GCB) tumors. Epstein-Barr virus-encoded small RNA was positive in 6 of 45 patients. In 56 of 64 HHV8-negative patients, systemic therapy was initiated within 3 months after diagnosis. Cyclophosphamide, doxorubicin, vincristine, and prednisolone (CHOP) or CHOP-like regimens with or without rituximab (n = 48) were the most common primary treatments. The overall response and complete response rates were 95% and 73%, respectively. Three patients did not progress without systemic treatment for a median of 24 months. With a median 25-month follow-up, the 2-year overall survival and progression-free survival rates were 84.7% and 73.8%. Sixteen patients died; 12 were lymphoma-related deaths. Thus, most EBL cases in Japan are HHV8-negative and affect elderly patients. The non-GCB subtype is predominant. Overall, primary HHV8-negative EBL exhibits a favorable prognosis after anthracycline-based chemotherapy.
Collapse
|
5
|
Wood ML, Veal CD, Neumann R, Suárez NM, Nichols J, Parker AJ, Martin D, Romaine SPR, Codd V, Samani NJ, Voors AA, Tomaszewski M, Flamand L, Davison AJ, Royle NJ. Variation in human herpesvirus 6B telomeric integration, excision, and transmission between tissues and individuals. eLife 2021; 10:70452. [PMID: 34545807 PMCID: PMC8492063 DOI: 10.7554/elife.70452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Human herpesviruses 6A and 6B (HHV-6A/6B) are ubiquitous pathogens that persist lifelong in latent form and can cause severe conditions upon reactivation. They are spread by community-acquired infection of free virus (acqHHV6A/6B) and by germline transmission of inherited chromosomally integrated HHV-6A/6B (iciHHV-6A/6B) in telomeres. We exploited a hypervariable region of the HHV-6B genome to investigate the relationship between acquired and inherited virus and revealed predominantly maternal transmission of acqHHV-6B in families. Remarkably, we demonstrate that some copies of acqHHV-6B in saliva from healthy adults gained a telomere, indicative of integration and latency, and that the frequency of viral genome excision from telomeres in iciHHV-6B carriers is surprisingly high and varies between tissues. In addition, newly formed short telomeres generated by partial viral genome release are frequently lengthened, particularly in telomerase-expressing pluripotent cells. Consequently, iciHHV-6B carriers are mosaic for different iciHHV-6B structures, including circular extra-chromosomal forms that have the potential to reactivate. Finally, we show transmission of an HHV-6B strain from an iciHHV-6B mother to her non-iciHHV-6B son. Altogether, we demonstrate that iciHHV-6B can readily transition between telomere-integrated and free virus forms.
Collapse
Affiliation(s)
- Michael L Wood
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| | - Colin D Veal
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| | - Rita Neumann
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| | - Nicolás M Suárez
- MRC-University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Jenna Nichols
- MRC-University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Andrei J Parker
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| | - Diana Martin
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| | - Simon PR Romaine
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom,NIHR Leicester Biomedical Research Centre, Glenfield HospitalLeicesterUnited Kingdom
| | - Veryan Codd
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of LeicesterLeicesterUnited Kingdom
| | - Adriaan A Voors
- University of Groningen, Department of Cardiology, University Medical Center GroningenGroningenNetherlands
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of ManchesterManchesterUnited Kingdom
| | - Louis Flamand
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec CityQuébecCanada
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus ResearchGlasgowUnited Kingdom
| | - Nicola J Royle
- Department of Genetics and Genome Biology, University of LeicesterLeicesterUnited Kingdom
| |
Collapse
|
6
|
