1
|
Yang C, Li G, Zhang Q, Bai W, Li Q, Zhang P, Zhang J. Histone deacetylase Sir2 promotes the systemic Candida albicans infection by facilitating its immune escape via remodeling the cell wall and maintaining the metabolic activity. mBio 2024; 15:e0044524. [PMID: 38682948 PMCID: PMC11237532 DOI: 10.1128/mbio.00445-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Histone deacetylation affects Candida albicans (C. albicans) pathogenicity by modulating virulence factor expression and DNA damage. The histone deacetylase Sir2 is associated with C. albicans plasticity and maintains genome stability to help C. albicans adapt to various environmental niches. However, whether Sir2-mediated chromatin modification affects C. albicans virulence is unclear. The purpose of our study was to investigate the effect of Sir2 on C. albicans pathogenicity and regulation. Here, we report that Sir2 is required for C. albicans pathogenicity, as its deletion affects the survival rate, fungal burden in different organs and the extent of tissue damage in a mouse model of disseminated candidiasis. We evaluated the impact of Sir2 on C. albicans virulence factors and revealed that the Sir2 null mutant had an impaired ability to adhere to host cells and was more easily recognized by the innate immune system. Comprehensive analysis revealed that the disruption of C. albicans adhesion was due to a decrease in cell surface hydrophobicity rather than the differential expression of adhesion genes on the cell wall. In addition, Sir2 affects the distribution and exposure of mannan and β-glucan on the cell wall, indicating that Sir2 plays a role in preventing the immune system from recognizing C. albicans. Interestingly, our results also indicated that Sir2 helps C. albicans maintain metabolic activity under hypoxic conditions, suggesting that Sir2 contributes to C. albicans colonization at hypoxic sites. In conclusion, our findings provide detailed insights into antifungal targets and a useful foundation for the development of antifungal drugs. IMPORTANCE Candida albicans (C. albicans) is the most common opportunistic fungal pathogen and can cause various superficial infections and even life-threatening systemic infections. To successfully propagate infection, this organism relies on the ability to express virulence-associated factors and escape host immunity. In this study, we demonstrated that the histone deacetylase Sir2 helps C. albicans adhere to host cells and escape host immunity by mediating cell wall remodeling; as a result, C. albicans successfully colonized and invaded the host in vivo. In addition, we found that Sir2 contributes to carbon utilization under hypoxic conditions, suggesting that Sir2 is important for C. albicans survival and the establishment of infection in hypoxic environments. In summary, we investigated the role of Sir2 in regulating C. albicans pathogenicity in detail; these findings provide a potential target for the development of antifungal drugs.
Collapse
Affiliation(s)
- Chen Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Guanglin Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qiyue Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenhui Bai
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qingiqng Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Peipei Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jiye Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Pharmaceutical Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Iracane E, Arias-Sardá C, Maufrais C, Ene IV, d’Enfert C, Buscaino A. Identification of an active RNAi pathway in Candida albicans. Proc Natl Acad Sci U S A 2024; 121:e2315926121. [PMID: 38625945 PMCID: PMC11047096 DOI: 10.1073/pnas.2315926121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/08/2024] [Indexed: 04/18/2024] Open
Abstract
RNA interference (RNAi) is a fundamental regulatory pathway with a wide range of functions, including regulation of gene expression and maintenance of genome stability. Although RNAi is widespread in the fungal kingdom, well-known species, such as the model yeast Saccharomyces cerevisiae, have lost the RNAi pathway. Until now evidence has been lacking for a fully functional RNAi pathway in Candida albicans, a human fungal pathogen considered critically important by the World Health Organization. Here, we demonstrated that the widely used C. albicans reference strain (SC5314) contains an inactivating missense mutation in the gene encoding for the central RNAi component Argonaute. In contrast, most other C. albicans isolates contain a canonical Argonaute protein predicted to be functional and RNAi-active. Indeed, using high-throughput small and long RNA sequencing combined with seamless CRISPR/Cas9-based gene editing, we demonstrate that an active C. albicans RNAi machinery represses expression of subtelomeric gene families. Thus, an intact and functional RNAi pathway exists in C. albicans, highlighting the importance of using multiple reference strains when studying this dangerous pathogen.
Collapse
Affiliation(s)
- Elise Iracane
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, CanterburyCT2 7NZ, United Kingdom
| | - Cristina Arias-Sardá
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, CanterburyCT2 7NZ, United Kingdom
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, Bioinformatic Hub, ParisF-75015, France
| | - Iuliana V. Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Group, ParisF-75015, France
| | - Christophe d’Enfert
- Institut Pasteur, Université Paris Cité, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement USC2019, Fungal Biology and Pathogenicity Unit, ParisF-75015, France
| | - Alessia Buscaino
- Kent Fungal Group, School of Biosciences, Division of Natural Sciences, University of Kent, CanterburyCT2 7NZ, United Kingdom
| |
Collapse
|
3
|
Woodruff AL, Berman J, Anderson M. Strain background of Candida albicans interacts with SIR2 to alter phenotypic switching. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001444. [PMID: 38446018 PMCID: PMC10999749 DOI: 10.1099/mic.0.001444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/15/2024] [Indexed: 03/07/2024]
Abstract
The genetic background between strains of a single species and within a single strain lineage can significantly impact the expression of biological traits. This genetic variation may also reshape epigenetic mechanisms of cell identity and environmental responses that are controlled by interconnected transcriptional networks and chromatin-modifying enzymes. Histone deacetylases, including sirtuins, are critical regulators of chromatin state and have been directly implicated in governing the phenotypic transition between the 'sterile' white state and the mating-competent opaque state in Candida albicans, a common fungal commensal and pathogen of humans. Here, we found that a previously ambiguous role for the sirtuin SIR2 in C. albicans phenotypic switching is likely linked to the genetic background of mutant strains produced in the RM lineage of SC5314. SIR2 mutants in a specific lineage of BWP17 displayed increased frequencies of switching to the opaque state compared to the wild-type. Loss of SIR2 in other SC5314-derived backgrounds, including newly constructed BWP17 sir2Δ/Δ mutants, failed to recapitulate the increased white-opaque switching frequencies observed in the original BWP17 sir2Δ/Δ mutant background. Whole-genome sequencing revealed the presence of multiple imbalanced chromosomes and large loss of heterozygosity tracts that likely interact with SIR2 to increase phenotypic switching in this BWP17 sir2Δ/Δ mutant lineage. These genomic changes are not found in other SC5314-derived sir2Δ/Δ mutants that do not display increased opaque cell formation. Thus, complex karyotypes can emerge during strain construction that modify mutant phenotypes and highlight the importance of validating strain background when interpreting phenotypes.
