1
|
Identification and analysis of putative tRNA genes in baculovirus genomes. Virus Res 2022; 322:198949. [PMID: 36181979 DOI: 10.1016/j.virusres.2022.198949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022]
Abstract
Transfer RNAs (tRNAs) genes are both coded for and arranged along some viral genomes representing the entire virosphere and seem to play different biological functions during infection, other than transferring the correct amino acid to a growing peptide chain. Baculovirus genome description and annotation has focused mostly on protein-coding genes, microRNA, and homologous regions. Here we carried out a large-scale in silico search for putative tRNA genes in baculovirus genomes. Ninety-six of 257 baculovirus genomes analyzed was found to contain at least one putative tRNA gene. We found great diversity in primary and secondary structure, in location within the genome, in intron presence and size, and in anti-codon identity. In some cases, genes of tRNA-containing genomes were found to have a bias for the codons specified by the tRNAs present in such genomes. Moreover, analysis revealed that most of the putative tRNA genes possessed conserved motifs for tRNA type 2 promoters, including the A-box and B-box motifs with few mismatches from the eukaryotic canonical motifs. From publicly available small RNA deep sequencing datasets of baculovirus-infected insect cells, we found evidence that a putative Autographa californica multiple nucleopolyhedrovirus Gln-tRNA gene was transcribed and modified with the addition of the non-templated 3'-CCA tail found at the end of all tRNAs. Further research is needed to determine the expression and functionality of these viral tRNAs.
Collapse
|
2
|
Harrison RL, Rowley DL. The Parapoynx stagnalis Nucleopolyhedrovirus (PastNPV), a Divergent Member of the Alphabaculovirus Group I Clade, Encodes a Homolog of Ran GTPase. Viruses 2022; 14:v14102289. [PMID: 36298845 PMCID: PMC9610796 DOI: 10.3390/v14102289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/23/2022] Open
Abstract
We report the analysis of the genome of a novel Alphabaculovirus, Parapoynx stagnalis nucleopolyhedrovirus isolate 473 (PastNPV-473), from cadavers of the rice case bearer, Parapoynx stagnalis Zeller (Lepidoptera: Crambidae), collected in rice fields in Kerala, India. High-throughput sequencing of DNA from PastNPV occlusion bodies and assembly of the data yielded a circular genome-length contig of 114,833 bp with 126 annotated opening reading frames (ORFs) and six homologous regions (hrs). Phylogenetic inference based on baculovirus core gene amino acid sequence alignments indicated that PastNPV is a member of the group I clade of viruses in genus Alphabaculovirus, but different phylogenetic methods yielded different results with respect to the placement of PastNPV and four similarly divergent alphabaculoviruses in the group I clade. Branch lengths and Kimura-2-parameter pairwise nucleotide distances indicated that PastNPV-473 cannot be classified in any of the currently listed species in genus Alphabaculovirus. A unique feature of the PastNPV genome was the presence of an ORF encoding a homolog of Ran GTPase, a regulator of nucleocytoplasmic trafficking. PastNPV appears to have acquired a homolog of Ran relatively recently from a lepidopteran host via horizontal gene transfer.
Collapse
|
3
|
Khajje D, Devi SS, Subrahmanyam G, Kobayashi J, Sivaprasad V, Terenius O, Ponnuvel KM. Investigation on Pathological Aspects, Mode of Transmission, and Tissue Tropism of Antheraea proylei Nucleopolyhedrovirus Infecting Oak Tasar Silkworm. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:9. [PMID: 36208151 PMCID: PMC9543400 DOI: 10.1093/jisesa/ieac057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Indexed: 06/16/2023]
Abstract
The temperate oak tasar silkworm, Antheraea proylei, is frequently infested with Antheraea proylei nucleopolyhedrovirus (AnprNPV) causing tiger band disease. This disease is one of the key factors that obstructs production and productivity of oak tasar sericulture. The current study aimed to investigate the pathogenicity of AnprNPV, its mode of transmission, and detection of AnprNPV in different tissues. Transmission electron micrographs of AnprNPV showed single rod-shaped bodies and occlusion derived virus (ODV) enclosed within multiple envelopes. The infecting AnprNPV displayed tissue tropism with higher copy numbers detected in the insect fat body and ovary. The virus was observed to multiply in all developmental stages of the silkworm such as egg, larva, pupa, and moth, confirming its ability to spread throughout the silkworm lifecycle. Baculovirus isolated from infected A. proylei showed cross-infectivity in other Saturniidae wild silkworm species such as Antheraea pernyi, A. frithi, and Samia ricini, widening their probable host range for infection. Baculoviruses generally display a horizontal mode of transmission, mainly through ingestion of occlusion bodies (OBs); however, the present study revealed a trans-ovum vertical mode of transmission in addition to a horizontal mode. The observations made in this study aid a detailed understanding of the tiger band disease and its causative pathogen AnprNPV, which will support future studies and disease management in oak tasar sericulture.