Petit V, Bonnafous P, Fages V, Gautheret-Dejean A, Engelmann I, Baras A, Hober D, Gérard R, Gibier JB, Leteurtre E, Glowacki F, Moulonguet F, Decaestecker A, Provôt F, Chamley P, Faure E, Prusty BK, Maanaoui M, Hazzan M. Donor-to-recipient transmission and reactivation in a kidney transplant recipient of an inherited chromosomally integrated HHV-6A: Evidence and outcomes. Am J Transplant 2020; 20:3667-3672. [PMID: 32428994 DOI: 10.1111/ajt.16067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 01/25/2023]
Abstract
Human herpesvirus (HHV)-6A can be inherited and chromosomally integrated (iciHHV-6A), and donor-to-recipient transmission has been reported in solid organ transplant. However, when HHV-6A reactivation happens after transplant, the source of HHV-6A is often not evident and its pathogenicity remains unclear. Here, we present an exhaustive case of donor-to-recipient transmission and reactivation of iciHHV-6A through kidney transplant. The absence of HHV-6A genome from the nails of the recipient excluded a recipient-related iciHHV-6A. Viral loads > 7 log10 copies/106 cells in donor blood samples and similarities of U38, U39, U69, and U100 viral genes between donor, recipient, and previously published iciHHV-6A strains are proof of donor-related transmission. Detection of noncoding HHV-6 snc-RNA14 using fluorescence in situ hybridization analysis and immunofluorescence staining of HHV-6A gp82/gp105 late proteins on kidney biopsies showed evidence of reactivation in the transplanted kidney. Because HHV-6A reactivation can be life threatening in immunocompromised patients, we provide several tools to help during the complete screening and diagnosis.
Collapse
Affiliation(s)
- Vivien Petit
- Service de Néphrologie, CHU Lille, Lille, France
| | - Pascale Bonnafous
- Sorbonne Department, INSERM, Institut Pierre Louis d'Épidémiologie et de Santé Publique (IPLESP), THERAVIR Team, Paris, France
| | - Victor Fages
- Service de Néphrologie, CHU Lille, Lille, France
| | - Agnès Gautheret-Dejean
- Service de Virologie, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Paris, France.,Faculté de Pharmacie de Paris, Laboratoire de Microbiologie, Université de Paris, UMR-S 1139 (3PHM), Paris, France
| | - Ilka Engelmann
- Laboratoire de Virologie ULR3610, University of Lille, CHU Lille, Lille, France
| | - Agathe Baras
- Laboratoire de Virologie ULR3610, University of Lille, CHU Lille, Lille, France
| | - Didier Hober
- Laboratoire de Virologie ULR3610, University of Lille, CHU Lille, Lille, France
| | - Romain Gérard
- Gastroenterology Department, University of Lille, CHU Lille, Lille, France
| | - Jean-Baptiste Gibier
- Centre de Biologie Pathologie, Institute of Pathology, CHU Lille, Lille, France.,University of Lille, INSERM UMR1172, Lille, France
| | - Emmanuelle Leteurtre
- Centre de Biologie Pathologie, Institute of Pathology, CHU Lille, Lille, France.,University of Lille, INSERM UMR1172, Lille, France
| | - François Glowacki
- Service de Néphrologie, CHU Lille, Lille, France.,UnivErsity of Lille, Lille, France
| | | | | | | | - Paul Chamley
- Service de Néphrologie, CHU Lille, Lille, France
| | - Emmanuel Faure
- Service de Maladies Infectieuses, CHU Lille, Lille, France.,U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, CHU Lille, UnivErsity of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Bhupesh K Prusty
- Institut für Virologie und Immunobiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Mehdi Maanaoui
- Service de Néphrologie, CHU Lille, Lille, France.,University of Lille, INSERM U1190, Translational Research for Diabetes, Lille, France
| | - Marc Hazzan
- Service de Néphrologie, CHU Lille, Lille, France
| |
Collapse
|
7
|