Collapse
Affiliation(s)
- Andrew L. Woodruff
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Matthew Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, 43210, USA
- Department of Medical Genetics, Laboratory of Genetics, University of Wisconsin – Madison, Madison, WI, 53706, USA
- Center for Genomic Science Innovation, University of Wisconsin – Madison, Madison, WI, 53706, USA
| |
Collapse
|
4
|
Hoyer LL, Freeman BA, Hogan EK, Hernandez AG. Use of a Candida albicans SC5314 PacBio HiFi reads dataset to close gaps in the reference genome assembly, reveal a subtelomeric gene family, and produce accurate phased allelic sequences. Front Cell Infect Microbiol 2024; 14:1329438. [PMID: 38362496 PMCID: PMC10867151 DOI: 10.3389/fcimb.2024.1329438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024] Open
Abstract
Candida albicans SC5314 is the most-often used strain for molecular manipulation of the species. The SC5314 reference genome sequence is the result of considerable effort from many scientists and has advanced research into fungal biology and pathogenesis. Although the resource is highly developed and presented in a phased diploid format, the sequence includes gaps and does not extend to the telomeres on its eight chromosome pairs. Accurate SC5314 genome assembly is complicated by the presence of extensive repeated sequences and considerable allelic length variation at some loci. Advances in genome sequencing technology provide the tools to obtain highly accurate long-read data that span even the most-difficult-to-assemble genome regions. Here, we describe derivation of a PacBio HiFi data set and creation of a collapsed haploid telomere-to-telomere assembly of the SC5314 genome (ASM3268872v1) that revealed previously unknown features of the strain. ASM3268872v1 subtelomeric distances were up to 19 kb larger than in the reference genome and revealed a family of highly conserved DNA helicase-encoding genes at 10 of the 16 chromosome ends. We also describe alignments of individual HiFi reads to deduce accurate diploid sequences for the most notoriously difficult-to-assemble C. albicans genes: the agglutinin-like sequence (ALS) gene family. We provide a tutorial that demonstrates how the HiFi reads can be visualized to explore any region of interest. Availability of the HiFi reads data set and the ASM3268872v1 comparative guide assembly will streamline research efforts because accurate diploid sequences can be derived using simple in silico methods rather than time-consuming laboratory-bench approaches.
Collapse
Affiliation(s)
- Lois L. Hoyer
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Brian A. Freeman
- Department of Mathematics and Computational Sciences, Millikin University, Decatur, IL, United States
| | - Elizabeth K. Hogan
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Alvaro G. Hernandez
- Roy J. Carver Biotechnology Center, University of Illinois Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
5
|
Xie Z, Canalda-Baltrons A, d'Enfert C, Manichanh C. Shotgun metagenomics reveals interkingdom association between intestinal bacteria and fungi involving competition for nutrients. MICROBIOME 2023; 11:275. [PMID: 38098063 PMCID: PMC10720197 DOI: 10.1186/s40168-023-01693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/08/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND The accuracy of internal-transcribed-spacer (ITS) and shotgun metagenomics has not been robustly evaluated, and the effect of diet on the composition and function of the bacterial and fungal gut microbiome in a longitudinal setting has been poorly investigated. Here we compared two approaches to study the fungal community (ITS and shotgun metagenomics), proposed an enrichment protocol to perform a reliable mycobiome analysis using a comprehensive in-house fungal database, and correlated dietary data with both bacterial and fungal communities. RESULTS We found that shotgun DNA sequencing after a new enrichment protocol combined with the most comprehensive and novel fungal databases provided a cost-effective approach to perform gut mycobiome profiling at the species level and to integrate bacterial and fungal community analyses in fecal samples. The mycobiome was significantly more variable than the bacterial community at the compositional and functional levels. Notably, we showed that microbial diversity, composition, and functions were associated with habitual diet composition instead of driven by global dietary changes. Our study indicates a potential competitive inter-kingdom interaction between bacteria and fungi for food foraging. CONCLUSION Together, our present work proposes an efficient workflow to study the human gut microbiome integrating robustly fungal, bacterial, and dietary data. These findings will further advance our knowledge of the interaction between gut bacteria and fungi and pave the way for future investigations in human mycobiome. Video Abstract.
Collapse
Affiliation(s)
- Zixuan Xie
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Aleix Canalda-Baltrons
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Chaysavanh Manichanh
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
6
|
Zhao G, Rusche LN. Sirtuins in Epigenetic Silencing and Control of Gene Expression in Model and Pathogenic Fungi. Annu Rev Microbiol 2022; 76:157-178. [PMID: 35609947 DOI: 10.1146/annurev-micro-041020-100926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fungi, including yeasts, molds, and mushrooms, proliferate on decaying matter and then adopt quiescent forms once nutrients are depleted. This review explores how fungi use sirtuin deacetylases to sense and respond appropriately to changing nutrients. Because sirtuins are NAD+-dependent deacetylases, their activity is sensitive to intracellular NAD+ availability. This allows them to transmit information about a cell's metabolic state on to the biological processes they influence. Fungal sirtuins are primarily known to deacetylate histones, repressing transcription and modulating genome stability. Their target genes include those involved in NAD+ homeostasis, metabolism, sporulation, secondary metabolite production, and virulence traits of pathogenic fungi. By targeting different genes over evolutionary time, sirtuins serve as rewiring points that allow organisms to evolve novel responses to low NAD+ stress by bringing relevant biological processes under the control of sirtuins. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Guolei Zhao
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA; ,
| | - Laura N Rusche
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA; ,
| |
Collapse
|
7
|
Mba IE, Nweze EI, Eze EA, Anyaegbunam ZKG. Genome plasticity in Candida albicans: A cutting-edge strategy for evolution, adaptation, and survival. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105256. [PMID: 35231665 DOI: 10.1016/j.meegid.2022.105256] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/12/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
Abstract
Candida albicans is the most implicated fungal species that grows as a commensal or opportunistic pathogen in the human host. It is associated with many life-threatening infections, especially in immunocompromised persons. The genome of Candida albicans is very flexible and can withstand a wide assortment of variations in a continuously changing environment. Thus, genome plasticity is central to its adaptation and has long been of considerable interest. C. albicans has a diploid heterozygous genome that is highly dynamic and can display variation from small to large scale chromosomal rearrangement and aneuploidy, which have implications in drug resistance, virulence, and pathogenicity. This review presents an up-to-date overview of recent genomic studies involving C. albicans. It discusses the accumulating evidence that shows how mitotic recombination events, ploidy dynamics, aneuploidy, and loss of heterozygosity (LOH) influence evolution, adaptation, and survival in C. albicans. Understanding the factors that affect the genome is crucial for a proper understanding of species and rapid development and adjustment of therapeutic strategies to mitigate their spread.