Collapse
Affiliation(s)
- Diksha Khajje
- Genomic Division, Seri biotech Research Laboratory, Carmelaram Post, Kodathi, Bangalore 560035, India
- Department of Biotechnology, School of Sciences, Jain University, Bangalore 560027, India
| | | | - Gangavarapu Subrahmanyam
- Genomic Division, Seri biotech Research Laboratory, Carmelaram Post, Kodathi, Bangalore 560035, India
| | - Jun Kobayashi
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 1677-1, Yoshida, Yamaguchi 753-8515, Japan
| | - Vankadara Sivaprasad
- Genomic Division, Seri biotech Research Laboratory, Carmelaram Post, Kodathi, Bangalore 560035, India
| | | | - Kangayam M Ponnuvel
- Genomic Division, Seri biotech Research Laboratory, Carmelaram Post, Kodathi, Bangalore 560035, India
| |
Collapse
|
4
|
Casafús MG, Gritti MA, González KY, Sánchez MN, Sciani JM, Martínez MM, Teibler GP, Peichoto ME. Unraveling the distinctive venomous features of the saturniid Hylesia sp.: An integrative approach of a public health concern in Argentina. Acta Trop 2022; 231:106428. [PMID: 35339435 DOI: 10.1016/j.actatropica.2022.106428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
The saturniid genus Hylesia is well known for the cutaneous lepidopterism induced by airborne setae on contact with the skin. Although several cases of such dermatitis have been reported in Argentina, no information about their venoms and toxicological implications on human health is available yet. Thus, we conducted a morphological analysis of the setae/spines and a toxinological characterization (through biological assays and proteomic techniques) of the bristle extract from caterpillars and moths of Hylesia sp. from Misiones, Argentina. By scanning electron microscopy, we revealed the various and distinctive types of urticating structures: harpoon-shaped or spiny setae in caterpillars, and setae with barb-like structures in female moths. Their venom electrophoretic profiles were substantially different, presenting proteins related to toxicity, such as serpins and serine peptidases. The female moth venom exhibited higher caseinolytic activity than the caterpillar venom, and coincidentally only the former noticeably hydrolyzed fibrinogen and gelatin. In addition, the female venom displayed a dose-dependent procoagulant effect. The injection of this venom into mouse skin led to the rapid detection of an increased number of intact and degranulated mast cells in the dermis; a few areas of focal subcutaneous hemorrhage were also observed after 5 h of injection. Altogether, this study provides relevant information about the pathophysiological mechanisms whereby Hylesia sp. from northeastern Argentina can induce toxicity on human beings, and paves the way for treatment strategies of accidents caused by this saturniid lepidopteran.