Forni D, Cagliani R, Clerici M, Pozzoli U, Sironi M. Evolutionary analysis of exogenous and integrated HHV-6A/HHV-6B populations. Virus Evol 2020; 6:veaa035. [PMID: 32551136 PMCID: PMC7293831 DOI: 10.1093/ve/veaa035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human betaherpesviruses 6A and 6B (HHV-6A and HHV-6B) are highly prevalent in human populations. The genomes of these viruses can be stably integrated at the telomeres of human chromosomes and be vertically transmitted (inherited chromosomally integrated HHV-6A/HHV-6B, iciHHV-6A/iciHHV-6B). We reconstructed the population structures of HHV-6A and HHV-6B, showing that HHV-6A diverged less than HHV-6B genomes from the projected common ancestral population. Thus, HHV-6B genomes experienced stronger drift, as also supported by calculation of nucleotide diversity and Tajima's D. Analysis of ancestry proportions indicated that HHV-6A exogenous viruses and iciHHV-6A derived most of their genomes from distinct ancestral sources. Conversely, ancestry proportions were similar in exogenous HHV-6B viruses and iciHHV-6B. In line with previous indications, this suggests the distinct exogenous viral populations that originated iciHHV-6B in subjects with European and Asian ancestry are still causing infections in the corresponding geographic areas. Notably, for both iciHHV-6A and iciHHV-6B, we found that European and American sequences tend to have high proportions of ancestry from viral populations that experienced considerable drift, suggesting that they underwent one or more bottlenecks followed by population expansion. Finally, analysis of HHV-6B exogenous viruses sampled in Japan indicated that proportions of ancestry components of most of these viruses are different from the majority of those sampled in the USA. More generally, we show that, in both viral species, both integrated and exogenous viral genomes have different ancestry components, partially depending on geographic location. It would be extremely important to determine whether such differences account for the diversity of HHV-6A/HHV-6B-associated clinical symptoms and epidemiology. Also, the sequencing of additional exogenous and integrated viral genomes will be instrumental to confirm and expand our conclusions, which are based on a relatively small number of genomes, sequenced with variable quality, and with unequal sampling in terms of geographic origin.
Collapse
Affiliation(s)
- Diego Forni
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy
| | - Rachele Cagliani
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, 20090 Milan, Italy.,IRCCS Fondazione Don Carlo Gnocchi, 20148 Milan, Italy
| | - Uberto Pozzoli
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy
| |
Collapse
|
8
|
Age and CD20 Expression Are Significant Prognostic Factors in Human Herpes Virus-8-negative Effusion-based Lymphoma. Am J Surg Pathol 2019; 42:1607-1616. [PMID: 30273194 DOI: 10.1097/pas.0000000000001168] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human herpes virus-8 (HHV-8)-negative effusion-based lymphoma (HHV-8-negative EBL) can be distinguished from primary effusion lymphoma based on clinical and pathologic findings. Although the morphology between the 2 is similar and they both originate from body cavities with serous effusions and are characterized by lack of tumor masses, HHV-8-negative EBL generally occurs in older patients, and has favorable response to therapy and better prognosis than primary effusion lymphoma. However, no systematic studies have investigated prognostic factors in patients with HHV-8-negative EBL. In this report, clinical and pathologic characteristics of 67 cases of HHV-8-negative EBL, including 2 of our own cases, were analyzed. Univariate analyses revealed older age (70 y and above), Japanese ethnicity, pericardial effusion, CD20 expression, and chemotherapy with rituximab were significantly favorable prognostic factors. Peritoneal effusion was identified as an unfavorable prognostic factor. In the multivariate analysis, age and CD20 expression were independent prognostic factors (P=0.013 and 0.003, respectively). A past history of induced fluid overload, hepatitis C viral infection, and peritoneal effusion were significantly correlated with patients aged below 70 years, while pericardial and pleural effusions were significantly correlated with patients aged 70 years and above. A comparison of cases with and without CD20 expression revealed that Japanese ethnicity and pericardial effusion were significantly correlated with CD20 expression, whereas a past history of induced fluid overload and peritoneal effusion were significantly correlated with the absence of CD20. We concluded that older age and CD20 expression are significant and favorable independent prognostic factors of HHV-8-negative EBL.