Collapse
Affiliation(s)
| | | | | | - Zikora Kizito Glory Anyaegbunam
- Institution for Drug-Herbal Medicine-Excipient-Research and Development, Faculty of Pharmaceutical Sciences, Nsukka, Nigeria
| |
Collapse
|
8
|
Lineages Derived from Cryptococcus neoformans Type Strain H99 Support a Link between the Capacity to Be Pleomorphic and Virulence. mBio 2022; 13:e0028322. [PMID: 35258331 PMCID: PMC9040854 DOI: 10.1128/mbio.00283-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathogenic yeast Cryptococcus neoformans causes nearly 200,000 deaths annually in immunocompromised individuals. Cryptococcus cells can undergo substantial morphological change during mammalian infection, including increased capsule and cell size, the release of shed capsule, and the production of titan (>10 μm), micro (<2 μm)-, and irregular cells. We examined phenotypic variation under conditions designed to simulate in vivo stress in a collection of nine lineages derived from the C. neoformans type strain H99. These lineages are highly genetically similar but have a range of virulence levels. Strains from hypervirulent lineages had a larger average capsule size, greater variation in cell size, and an increased production of microcells and shed capsule. We tested whether disruption of SGF29, which encodes a component of the SAGA histone acetylation complex that has previously been implicated in the hypervirulence of some lineages, also has a role in the production of morphological variants. Deletion of SGF29 in a lineage with intermediate virulence substantially increased its production of microcells and released capsule, consistent with a switch to hypervirulence. We further examined SGF29 in a set of 52 clinical isolates and found loss-of-function mutations were significantly correlated with patient death. Expansion of a TA repeat in the second intron of SGF29 was positively correlated with cell and capsule size, suggesting it also affects Sgf29 function. This study extends the evidence for a link between pleomorphism and virulence in Cryptococcus, with a likely role for epigenetic mechanisms mediated by SAGA-induced histone acetylation.
Collapse
|
9
|
Sun X, Wu J, Zhang S, Luo L, Mo C, Sheng L, Ma A. Genome and Comparative Transcriptome Dissection Provide Insights Into Molecular Mechanisms of Sclerotium Formation in Culinary-Medicinal Mushroom Pleurotus tuber-regium. Front Microbiol 2022; 12:815954. [PMID: 35250915 PMCID: PMC8891965 DOI: 10.3389/fmicb.2021.815954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
Pleurotus tuber-regium is an edible and medicinal sclerotium-producing mushroom. The sclerotia of this mushroom also serve as food and folk medicine. Based on the description of its monokaryon genome, sequenced with Illumina and PacBio sequencing technologies, comparative transcriptomic analysis using RNA sequencing (RNA-seq) was employed to study its mechanism of sclerotium formation. The de novo assembled genome is 35.82 Mb in size with a N50 scaffold size of 4.29 Mb and encodes 12,173 putative proteins. Expression analysis demonstrated that 1,146 and 1,249 genes were upregulated and downregulated with the formation of sclerotia, respectively. The differentially expressed genes were associated with substrate decomposition, the oxidation-reduction process, cell wall synthesis, and other biological processes in P. tuber-regium. These genomic and transcriptomic resources provide useful information for the mechanism underlying sclerotium formation in P. tuber-regium.
Collapse
Affiliation(s)
- Xueyan Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Junyue Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuhui Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lu Luo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Cuiyuan Mo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Sheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Agro-Microbial Resources and Utilization, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
10
|
Colabardini AC, Wang F, Miao Z, Pardeshi L, Valero C, de Castro PA, Akiyama DY, Tan K, Nora LC, Silva-Rocha R, Marcet-Houben M, Gabaldón T, Fill T, Wong KH, Goldman GH. Chromatin profiling reveals heterogeneity in clinical isolates of the human pathogen Aspergillus fumigatus. PLoS Genet 2022; 18:e1010001. [PMID: 35007279 PMCID: PMC8782537 DOI: 10.1371/journal.pgen.1010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/21/2022] [Accepted: 12/17/2021] [Indexed: 12/21/2022] Open
Abstract
Invasive Pulmonary Aspergillosis, which is caused by the filamentous fungus Aspergillus fumigatus, is a life-threatening infection for immunosuppressed patients. Chromatin structure regulation is important for genome stability maintenance and has the potential to drive genome rearrangements and affect virulence and pathogenesis of pathogens. Here, we performed the first A. fumigatus global chromatin profiling of two histone modifications, H3K4me3 and H3K9me3, focusing on the two most investigated A. fumigatus clinical isolates, Af293 and CEA17. In eukaryotes, H3K4me3 is associated with active transcription, while H3K9me3 often marks silent genes, DNA repeats, and transposons. We found that H3K4me3 deposition is similar between the two isolates, while H3K9me3 is more variable and does not always represent transcriptional silencing. Our work uncovered striking differences in the number, locations, and expression of transposable elements between Af293 and CEA17, and the differences are correlated with H3K9me3 modifications and higher genomic variations among strains of Af293 background. Moreover, we further showed that the Af293 strains from different laboratories actually differ in their genome contents and found a frequently lost region in chromosome VIII. For one such Af293 variant, we identified the chromosomal changes and demonstrated their impacts on its secondary metabolites production, growth and virulence. Overall, our findings not only emphasize the influence of genome heterogeneity on A. fumigatus fitness, but also caution about unnoticed chromosomal variations among common laboratory strains.
Collapse
Affiliation(s)
- Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Faculty of Health Sciences, University of Macau, Macau SAR of China
| | - Fang Wang
- Faculty of Health Sciences, University of Macau, Macau SAR of China
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhengqiang Miao
- Faculty of Health Sciences, University of Macau, Macau SAR of China
| | - Lakhansing Pardeshi
- Faculty of Health Sciences, University of Macau, Macau SAR of China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau SAR of China
| | - Clara Valero
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Daniel Yuri Akiyama
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Kaeling Tan
- Faculty of Health Sciences, University of Macau, Macau SAR of China
- Genomics, Bioinformatics and Single Cell Analysis Core, Faculty of Health Sciences, University of Macau, Macau SAR of China
| | - Luisa Czamanski Nora
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Silva-Rocha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona, Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Taicia Fill
- Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Koon Ho Wong
- Faculty of Health Sciences, University of Macau, Macau SAR of China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR of China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR of China
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
11
|
Seher TD, Nguyen N, Ramos D, Bapat P, Nobile CJ, Sindi SS, Hernday AD. AddTag, a two-step approach with supporting software package that facilitates CRISPR/Cas-mediated precision genome editing. G3 (BETHESDA, MD.) 2021; 11:jkab216. [PMID: 34544122 PMCID: PMC8496238 DOI: 10.1093/g3journal/jkab216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/13/2021] [Indexed: 12/22/2022]
Abstract
CRISPR/Cas-induced genome editing is a powerful tool for genetic engineering, however, targeting constraints limit which loci are editable with this method. Since the length of a DNA sequence impacts the likelihood it overlaps a unique target site, precision editing of small genomic features with CRISPR/Cas remains an obstacle. We introduce a two-step genome editing strategy that virtually eliminates CRISPR/Cas targeting constraints and facilitates precision genome editing of elements as short as a single base-pair at virtually any locus in any organism that supports CRISPR/Cas-induced genome editing. Our two-step approach first replaces the locus of interest with an "AddTag" sequence, which is subsequently replaced with any engineered sequence, and thus circumvents the need for direct overlap with a unique CRISPR/Cas target site. In this study, we demonstrate the feasibility of our approach by editing transcription factor binding sites within Candida albicans that could not be targeted directly using the traditional gene-editing approach. We also demonstrate the utility of the AddTag approach for combinatorial genome editing and gene complementation analysis, and we present a software package that automates the design of AddTag editing.
