1
|
De Vitto H, Belfon KKJ, Sharma N, Toay S, Abendroth J, Dranow DM, Lukacs CM, Choi R, Udell HS, Willis S, Barrera G, Beyer O, Li TD, Hicks KA, Torelli AT, French JB. Characterization of an Acinetobacter baumannii Monofunctional Phosphomethylpyrimidine Kinase That Is Inhibited by Pyridoxal Phosphate. Biochemistry 2024. [PMID: 38306231 PMCID: PMC11426312 DOI: 10.1021/acs.biochem.3c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Thiamin and its phosphate derivatives are ubiquitous molecules involved as essential cofactors in many cellular processes. The de novo biosynthesis of thiamin employs the parallel synthesis of 4-methyl-5-(2-hydroxyethyl)thiazole (THZ-P) and 4-amino-2-methyl-5(diphosphooxymethyl) pyrimidine (HMP) pyrophosphate (HMP-PP), which are coupled to generate thiamin phosphate. Most organisms that can biosynthesize thiamin employ a kinase (HMPK or ThiD) to generate HMP-PP. In nearly all cases, this enzyme is bifunctional and can also salvage free HMP, producing HMP-P, the monophosphate precursor of HMP-PP. Here we present high-resolution crystal structures of an HMPK from Acinetobacter baumannii (AbHMPK), both unliganded and with pyridoxal 5-phosphate (PLP) noncovalently bound. Despite the similarity between HMPK and pyridoxal kinase enzymes, our kinetics analysis indicates that AbHMPK accepts HMP exclusively as a substrate and cannot turn over pyridoxal, pyridoxamine, or pyridoxine nor does it display phosphatase activity. PLP does, however, act as a weak inhibitor of AbHMPK with an IC50 of 768 μM. Surprisingly, unlike other HMPKs, AbHMPK catalyzes only the phosphorylation of HMP and does not generate the diphosphate HMP-PP. This suggests that an additional kinase is present in A. baumannii, or an alternative mechanism is in operation to complete the biosynthesis of thiamin.
Collapse
Affiliation(s)
- Humberto De Vitto
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Kafi K J Belfon
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11790, United States
| | - Nandini Sharma
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Sarah Toay
- Department of Biological Chemistry, Grinnell College, Grinnell, Iowa 50112, United States
| | - Jan Abendroth
- UCB BioSciences, Bainbridge Island, Washington 98110, United States
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98104, United States
| | - David M Dranow
- UCB BioSciences, Bainbridge Island, Washington 98110, United States
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98104, United States
| | - Christine M Lukacs
- UCB BioSciences, Bainbridge Island, Washington 98110, United States
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98104, United States
| | - Ryan Choi
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98104, United States
| | - Hannah S Udell
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98104, United States
| | - Sydney Willis
- Department of Chemistry, Rollins College, Winter Park, Florida 32789, United States
| | - George Barrera
- Department of Chemistry and Biochemistry, Weber State University, Ogden, Utah 84408, United States
| | - Olive Beyer
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Teng Da Li
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11790, United States
| | - Katherine A Hicks
- Chemistry Department, State University of New York at Cortland, Cortland, New York 13045, United States
| | - Andrew T Torelli
- Department of Chemistry, Ithaca College, Ithaca, New York 14850, United States
| | - Jarrod B French
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| |
Collapse
|
2
|
Chen Y, Wang L, Shang F, Liu W, Lan J, Chen J, Ha NC, Quan C, Nam KH, Xu Y. Structural insight of the 5-(Hydroxyethyl)-methylthiazole kinase ThiM involving vitamin B1 biosynthetic pathway from the Klebsiella pneumoniae. Biochem Biophys Res Commun 2019; 518:513-518. [PMID: 31439375 DOI: 10.1016/j.bbrc.2019.08.086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/08/2023]
Abstract
Thiamin pyrophosphate (TPP) is an essential co-factor in amino acid and carbohydrate metabolic pathways. The TPP-related vitamin B1 biosynthetic pathway is found in most bacterial, plant and lower eukaryotic processes; however, it is not present in humans. In bacterial thiamin synthesis and salvage pathways, the 5-(hydroxyethyl)-methylthiazole kinase (ThiM) is essential in the pathway forming TPP. Thus, ThiM is considered to be an attractive antibacterial drug target. Here, we determined the crystal structures of ThiM from pathogenic Klebsiella pneumoniae (KpThiM) and KpThiM in complex with its substrate 5-(hydroxyethyl)-4-methylthiazole (TZE). KpThiM, consisting of an α-β-α domain, shows a pseudosymmetric trimeric formation. TZE molecules are located in the interface between the KpThiM subunits in the trimer and interact with Met49 and Cys200. Superimposition of the apo and TZE-complexed structures of KpThiM show that the side chains of the amino acids interacting with TZE and Mg2+ have a rigid configuration. Comparison of the ThiM structures shows that KpThiM could, in terms of sequence and configuration, be different from other ThiM proteins, which possess different amino acids that recognize TZE and Mg2+. The structures will provide new insight into the ThiM subfamily proteins for antibacterial drug development.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Lulu Wang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China; School of Life Science and Biotechnology, Dalian University of Technology, No 2 Linggong Road, Dalian, 116024, Liaoning, China
| | - Fei Shang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Wei Liu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Jing Lan
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Jinli Chen
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Chunshan Quan
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China.
| | - Ki Hyun Nam
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea; Institute of Life Science and Natural Resources, Korea University, Seoul, 02841, Republic of Korea.
| | - Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, Liaoning, China; Key Laboratory of Biotechnology and Bioresources Utilization (Dalian Minzu University), Ministry of Education, China.
| |
Collapse
|
3
|
Abstract
Focus a laser on dissolved particles and analyze the scattered light to reveal their size. This well established principle is used in dynamic light scattering (DLS), or also called photon-correlation spectroscopy, which is a widely popular and highly adaptable analytical method applied in different fields of life and material sciences, as well as in industrial quality control processes.
Collapse
Affiliation(s)
- Alice S. Pereira
- grid.10772.330000000121511713Molecular Biophysics Lab., UCIBIO/Requimte, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro Tavares
- grid.10772.330000000121511713Molecular Biophysics Lab., UCIBIO/Requimte, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Paulo Limão-Vieira
- grid.10772.330000000121511713Atomic and Molecular Collisions Laboratory, CEFITEC, Department of Physics, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
4
|
Raf-kinase inhibitor GW5074 shows antibacterial activity against methicillin-resistant Staphylococcus aureus and potentiates the activity of gentamicin. Future Med Chem 2016; 8:1941-1952. [PMID: 27652456 DOI: 10.4155/fmc-2016-0104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Increasing antimicrobial resistance has compromised the effectiveness of many antibiotics, including those used to treat staphylococcal infections like methicillin-resistant Staphylococcus aureus. The development of combination therapies, where antimicrobial agents are used with compounds that inhibit resistance pathways is a promising strategy. Results/methodology: The Raf kinase inhibitor GW5074 exhibited selective in vitro activity against Gram-positive bacteria, including clinical isolates of S. aureus with a minimum inhibitory concentration (MIC) of 2-8 µg/ml. GW5074 was effective in vivo in the Galleria mellonella infection model. The compound showed synergy with gentamicin by lowering MIC by fourfold, compared with gentamicin MIC alone. CONCLUSION This work demonstrates the antimicrobial properties of GW5074 and supports further investigation of the kinase inhibitors as antibiotic adjuvants.
Collapse
|