Collapse
|
9
|
Eliassen E, Lum E, Pritchett J, Ongradi J, Krueger G, Crawford JR, Phan TL, Ablashi D, Hudnall SD. Human Herpesvirus 6 and Malignancy: A Review. Front Oncol 2018; 8:512. [PMID: 30542640 PMCID: PMC6277865 DOI: 10.3389/fonc.2018.00512] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
In order to determine the role of human herpesvirus 6 (HHV-6) in human disease, several confounding factors, including methods of detection, types of controls, and the ubiquitous nature of the virus, must be considered. This is particularly problematic in the case of cancer, in which rates of detection vary greatly among studies. To determine what part, if any, HHV-6 plays in oncogenesis, a review of the literature was performed. There is evidence that HHV-6 is present in certain types of cancer; however, detection of the virus within tumor cells is insufficient for assigning a direct role of HHV-6 in tumorigenesis. Findings supportive of a causal role for a virus in cancer include presence of the virus in a large proportion of cases, presence of the virus in most tumor cells, and virus-induced in-vitro cell transformation. HHV-6, if not directly oncogenic, may act as a contributory factor that indirectly enhances tumor cell growth, in some cases by cooperation with other viruses. Another possibility is that HHV-6 may merely be an opportunistic virus that thrives in the immunodeficient tumor microenvironment. Although many studies have been carried out, it is still premature to definitively implicate HHV-6 in several human cancers. In some instances, evidence suggests that HHV-6 may cooperate with other viruses, including EBV, HPV, and HHV-8, in the development of cancer, and HHV-6 may have a role in such conditions as nodular sclerosis Hodgkin lymphoma, gastrointestinal cancer, glial tumors, and oral cancers. However, further studies will be required to determine the exact contributions of HHV-6 to tumorigenesis.
Collapse
Affiliation(s)
- Eva Eliassen
- HHV-6 Foundation, Santa Barbara, CA, United States
| | - Emily Lum
- HHV-6 Foundation, Santa Barbara, CA, United States
| | - Joshua Pritchett
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Joseph Ongradi
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
| | - Gerhard Krueger
- Department of Pathology and Laboratory Medicine, University of Texas- Houston Medical School, Houston, TX, United States
| | - John R Crawford
- Department of Neurosciences and Pediatrics, University of California San Diego and Rady Children's Hospital, San Diego, CA, United States
| | - Tuan L Phan
- HHV-6 Foundation, Santa Barbara, CA, United States.,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | | | | |
Collapse
|
10
|
HHV-6 encoded small non-coding RNAs define an intermediate and early stage in viral reactivation. NPJ Genom Med 2018; 3:25. [PMID: 30210807 PMCID: PMC6125432 DOI: 10.1038/s41525-018-0064-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/19/2022] Open
Abstract
Human herpesvirus 6A and 6B frequently acquires latency. HHV-6 activation has been associated with various human diseases. Germ line inheritance of chromosomally integrated HHV-6 makes viral DNA-based analysis difficult for determination of early stages of viral activation. We characterized early stages of HHV-6 activation using high throughput transcriptomics studies and applied the results to understand virus activation under clinical conditions. Using a latent HHV-6A cell culture model in U2OS cells, we identified an early stage of viral reactivation, which we define as transactivation that is marked by transcription of several viral small non-coding RNAs (sncRNAs) in the absence of detectable increase in viral replication and proteome. Using deep sequencing approaches, we detected previously known as well as a new viral sncRNAs that characterized viral transactivation and differentiated it from latency. Here we show changes in human transcriptome upon viral transactivation that reflect multiple alterations in mitochondria-associated pathways, which was supported by observation of increased mitochondrial fragmentation in virus reactivated cells. Furthermore, we present here a unique clinical case of DIHS/DRESS associated death where HHV-6 sncRNA-U14 was abundantly detected throughout the body of the patient in the presence of low viral DNA. In this study, we have identified a unique and early stage of viral activation that is characterized by abundant transcription of viral sncRNAs, which can serve as an ideal biomarker under clinical conditions.