Collapse
Affiliation(s)
- Thaddeus D Seher
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA 95343, USA
| | - Namkha Nguyen
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA 95343, USA
| | - Diana Ramos
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA
| | - Priyanka Bapat
- Quantitative and Systems Biology Graduate Program, University of California, Merced, Merced, CA 95343, USA
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA
- Health Sciences Research Institute, University of California, Merced, Merced, CA 95343, USA
| | - Suzanne S Sindi
- Health Sciences Research Institute, University of California, Merced, Merced, CA 95343, USA
- Department of Applied Mathematics, School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA
| | - Aaron D Hernday
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, Merced, CA 95343, USA
- Health Sciences Research Institute, University of California, Merced, Merced, CA 95343, USA
| |
Collapse
|
12
|
Schotanus K, Yadav V, Heitman J. Epigenetic dynamics of centromeres and neocentromeres in Cryptococcus deuterogattii. PLoS Genet 2021; 17:e1009743. [PMID: 34464380 PMCID: PMC8407549 DOI: 10.1371/journal.pgen.1009743] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/26/2021] [Indexed: 11/25/2022] Open
Abstract
Deletion of native centromeres in the human fungal pathogen Cryptococcus deuterogattii leads to neocentromere formation. Native centromeres span truncated transposable elements, while neocentromeres do not and instead span actively expressed genes. To explore the epigenetic organization of neocentromeres, we analyzed the distribution of the heterochromatic histone modification H3K9me2, 5mC DNA methylation and the euchromatin mark H3K4me2. Native centromeres are enriched for both H3K9me2 and 5mC DNA methylation marks and are devoid of H3K4me2, while neocentromeres do not exhibit any of these features. Neocentromeres in cen10Δ mutants are unstable and chromosome-chromosome fusions occur. After chromosome fusion, the neocentromere is inactivated and the native centromere of the chromosome fusion partner remains as the sole, active centromere. In the present study, the active centromere of a fused chromosome was deleted to investigate if epigenetic memory promoted the re-activation of the inactive neocentromere. Our results show that the inactive neocentromere is not re-activated and instead a novel neocentromere forms directly adjacent to the deleted centromere of the fused chromosome. To study the impact of transcription on centromere stability, the actively expressed URA5 gene was introduced into the CENP-A bound regions of a native centromere. The introduction of the URA5 gene led to a loss of CENP-A from the native centromere, and a neocentromere formed adjacent to the native centromere location. Remarkably, the inactive, native centromere remained enriched for heterochromatin, yet the integrated gene was expressed and devoid of H3K9me2. A cumulative analysis of multiple CENP-A distribution profiles revealed centromere drift in C. deuterogattii, a previously unreported phenomenon in fungi. The CENP-A-binding shifted within the ORF-free regions and showed a possible association with a truncated transposable element. Taken together, our findings reveal that neocentromeres in C. deuterogattii are highly unstable and are not marked with an epigenetic memory, distinguishing them from native centromeres. Linear eukaryotic chromosomes require a specific chromosomal region, the centromere, where the macromolecular kinetochore protein complex assembles. In most organisms, centromeres are located in gene-free, repeat-rich chromosomal regions and may or may not be associated with heterochromatic epigenetic marks. We report that the native centromeres of the human fungal pathogen Cryptococcus deuterogattii are enriched with heterochromatin marks. Deleting a centromere in C. deuterogattii results in formation of neocentromeres that span genes. In some cases, neocentromeres are unstable leading to chromosome-chromosome fusions and neocentromere inactivation. These neocentromeres, unlike native centromeres, lack any of the tested heterochromatic marks or any epigenetic memory. We also found that neocentromere formation can be triggered not only by deletion of the native centromere but also by disrupting its function via insertion of a gene. These results show that neocentromere dynamics in this fungal pathogen are unique among organisms studied so far. Our results also revealed key differences between epigenetics of native centromeres between C. deuterogattii and its sister species, C. neoformans. These finding provide an opportunity to test and study the evolution of centromeres, as well as neocentromeres, in this species complex and how it might contribute to their genome evolution.
Collapse
Affiliation(s)
- Klaas Schotanus
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Vikas Yadav
- Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
13
|
Adams AL, Eberle K, Colón JR, Courville E, Xin H. Synthetic conjugate peptide Fba-Met6 (MP12) induces complement-mediated resistance against disseminated Candida albicans. Vaccine 2021; 39:4099-4107. [PMID: 34127293 DOI: 10.1016/j.vaccine.2021.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/27/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022]
Abstract
The fungal genus Candida includes common commensals of the human mucosal membranes, and the most prevalently isolated species, C. albicans, poses a threat of candidemia and disseminated infection associated with an unacceptably high mortality rate and an immense $4 billion burden (US) yearly. Nevertheless, the demand for a vaccine remains wholly unfulfilled and increasingly pressing. We developed a double-peptide construct that is feasible for use in humans with the intention of preventing morbid infection by targeting epitopes derived from fructose bisphosphate aldolase (Fba) and methionine synthase (Met6) which are expressed on the C. albicans cell surface. To test the applicability of the design, we vaccinated mice via the intramuscular (IM) route with the conjugate denoted Fba-Met6 MP12 and showed that the vaccine enhanced survival against a lethal challenge. Because overall endpoint IgG1 and IgG2a antibody titers were robust and these mouse subclasses are associated with protective functionality, we investigated the potential of Fba and Met6 specific antibodies to facilitate the well-defined anti-Candida response by complement, which opsonizes fungi for degradation by primary effectors. Notably, reductions in the fungal burdens and enhanced survival were both abrogated in MP12-vaccinated mice that were pre-challenge dosed with cobra venom factor (CVF), a complement depleting factor. Altogether, we demonstrated that complement is relevant to MP12-based protection against disseminated C. albicans, delineating that a novel, multivalent targeted vaccine against proteins on the surface of C. albicans can enhance the natural response to infection.
Collapse
Affiliation(s)
- Abby L Adams
- Louisiana State University Health Sciences Center, Department of Microbiology, Immunology, and Parasitology, 1901 Perdido St., New Orleans, LA 70112, USA
| | - Karen Eberle
- Louisiana State University Health Sciences Center, Department of Microbiology, Immunology, and Parasitology, 1901 Perdido St., New Orleans, LA 70112, USA
| | - Jonothan Rosario Colón
- Louisiana State University Health Sciences Center, Department of Microbiology, Immunology, and Parasitology, 1901 Perdido St., New Orleans, LA 70112, USA
| | - Evan Courville
- Louisiana State University Health Sciences Center, Department of Microbiology, Immunology, and Parasitology, 1901 Perdido St., New Orleans, LA 70112, USA
| | - Hong Xin
- Louisiana State University Health Sciences Center, Department of Microbiology, Immunology, and Parasitology, 1901 Perdido St., New Orleans, LA 70112, USA.