Collapse
|
11
|
Hussein HAM, Okafor IB, Walker LR, Abdel-Raouf UM, Akula SM. Cellular and viral oncogenes: the key to unlocking unknowns of Kaposi's sarcoma-associated herpesvirus pathogenesis. Arch Virol 2018; 163:2633-2643. [PMID: 29936609 DOI: 10.1007/s00705-018-3918-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023]
Abstract
Oncogenic viruses carry an extensive arsenal of oncogenes for hijacking cellular pathways. Notably, variations in oncogenes among tumor-producing viruses give rise to different mechanisms for cellular transformation. Specifically, Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus able to infect and transform a variety of cell types. The oncogenicity of KSHV disseminates from the virus' ability to induce and encode a wide variety of both cellular and viral oncogenes. Such an array of cellular and viral oncogenes enables KSHV to induce the malignant phenotype of a KSHV-associated cancer. Evolutionarily, KSHV has acquired many oncogenic homologues capable of inducing cell proliferation, cell differentiation, cell survival, and immune evasion. Integration between inducing and encoding oncogenes plays a vital role in KSHV pathogenicity. KSHV is alleged to harbor the highest number of potential oncogenes by which a virus promotes cellular transformation and malignancy. Many KSHV inducing/encoding oncogenes are mainly expressed during the latent phase of KSHV infection, a period required for virus establishment of malignant cellular transformation. Elucidation of the exact mechanism(s) by which oncogenes promote KSHV pathogenicity would not only give rise to potential novel therapeutic targets/drugs but would also add to our understanding of cancer biology. The scope of this review is to examine the roles of the most important cellular and viral oncogenes involved in KSHV pathogenicity.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Ikenna B Okafor
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Lia R Walker
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Usama M Abdel-Raouf
- Faculty of Science, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
12
|
Bonnafous P, Marlet J, Bouvet D, Salamé E, Tellier AC, Guyetant S, Goudeau A, Agut H, Gautheret-Dejean A, Gaudy-Graffin C. Fatal outcome after reactivation of inherited chromosomally integrated HHV-6A (iciHHV-6A) transmitted through liver transplantation. Am J Transplant 2018; 18:1548-1551. [PMID: 29316259 DOI: 10.1111/ajt.14657] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/26/2017] [Accepted: 12/30/2017] [Indexed: 01/25/2023]
Abstract
HHV-6A and HHV-6B are found as inherited and chromosomally integrated forms (iciHHV-6A and -6B) into all germinal and somatic cells and vertically transmitted in a Mendelian manner in about 1% of the population. They were occasionally shown to be horizontally transmitted through hematopoietic stem cell transplantation. Here, we present a clinical case of horizontal transmission of iciHHV-6A from donor to recipient through liver transplantation. Molecular analysis performed on three viral genes (7.2 kb) in the recipient and donor samples supports transmission of iciHHV-6A from the graft. Transmission was followed by reactivation, with high viral loads in several compartments. The infection was uncontrollable, leading to severe disease and death, despite antiviral treatments and the absence of resistance mutations. This case highlights the fact that physicians should be aware of the possible horizontal transmission of iciHHV-6 and its consequences in case of reactivation in immunocompromised patients.
Collapse
Affiliation(s)
- P Bonnafous
- Sorbonne Université, Faculté de médecine, INSERM, CIMI-Paris U1135, Equipe PVI, F-75013 Paris, France
| | - J Marlet
- Morphogenèse et Antigénicité du VIH et des Virus des Hépatites Tours, Inserm U1259, Université de Tours, Tours, France.,Laboratoire de Bactériologie-Virologie-Hygiène, CHU de Tours, Tours, France
| | - D Bouvet
- Morphogenèse et Antigénicité du VIH et des Virus des Hépatites Tours, Inserm U1259, Université de Tours, Tours, France
| | - E Salamé
- Unité de Chirurgie Hépato-Biliaire et pancréatique-Transplantation hépatique, CHU de Tours, Tours, France
| | - A-C Tellier
- Réanimation Chirurgicale Tours, CHU de Tours, Tours, France
| | - S Guyetant
- Service d'Anatomie et Cytologie Pathologiques, CHU de Tours, Tours, France
| | - A Goudeau
- Morphogenèse et Antigénicité du VIH et des Virus des Hépatites Tours, Inserm U1259, Université de Tours, Tours, France.,Laboratoire de Bactériologie-Virologie-Hygiène, CHU de Tours, Tours, France
| | - H Agut
- Sorbonne Université, Faculté de médecine, INSERM, CIMI-Paris U1135, Equipe PVI, F-75013 Paris, France.,Service de Virologie HU La Pitié Salpêtrière-Charles Foix Paris, APHP, Paris, France
| | - A Gautheret-Dejean
- Sorbonne Université, Faculté de médecine, INSERM, CIMI-Paris U1135, Equipe PVI, F-75013 Paris, France.,Service de Virologie HU La Pitié Salpêtrière-Charles Foix Paris, APHP, Paris, France.,Laboratoire de Microbiologie Paris, équipe UPRES EA4065, Faculté de Pharmacie, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - C Gaudy-Graffin
- Morphogenèse et Antigénicité du VIH et des Virus des Hépatites Tours, Inserm U1259, Université de Tours, Tours, France.,Laboratoire de Bactériologie-Virologie-Hygiène, CHU de Tours, Tours, France
| |
Collapse
|
13
|
Eliassen E, Krueger G, Luppi M, Ablashi D. Lymphoproliferative Syndromes Associated with Human Herpesvirus-6A and Human Herpesvirus-6B. Mediterr J Hematol Infect Dis 2018; 10:e2018035. [PMID: 29755712 PMCID: PMC5937953 DOI: 10.4084/mjhid.2018.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 12/28/2022] Open
Abstract
Human herpesvirus 6A and 6B (HHV-6A and HHV-6B) have been noted since their discovery for their T-lymphotropism. Although it has proven difficult to determine the extent to which HHV-6A and HHV-6B are involved in the pathogenesis of many diseases, evidence suggests that primary infection and reactivation of both viruses may induce or contribute to the progression of several lymphoproliferative disorders, ranging from benign to malignant and including infectious mononucleosis-like illness, drug induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms (DIHS/DRESS), and nodular sclerosis Hodgkin's lymphoma. Herein, we discuss the conditions associated with the lymphoproliferative capacity of HHV-6, as well as the potential mechanisms behind them. Continued exploration on this topic may add to our understanding of the interactions between HHV-6 and the immune system and may open the doors to more accurate diagnosis and treatment of certain lymphoproliferative disorders.