| |
Collapse
|
14
|
Abstract
Candida albicans is a major human fungal pathogen that encounters varied host environments during infection. In response to environmental cues, C. albicans switches between ovoid yeast and elongated hyphal growth forms, and this morphological plasticity contributes to virulence. Environmental changes that alter the cell's metabolic state could be sensed by sirtuins, which are NAD+-dependent deacetylases. Here, we studied the roles of three sirtuin deacetylases-Sir2, Hst1, and Hst2-in the hyphal growth of C. albicans We made single, double, and triple sirtuin knockout strains and tested their ability to switch from yeast to hyphae. We found that true hypha formation was significantly reduced by the deletion of SIR2 but not HST1 or HST2 Moreover, the expression of hypha-specific genes HWP1, ALS3, and ECE1 decreased in the sir2Δ/Δ mutant compared to the wild type. This regulation of hypha formation was likely dependent on the deacetylase activity of Sir2, as a similar defect in hypha formation was observed when an asparagine known to be required for deacetylation was mutated. Finally, we found that Sir2 and Hst1 were localized to the nucleus, with Sir2 specifically focused in the nucleolus. This nuclear localization suggests a role for Sir2 and Hst1 in regulating gene expression. In contrast, Hst2 was localized to the cytoplasm. In conclusion, our results suggest that Sir2 plays a critical and nonredundant role in hyphal growth of C. albicans IMPORTANCE Candida albicans is one of the most common causes of hospital-acquired systemic fungal infections in the United States. It can switch between ovoid yeast and elongated hyphal growth forms in response to environmental cues. This morphological transition is essential for its survival in the host. Thus, identifying regulators involved in this process can lead to new therapies. In this study, we examined the contribution of three regulators called sirtuins (Sir2, Hst1, and Hst2) to the yeast-to-hypha transition of C. albicans We found that loss of Sir2 but not Hst1 or Hst2 hampered hypha formation. Moreover, the defect was caused by the loss of the catalytic activity of Sir2. Our study may lay the groundwork for discovering novel targets for antifungal therapies.
Collapse
|
15
|
Hagee D, Abu Hardan A, Botero J, Arnone JT. Genomic clustering within functionally related gene families in Ascomycota fungi. Comput Struct Biotechnol J 2020; 18:3267-3277. [PMID: 33209211 PMCID: PMC7653285 DOI: 10.1016/j.csbj.2020.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/15/2020] [Accepted: 10/17/2020] [Indexed: 12/17/2022] Open
Abstract
Multiple mechanisms collaborate for proper regulation of gene expression. One layer of this regulation is through the clustering of functionally related genes at discrete loci throughout the genome. This phenomenon occurs extensively throughout Ascomycota fungi and is an organizing principle for many gene families whose proteins participate in diverse molecular functions throughout the cell. Members of this phylum include organisms that serve as model systems and those of interest medically, pharmaceutically, and for industrial and biotechnological applications. In this review, we discuss the prevalence of functional clustering through a broad range of organisms within the phylum. Position effects on transcription, genomic locations of clusters, transcriptional regulation of clusters, and selective pressures contributing to the formation and maintenance of clusters are addressed, as are common methods to identify and characterize clusters.
Collapse
Affiliation(s)
- Danielle Hagee
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - Ahmad Abu Hardan
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - Juan Botero
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| | - James T. Arnone
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| |
Collapse
|
16
|
Mitotic Recombination and Adaptive Genomic Changes in Human Pathogenic Fungi. Genes (Basel) 2019; 10:genes10110901. [PMID: 31703352 PMCID: PMC6895784 DOI: 10.3390/genes10110901] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022] Open
Abstract
Genome rearrangements and ploidy alterations are important for adaptive change in the pathogenic fungal species Candida and Cryptococcus, which propagate primarily through clonal, asexual reproduction. These changes can occur during mitotic growth and lead to enhanced virulence, drug resistance, and persistence in chronic infections. Examples of microevolution during the course of infection were described in both human infections and mouse models. Recent discoveries defining the role of sexual, parasexual, and unisexual cycles in the evolution of these pathogenic fungi further expanded our understanding of the diversity found in and between species. During mitotic growth, damage to DNA in the form of double-strand breaks (DSBs) is repaired, and genome integrity is restored by the homologous recombination and non-homologous end-joining pathways. In addition to faithful repair, these pathways can introduce minor sequence alterations at the break site or lead to more extensive genetic alterations that include loss of heterozygosity, inversions, duplications, deletions, and translocations. In particular, the prevalence of repetitive sequences in fungal genomes provides opportunities for structural rearrangements to be generated by non-allelic (ectopic) recombination. In this review, we describe DSB repair mechanisms and the types of resulting genome alterations that were documented in the model yeast Saccharomyces cerevisiae. The relevance of similar recombination events to stress- and drug-related adaptations and in generating species diversity are discussed for the human fungal pathogens Candida albicans and Cryptococcus neoformans.
Collapse
|
17
|
Dunn MJ, Anderson MZ. To Repeat or Not to Repeat: Repetitive Sequences Regulate Genome Stability in Candida albicans. Genes (Basel) 2019; 10:genes10110866. [PMID: 31671659 PMCID: PMC6896093 DOI: 10.3390/genes10110866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022] Open
Abstract
Genome instability often leads to cell death but can also give rise to innovative genotypic and phenotypic variation through mutation and structural rearrangements. Repetitive sequences and chromatin architecture in particular are critical modulators of recombination and mutability. In Candida albicans, four major classes of repeats exist in the genome: telomeres, subtelomeres, the major repeat sequence (MRS), and the ribosomal DNA (rDNA) locus. Characterization of these loci has revealed how their structure contributes to recombination and either promotes or restricts sequence evolution. The mechanisms of recombination that give rise to genome instability are known for some of these regions, whereas others are generally unexplored. More recent work has revealed additional repetitive elements, including expanded gene families and centromeric repeats that facilitate recombination and genetic innovation. Together, the repeats facilitate C. albicans evolution through construction of novel genotypes that underlie C. albicans adaptive potential and promote persistence across its human host.
Collapse
Affiliation(s)
- Matthew J. Dunn
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | - Matthew Z. Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +614-247-0058
| |
Collapse
|
18
|
Buscaino A. Chromatin-Mediated Regulation of Genome Plasticity in Human Fungal Pathogens. Genes (Basel) 2019; 10:E855. [PMID: 31661931 PMCID: PMC6896017 DOI: 10.3390/genes10110855] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/18/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022] Open
Abstract
Human fungal pathogens, such as Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans, are a public health problem, causing millions of infections and killing almost half a million people annually. The ability of these pathogens to colonise almost every organ in the human body and cause life-threating infections relies on their capacity to adapt and thrive in diverse hostile host-niche environments. Stress-induced genome instability is a key adaptive strategy used by human fungal pathogens as it increases genetic diversity, thereby allowing selection of genotype(s) better adapted to a new environment. Heterochromatin represses gene expression and deleterious recombination and could play a key role in modulating genome stability in response to environmental changes. However, very little is known about heterochromatin structure and function in human fungal pathogens. In this review, I use our knowledge of heterochromatin structure and function in fungal model systems as a road map to review the role of heterochromatin in regulating genome plasticity in the most common human fungal pathogens: Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans.