Collapse
Affiliation(s)
- Eva Eliassen
- HHV-6 Foundation, Santa Barbara, California, USA
| | - Gerhard Krueger
- Department of Pathology and Laboratory Medicine, University of Texas, Houston, Texas, USA
| | - Mario Luppi
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
14
|
Telford M, Navarro A, Santpere G. Whole genome diversity of inherited chromosomally integrated HHV-6 derived from healthy individuals of diverse geographic origin. Sci Rep 2018; 8:3472. [PMID: 29472617 PMCID: PMC5823862 DOI: 10.1038/s41598-018-21645-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 01/31/2018] [Indexed: 12/13/2022] Open
Abstract
Human herpesviruses 6-A and -B (HHV-6A, HHV-6B) are ubiquitous in human populations worldwide. These viruses have been associated with several diseases such as multiple sclerosis, Hodgkin's lymphoma or encephalitis. Despite of the need to understand the genetic diversity and geographic stratification of these viruses, the availability of complete viral sequences from different populations is still limited. Here, we present nine new inherited chromosomally integrated HHV-6 sequences from diverse geographical origin which were generated through target DNA enrichment on lymphoblastoid cell lines derived from healthy individuals. Integration with available HHV-6 sequences allowed the assessment of HHV-6A and -6B phylogeny, patterns of recombination and signatures of natural selection. Analysis of the intra-species variability showed differences between A and B diversity levels and revealed that the HHV-6B reference (Z29) is an uncommon sequence, suggesting the need for an alternative reference sequence. Signs of geographical variation are present and more defined in HHV-6A, while they appear partly masked by recombination in HHV-6B. Finally, we conducted a scan for signatures of selection in protein coding genes that yielded at least 6 genes (4 and 2 respectively for the A and B species) showing significant evidence for accelerated evolution, and 1 gene showing evidence of positive selection in HHV-6A.
Collapse
Affiliation(s)
- Marco Telford
- Institute of Evolutionary Biology (UPF-CSIC), Departament de Ciències Experimentals i la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Catalonia, Spain
| | - Arcadi Navarro
- Institute of Evolutionary Biology (UPF-CSIC), Departament de Ciències Experimentals i la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Catalonia, Spain.
- National Institute for Bioinformatics (INB), PRBB, Barcelona, Catalonia, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), PRBB, Barcelona, Catalonia, Spain.
- Center for Genomic Regulation (CRG), PRBB, Barcelona, Catalonia, Spain.
| | - Gabriel Santpere
- Institute of Evolutionary Biology (UPF-CSIC), Departament de Ciències Experimentals i la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Catalonia, Spain.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
15
|
Inherited Chromosomally Integrated Human Herpesvirus 6 Genomes Are Ancient, Intact, and Potentially Able To Reactivate from Telomeres. J Virol 2017; 91:JVI.01137-17. [PMID: 28835501 PMCID: PMC5660504 DOI: 10.1128/jvi.01137-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/15/2017] [Indexed: 01/31/2023] Open
Abstract
The genomes of human herpesvirus 6A (HHV-6A) and HHV-6B have the capacity to integrate into telomeres, the essential capping structures of chromosomes that play roles in cancer and ageing. About 1% of people worldwide are carriers of chromosomally integrated HHV-6 (ciHHV-6), which is inherited as a genetic trait. Understanding the consequences of integration for the evolution of the viral genome, for the telomere, and for the risk of disease associated with carrier status is hampered by a lack of knowledge about ciHHV-6 genomes. Here, we report an analysis of 28 ciHHV-6 genomes and show that they are significantly divergent from the few modern nonintegrated HHV-6 strains for which complete sequences are currently available. In addition, ciHHV-6B genomes in Europeans are more closely related to each other than to ciHHV-6B genomes from China and Pakistan, suggesting regional variation of the trait. Remarkably, at least one group of European ciHHV-6B carriers has inherited the same ciHHV-6B genome, integrated in the same telomere allele, from a common ancestor estimated to have existed 24,500 ± 10,600 years ago. Despite the antiquity of some, and possibly most, germ line HHV-6 integrations, the majority of ciHHV-6B (95%) and ciHHV-6A (72%) genomes contain a full set of intact viral genes and therefore appear to have the capacity for viral gene expression and full reactivation. IMPORTANCE Inheritance of HHV-6A or HHV-6B integrated into a telomere occurs at a low frequency in most populations studied to date, but its characteristics are poorly understood. However, stratification of ciHHV-6 carriers in modern populations due to common ancestry is an important consideration for genome-wide association studies that aim to identify disease risks for these people. Here, we present full sequence analysis of 28 ciHHV-6 genomes and show that ciHHV-6B in many carriers with European ancestry most likely originated from ancient integration events in a small number of ancestors. We propose that ancient ancestral origins for ciHHV-6A and ciHHV-6B are also likely in other populations. Moreover, despite their antiquity, all of the ciHHV-6 genomes appear to retain the capacity to express viral genes, and most are predicted to be capable of full viral reactivation. These discoveries represent potentially important considerations in immunocompromised patients, in particular in organ transplantation and in stem cell therapy.