Collapse
Affiliation(s)
- Alessia Buscaino
- University of Kent, School of Biosciences, Kent Fungal Group, Canterbury Kent CT2 7NJ, UK.
| |
Collapse
|
19
|
Chromatin Profiling of the Repetitive and Nonrepetitive Genomes of the Human Fungal Pathogen Candida albicans. mBio 2019; 10:mBio.01376-19. [PMID: 31337722 PMCID: PMC6650553 DOI: 10.1128/mbio.01376-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The fungus Candida albicans is an opportunistic pathogen that normally lives on the human body without causing any harm. However, C. albicans is also a dangerous pathogen responsible for millions of infections annually. C. albicans is such a successful pathogen because it can adapt to and thrive in different environments. Chemical modifications of chromatin, the structure that packages DNA into cells, can allow environmental adaptation by regulating gene expression and genome organization. Surprisingly, the contribution of chromatin modification to C. albicans biology is still largely unknown. For the first time, we analyzed C. albicans chromatin modifications on a genome-wide basis. We demonstrate that specific chromatin states are associated with distinct regions of the C. albicans genome and identify the roles of the chromatin modifiers Sir2 and Set1 in shaping C. albicans chromatin and gene expression. Eukaryotic genomes are packaged into chromatin structures that play pivotal roles in regulating all DNA-associated processes. Histone posttranslational modifications modulate chromatin structure and function, leading to rapid regulation of gene expression and genome stability, key steps in environmental adaptation. Candida albicans, a prevalent fungal pathogen in humans, can rapidly adapt and thrive in diverse host niches. The contribution of chromatin to C. albicans biology is largely unexplored. Here, we generated the first comprehensive chromatin profile of histone modifications (histone H3 trimethylated on lysine 4 [H3K4me3], histone H3 acetylated on lysine 9 [H3K9Ac], acetylated lysine 16 on histone H4 [H4K16Ac], and γH2A) across the C. albicans genome and investigated its relationship to gene expression by harnessing genome-wide sequencing approaches. We demonstrated that gene-rich nonrepetitive regions are packaged into canonical euchromatin in association with histone modifications that mirror their transcriptional activity. In contrast, repetitive regions are assembled into distinct chromatin states; subtelomeric regions and the ribosomal DNA (rDNA) locus are assembled into heterochromatin, while major repeat sequences and transposons are packaged in chromatin that bears features of euchromatin and heterochromatin. Genome-wide mapping of γH2A, a marker of genome instability, identified potential recombination-prone genomic loci. Finally, we present the first quantitative chromatin profiling in C. albicans to delineate the role of the chromatin modifiers Sir2 and Set1 in controlling chromatin structure and gene expression. This report presents the first genome-wide chromatin profiling of histone modifications associated with the C. albicans genome. These epigenomic maps provide an invaluable resource to understand the contribution of chromatin to C. albicans biology and identify aspects of C. albicans chromatin organization that differ from that of other yeasts.
Collapse
|
20
|
Todd RT, Wikoff TD, Forche A, Selmecki A. Genome plasticity in Candida albicans is driven by long repeat sequences. eLife 2019; 8:45954. [PMID: 31172944 PMCID: PMC6591007 DOI: 10.7554/elife.45954] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/07/2019] [Indexed: 11/13/2022] Open
Abstract
Genome rearrangements resulting in copy number variation (CNV) and loss of heterozygosity (LOH) are frequently observed during the somatic evolution of cancer and promote rapid adaptation of fungi to novel environments. In the human fungal pathogen Candida albicans, CNV and LOH confer increased virulence and antifungal drug resistance, yet the mechanisms driving these rearrangements are not completely understood. Here, we unveil an extensive array of long repeat sequences (65-6499 bp) that are associated with CNV, LOH, and chromosomal inversions. Many of these long repeat sequences are uncharacterized and encompass one or more coding sequences that are actively transcribed. Repeats associated with genome rearrangements are predominantly inverted and separated by up to ~1.6 Mb, an extraordinary distance for homology-based DNA repair/recombination in yeast. These repeat sequences are a significant source of genome plasticity across diverse strain backgrounds including clinical, environmental, and experimentally evolved isolates, and represent previously uncharacterized variation in the reference genome.
Collapse
Affiliation(s)
- Robert T Todd
- Creighton University Medical School, Omaha, United States
| | - Tyler D Wikoff
- Creighton University Medical School, Omaha, United States
| | | | - Anna Selmecki
- Creighton University Medical School, Omaha, United States
| |
Collapse
|
21
|
Legrand M, Jaitly P, Feri A, d'Enfert C, Sanyal K. Candida albicans: An Emerging Yeast Model to Study Eukaryotic Genome Plasticity. Trends Genet 2019; 35:292-307. [PMID: 30826131 DOI: 10.1016/j.tig.2019.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 01/07/2023]
Abstract
Saccharomyces cerevisiae and Schizosaccharomyces pombe have served as uncontested unicellular model organisms, as major discoveries made in the field of genome biology using yeast genetics have proved to be relevant from yeast to humans. The yeast Candida albicans has attracted much attention because of its ability to switch between a harmless commensal and a dreaded human pathogen. C. albicans bears unique features regarding its life cycle, genome structure, and dynamics, and their links to cell biology and adaptation to environmental challenges. Examples include a unique reproduction cycle with haploid, diploid, and tetraploid forms; a distinctive organisation of chromosome hallmarks; a highly dynamic genome, with extensive karyotypic variations, including aneuploidies, isochromosome formation, and loss-of-heterozygosity; and distinctive links between the response to DNA alterations and cell morphology. These features have made C. albicans emerge as a new and attractive unicellular model to study genome biology and dynamics in eukaryotes.
Collapse
Affiliation(s)
- Mélanie Legrand
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France
| | - Priya Jaitly
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Adeline Feri
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France; Current address: Pathoquest, BioPark, 11 rue Watt, 75013 Paris, France
| | - Christophe d'Enfert
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France.
| | - Kaustuv Sanyal
- Molecular Mycology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.
| |
Collapse
|
22
|
Sitterlé E, Maufrais C, Sertour N, Palayret M, d'Enfert C, Bougnoux ME. Within-Host Genomic Diversity of Candida albicans in Healthy Carriers. Sci Rep 2019; 9:2563. [PMID: 30796326 PMCID: PMC6385308 DOI: 10.1038/s41598-019-38768-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022] Open
Abstract
Genomic variations in Candida albicans, a major fungal pathogen of humans, have been observed upon exposure of this yeast to different stresses and experimental infections, possibly contributing to subsequent adaptation to these stress conditions. Yet, little is known about the extent of genomic diversity that is associated with commensalism, the predominant lifestyle of C. albicans in humans. In this study, we investigated the genetic diversity of C. albicans oral isolates recovered from healthy individuals, using multilocus sequencing typing (MLST) and whole genome sequencing. While MLST revealed occasional differences between isolates collected from a single individual, genome sequencing showed that they differed by numerous single nucleotide polymorphisms, mostly resulting from short-range loss-of-heterozygosity events. These differences were shown to have occurred upon human carriage of C. albicans rather than subsequent in vitro manipulation of the isolates. Thus, C. albicans intra-sample diversity appears common in healthy individuals, higher than that observed using MLST. We propose that diversifying lineages coexist in a single human individual, and this diversity can enable rapid adaptation under stress exposure. These results are crucial for the interpretation of longitudinal studies evaluating the evolution of the C. albicans genome.
Collapse
Affiliation(s)
- Emilie Sitterlé
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
- Unité de Parasitologie-Mycologie, Service de Microbiologie clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France
| | - Corinne Maufrais
- Center for Bioinformatics, BioStatistics and Integrative Biology (C3BI), USR 3756 IP CNRS, Institut Pasteur, Paris, France
| | - Natacha Sertour
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France
| | | | - Christophe d'Enfert
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France
| | - Marie-Elisabeth Bougnoux
- Fungal Biology and Pathogenicity Unit, Department of Mycology, Institut Pasteur, INRA, Paris, France.
- Unité de Parasitologie-Mycologie, Service de Microbiologie clinique, Hôpital Necker-Enfants-Malades, Assistance Publique des Hôpitaux de Paris (APHP), Paris, France.
| |
Collapse
|
23
|
Global analysis of mutations driving microevolution of a heterozygous diploid fungal pathogen. Proc Natl Acad Sci U S A 2018; 115:E8688-E8697. [PMID: 30150418 PMCID: PMC6140516 DOI: 10.1073/pnas.1806002115] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Candida albicans is a heterozygous diploid yeast that is a commensal of the human gastrointestinal tract and a prevalent opportunistic pathogen. Here, whole-genome sequencing was performed on multiple C. albicans isolates passaged both in vitro and in vivo to characterize the complete spectrum of mutations arising in laboratory culture and in the mammalian host. We establish that, independent of culture niche, microevolution is primarily driven by de novo base substitutions and frequent short-tract loss-of-heterozygosity events. An average base-substitution rate of ∼1.2 × 10-10 per base pair per generation was observed in vitro, with higher rates inferred during host infection. Large-scale chromosomal changes were relatively rare, although chromosome 7 trisomies frequently emerged during passaging in a gastrointestinal model and was associated with increased fitness for this niche. Multiple chromosomal features impacted mutational patterns, with mutation rates elevated in repetitive regions, subtelomeric regions, and in gene families encoding cell surface proteins involved in host adhesion. Strikingly, de novo mutation rates were more than 800-fold higher in regions immediately adjacent to emergent loss-of-heterozygosity tracts, indicative of recombination-induced mutagenesis. Furthermore, genomes showed biased patterns of mutations suggestive of extensive purifying selection during passaging. These results reveal how both cell-intrinsic and cell-extrinsic factors influence C. albicans microevolution, and provide a quantitative picture of genome dynamics in this heterozygous diploid species.
Collapse
|
24
|
Bartelli TF, Bruno DCF, Briones MRS. Evidence for Mitochondrial Genome Methylation in the Yeast Candida albicans: A Potential Novel Epigenetic Mechanism Affecting Adaptation and Pathogenicity? Front Genet 2018; 9:166. [PMID: 29896215 PMCID: PMC5986885 DOI: 10.3389/fgene.2018.00166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/26/2018] [Indexed: 12/23/2022] Open
Abstract
The commensal yeast Candida albicans is an opportunistic pathogen. In order to successfully colonize or infect the human body, the fungus must adapt to the host’s environmental conditions, such as low oxygen tension (hypoxia), temperature (37°C), and the different carbon sources available. Previous studies demonstrated the adaptive importance of C. albicans genetic variability for its pathogenicity, although the contributions of epigenetic and the influence of environmental factors are not fully understood. Mitochondria play important roles in fungal energetic metabolism, regulation of nuclear epigenetic mechanisms and pathogenicity. However, the specific impact of inter-strain mitochondrial genome variability and mitochondrial epigenetics in pathogenicity is unclear. Here, we draw attention to this relevant organelle and its potential role in C. albicans pathogenicity and provide preliminary evidence, for the first time, for methylation of the yeast mitochondrial genome. Our results indicate that environmental conditions, such as continuous exposure for 12 weeks to hypoxia and 37°C, decrease the mitochondrial genome methylation in strains SC5314 and L757. However, the methylation decrease is quantitatively different in specific genome positions when strains SC5314 and L757 are compared. We hypothesize that this phenomenon can be promising for future research to understand how physical factors of the host affect the C. albicans mitochondrial genome and its possible impact on adaptation and pathogenicity.
Collapse
Affiliation(s)
- Thais F Bartelli
- Laboratory of Evolutionary Genomics and Biocomplexity, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Genomics, A. C. Camargo Cancer Center, São Paulo, Brazil
| | - Danielle C F Bruno
- Laboratory of Evolutionary Genomics and Biocomplexity, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Marcelo R S Briones
- Laboratory of Evolutionary Genomics and Biocomplexity, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil.,Department of Health Informatics, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Modulation of the Fungal-Host Interaction by the Intra-Species Diversity of C. albicans. Pathogens 2018; 7:pathogens7010011. [PMID: 29342100 PMCID: PMC5874737 DOI: 10.3390/pathogens7010011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/09/2023] Open
Abstract
The incidence of human infections caused by the opportunistic fungal pathogen Candida albicans is on the rise due to increasing numbers of immunosuppressed patients. The importance of the immune system in preventing overgrowth of the colonizing fungus and thereby limiting infection is well recognized and host protective mechanisms widely investigated. Only recently, it was recognized that the natural diversity in the fungal species could also influence the outcome of the interaction between the fungus and the host. C. albicans strain-specific differences are complex and their regulation at the genomic, genetic, and epigenetic level and by environmental factors is only partially understood. In this review, we provide an overview of the natural diversity of C. albicans and discuss how it impacts host-fungal interactions and thereby affects the balance between commensalism versus disease.
Collapse
|
26
|
Sporadic Gene Loss After Duplication Is Associated with Functional Divergence of Sirtuin Deacetylases Among Candida Yeast Species. G3-GENES GENOMES GENETICS 2016; 6:3297-3305. [PMID: 27543294 PMCID: PMC5068949 DOI: 10.1534/g3.116.033845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gene duplication promotes the diversification of protein functions in several ways. Ancestral functions can be partitioned between the paralogs, or a new function can arise in one paralog. These processes are generally viewed as unidirectional. However, paralogous proteins often retain related functions and can substitute for one another. Moreover, in the event of gene loss, the remaining paralog might regain ancestral functions that had been shed. To explore this possibility, we focused on the sirtuin deacetylase SIR2 and its homolog HST1 in the CTG clade of yeasts. HST1 has been consistently retained throughout the clade, whereas SIR2 is only present in a subset of species. These NAD+-dependent deacetylases generate condensed chromatin that represses transcription and stabilizes tandemly repeated sequences. By analyzing phylogenetic trees and gene order, we found that a single duplication of the SIR2/HST1 gene occurred, likely prior to the emergence of the CTG clade. This ancient duplication was followed by at least two independent losses of SIR2. Functional characterization of Sir2 and Hst1 in three species revealed that these proteins have not maintained consistent functions since the duplication. In particular, the rDNA locus is deacetylated by Sir2 in Candida albicans, by Hst1 in C. lusitaniae, and by neither paralog in C. parapsilosis. In addition, the subtelomeres in C. albicans are deacetylated by Sir2 rather than by Hst1, which is orthologous to the sirtuin associated with Saccharomyces cerevisiae subtelomeres. These differences in function support the model that sirtuin deacetylases can regain ancestral functions to compensate for gene loss.