Collapse
|
16
|
Cell Culture Systems To Study Human Herpesvirus 6A/B Chromosomal Integration. J Virol 2017; 91:JVI.00437-17. [PMID: 28468878 DOI: 10.1128/jvi.00437-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 04/22/2017] [Indexed: 01/01/2023] Open
Abstract
Human herpesviruses 6A/B (HHV-6A/B) can integrate their viral genomes in the telomeres of human chromosomes. The viral and cellular factors contributing to HHV-6A/B integration remain largely unknown, mostly due to the lack of efficient and reproducible cell culture models to study HHV-6A/B integration. In this study, we characterized the HHV-6A/B integration efficiencies in several human cell lines using two different approaches. First, after a short-term infection (5 h), cells were processed for single-cell cloning and analyzed for chromosomally integrated HHV-6A/B (ciHHV-6A/B). Second, cells were infected with HHV-6A/B and allowed to grow in bulk for 4 weeks or longer and then analyzed for the presence of ciHHV-6. Using quantitative PCR (qPCR), droplet digital PCR, and fluorescent in situ hybridization, we could demonstrate that HHV-6A/B integrated in most human cell lines tested, including telomerase-positive (HeLa, MCF-7, HCT-116, and HEK293T) and telomerase-negative cell lines (U2OS and GM847). Our results also indicate that inhibition of DNA replication, using phosphonoacetic acid, did not affect HHV-6A/B integration. Certain clones harboring ciHHV-6A/B spontaneously express viral genes and proteins. Treatment of cells with phorbol ester or histone deacetylase inhibitors triggered the expression of many viral genes, including U39, U90, and U100, without the production of infectious virus, suggesting that the tested stimuli were not sufficient to trigger full reactivation. In summary, both integration models yielded comparable results and should enable the identification of viral and cellular factors contributing to HHV-6A/B integration and the screening of drugs influencing viral gene expression, as well as the release of infectious HHV-6A/B from the integrated state.IMPORTANCE The analysis and understanding of HHV-6A/B genome integration into host DNA is currently limited due to the lack of reproducible and efficient viral integration systems. In the present study, we describe two quantitative cell culture viral integration systems. These systems can be used to define cellular and viral factors that play a role in HHV-6A/B integration. Furthermore, these systems will allow us to decipher the conditions resulting in virus gene expression and excision of the integrated viral genome resulting in reactivation.
Collapse
|
17
|
Chromosomal integration of HHV-6A during non-productive viral infection. Sci Rep 2017; 7:512. [PMID: 28360414 PMCID: PMC5428774 DOI: 10.1038/s41598-017-00658-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/07/2017] [Indexed: 11/28/2022] Open
Abstract
Human herpesvirus 6A (HHV-6A) and 6B (HHV-6B) are two different species of betaherpesviruses that integrate into sub-telomeric ends of human chromosomes, for which different prevalence rates of integration have been reported. It has been demonstrated that integrated viral genome is stable and is fully retained. However, study of chromosomally integrated viral genome in individuals carrying inherited HHV-6 (iciHHV-6) showed unexpected number of viral DR copies. Hence, we created an in vitro infection model and studied retention of full or partial viral genome over a period of time. We observed an exceptional event where cells retained viral direct repeats (DRs) alone in the absence of the full viral genome. Finally, we found evidence for non-telomeric integration of HHV-6A DR in both cultured cells and in an iciHHV-6 individual. Our results shed light on several novel features of HHV-6A chromosomal integration and provide valuable information for future screening techniques.
Collapse
|