Collapse
|
27
|
Garnaud C, Champleboux M, Maubon D, Cornet M, Govin J. Histone Deacetylases and Their Inhibition in Candida Species. Front Microbiol 2016; 7:1238. [PMID: 27547205 PMCID: PMC4974301 DOI: 10.3389/fmicb.2016.01238] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/25/2016] [Indexed: 11/25/2022] Open
Abstract
Fungi are generally benign members of the human mucosal flora or live as saprophytes in the environment. However, they can become pathogenic, leading to invasive and life threatening infections in vulnerable patients. These invasive fungal infections are regarded as a major public health problem on a similar scale to tuberculosis or malaria. Current treatment for these infections is based on only four available drug classes. This limited therapeutic arsenal and the emergence of drug-resistant strains are a matter of concern due to the growing number of patients to be treated, and new therapeutic strategies are urgently needed. Adaptation of fungi to drug pressure involves transcriptional regulation, in which chromatin dynamics and histone modifications play a major role. Histone deacetylases (HDACs) remove acetyl groups from histones and actively participate in controlling stress responses. HDAC inhibition has been shown to limit fungal development, virulence, biofilm formation, and dissemination in the infected host, while also improving the efficacy of existing antifungal drugs toward Candida spp. In this article, we review the functional roles of HDACs and the biological effects of HDAC inhibitors on Candida spp., highlighting the correlations between their pathogenic effects in vitro and in vivo. We focus on how HDAC inhibitors could be used to treat invasive candidiasis while also reviewing recent developments in their clinical evaluation.
Collapse
Affiliation(s)
- Cécile Garnaud
- Laboratoire de Parasitologie-Mycologie, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble AlpesGrenoble, France; Laboratoire TIMC-IMAG-TheREx, UMR 5525 CNRS-UGA, Université Grenoble AlpesGrenoble, France
| | - Morgane Champleboux
- Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale U1038, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Biosciences and Biotechnology Institute of Grenoble - Large Scale Biology Laboratory Grenoble, France
| | - Danièle Maubon
- Laboratoire de Parasitologie-Mycologie, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble AlpesGrenoble, France; Laboratoire TIMC-IMAG-TheREx, UMR 5525 CNRS-UGA, Université Grenoble AlpesGrenoble, France
| | - Muriel Cornet
- Laboratoire de Parasitologie-Mycologie, Institut de Biologie et de Pathologie, Centre Hospitalier Universitaire Grenoble AlpesGrenoble, France; Laboratoire TIMC-IMAG-TheREx, UMR 5525 CNRS-UGA, Université Grenoble AlpesGrenoble, France
| | - Jérôme Govin
- Université Grenoble Alpes, Institut National de la Santé et de la Recherche Médicale U1038, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Biosciences and Biotechnology Institute of Grenoble - Large Scale Biology Laboratory Grenoble, France
| |
Collapse
|
28
|
Freire-Benéitez V, Gourlay S, Berman J, Buscaino A. Sir2 regulates stability of repetitive domains differentially in the human fungal pathogen Candida albicans. Nucleic Acids Res 2016; 44:9166-9179. [PMID: 27369382 PMCID: PMC5100595 DOI: 10.1093/nar/gkw594] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/21/2016] [Indexed: 12/29/2022] Open
Abstract
DNA repeats, found at the ribosomal DNA locus, telomeres and subtelomeric regions, are unstable sites of eukaryotic genomes. A fine balance between genetic variability and genomic stability tunes plasticity of these chromosomal regions. This tuning mechanism is particularly important for organisms such as microbial pathogens that utilise genome plasticity as a strategy for adaptation. For the first time, we analyse mechanisms promoting genome stability at the rDNA locus and subtelomeric regions in the most common human fungal pathogen: Candida albicans. In this organism, the histone deacetylase Sir2, the master regulator of heterochromatin, has acquired novel functions in regulating genome stability. Contrary to any other systems analysed, C. albicans Sir2 is largely dispensable for repressing recombination at the rDNA locus. We demonstrate that recombination at subtelomeric regions is controlled by a novel DNA element, the TLO Recombination Element, TRE, and by Sir2. While the TRE element promotes high levels of recombination, Sir2 represses this recombination rate. Finally, we demonstrate that, in C. albicans, mechanisms regulating genome stability are plastic as different environmental stress conditions lead to general genome instability and mask the Sir2-mediated recombination control at subtelomeres. Our data highlight how mechanisms regulating genome stability are rewired in C. albicans.
Collapse
Affiliation(s)
| | - Sarah Gourlay
- University of Kent, School of Biosciences, Canterbury, Kent CT2 7NJ, UK
| | - Judith Berman
- Department of Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Alessia Buscaino
- University of Kent, School of Biosciences, Canterbury, Kent CT2 7NJ, UK
| |
Collapse
|
29
|
Freire-Benéitez V, Price RJ, Buscaino A. The Chromatin of Candida albicans Pericentromeres Bears Features of Both Euchromatin and Heterochromatin. Front Microbiol 2016; 7:759. [PMID: 27242771 PMCID: PMC4871872 DOI: 10.3389/fmicb.2016.00759] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/05/2016] [Indexed: 01/06/2023] Open
Abstract
Centromeres, sites of kinetochore assembly, are important for chromosome stability and integrity. Most eukaryotes have regional centromeres epigenetically specified by the presence of the histone H3 variant CENP-A. CENP-A chromatin is often surrounded by pericentromeric regions packaged into transcriptionally silent heterochromatin. Candida albicans, the most common human fungal pathogen, possesses small regional centromeres assembled into CENP-A chromatin. The chromatin state of C. albicans pericentromeric regions is unknown. Here, for the first time, we address this question. We find that C. albicans pericentromeres are assembled into an intermediate chromatin state bearing features of both euchromatin and heterochromatin. Pericentromeric chromatin is associated with nucleosomes that are highly acetylated, as found in euchromatic regions of the genome; and hypomethylated on H3K4, as found in heterochromatin. This intermediate chromatin state is inhibitory to transcription and partially represses expression of proximal genes and inserted marker genes. Our analysis identifies a new chromatin state associated with pericentromeric regions.
Collapse
Affiliation(s)
| | - R Jordan Price
- School of Biosciences Canterbury Kent, University of Kent Canterbury, UK
| | - Alessia Buscaino
- School of Biosciences Canterbury Kent, University of Kent Canterbury, UK
| |
Collapse
|