Collapse
Affiliation(s)
- Milena G Casafús
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Nacional de Medicina Tropical (INMeT) - ANLIS "Dr. Carlos G Malbrán", Almafuerte y Ámbar s/n, 3370 Puerto, Iguazú, Argentina
| | - Micaela A Gritti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Nacional de Medicina Tropical (INMeT) - ANLIS "Dr. Carlos G Malbrán", Almafuerte y Ámbar s/n, 3370 Puerto, Iguazú, Argentina
| | - Karen Y González
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Nacional de Medicina Tropical (INMeT) - ANLIS "Dr. Carlos G Malbrán", Almafuerte y Ámbar s/n, 3370 Puerto, Iguazú, Argentina; Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, 3400 Corrientes, Argentina
| | - Matías N Sánchez
- Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, 3400 Corrientes, Argentina
| | - Juliana M Sciani
- Laboratório Multidisciplinar de Pesquisa, Universidade São Francisco, Av. São Francisco de Assis 218, 12916-900 Bragança Paulista, SP, Brazil
| | - María M Martínez
- Instituto Nacional de Medicina Tropical (INMeT) - ANLIS "Dr. Carlos G Malbrán", Almafuerte y Ambar s/n, 3370 Puerto Iguazú, Argentina
| | - Gladys P Teibler
- Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral 2139, 3400 Corrientes, Argentina
| | - María E Peichoto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Nacional de Medicina Tropical (INMeT) - ANLIS "Dr. Carlos G Malbrán", Almafuerte y Ámbar s/n, 3370 Puerto, Iguazú, Argentina.
| |
Collapse
|
5
|
Resmin C, Santos ER, Sosa-Gómez DR, Ribeiro BM, Ardisson-Araújo DMP. Characterization and genomic analyses of a novel alphabaculovirus isolated from the black armyworm, Spodoptera cosmioides (Lepidoptera: Noctuidae). Virus Res 2022; 316:198797. [DOI: 10.1016/j.virusres.2022.198797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
|
6
|
Jukes MD. Reads in a haystack: extracting complete mitogenome sequences hidden in baculovirus datasets. INSECT MOLECULAR BIOLOGY 2021; 30:541-551. [PMID: 34251705 DOI: 10.1111/imb.12724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/26/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Thaumatotibia leucotreta (Lepidoptera, Tortricidae) is one of many economically important insect pests for which no complete mitogenome sequence is available. The complete mitochondrial sequences for this species and other key pests could assist in the development of novel molecular techniques, such as enabling the identification of population-specific markers which could assist in improved monitoring of populations. The objective of this study was to determine whether NGS datasets generated for entomopathogenic viruses contain reads originating from host mitochondrial DNA. A total of 28 NGS datasets generated for the baculovirus Cryptophlebia leucotreta granulovirus (CrleGV) were analysed in this study. Three datasets contained sufficient reads providing adequate coverage for the assembly of complete mitogenomes. All 13 protein-coding genes, 22 tRNAs and both rRNAs present in the mitogenomes of other species within the Grapholitini tribe, were identified. Phylogenetic analysis of the mitogenomes at both an intrafamilial and interspecies level grouped the sequences within the Olethreutinae and T. leucotreta clades, respectively. Analysis of single nucleotide variations (SNVs) between each T. leucotreta sequence indicated up to 75 differences across the mitogenome. The methodology used in this study could be expanded to other baculovirus NGS datasets enabling the generation of novel lepidopteran mitogenome sequences.
Collapse
Affiliation(s)
- M D Jukes
- Centre for Biological Control, Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
- Department of Biochemistry and Microbiology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
7
|
Sosa-Gómez DR, Morgado FS, Corrêa RFT, Silva LA, Ardisson-Araújo DMP, Rodrigues BMP, Oliveira EE, Aguiar RWS, Ribeiro BM. Entomopathogenic Viruses in the Neotropics: Current Status and Recently Discovered Species. NEOTROPICAL ENTOMOLOGY 2020; 49:315-331. [PMID: 32358711 DOI: 10.1007/s13744-020-00770-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
The market for biological control of insect pests in the world and in Brazil has grown in recent years due to the unwanted ecological and human health impacts of chemical insecticides. Therefore, research on biological control agents for pest management has also increased. For instance, insect viruses have been used to protect crops and forests around the world for decades. Among insect viruses, the baculoviruses are the most studied and used viral biocontrol agent. More than 700 species of insects have been found to be naturally infected by baculoviruses, with 90% isolated from lepidopteran insects. In this review, some basic aspects of baculovirus infection in vivo and in vitro infection, gene content, viral replication will be discussed. Furthermore, we provide examples of the use of insect viruses for biological pest control and recently characterized baculoviruses in Brazil.
Collapse
Affiliation(s)
- D R Sosa-Gómez
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Soja, Londrina, PR, Brasil
| | - F S Morgado
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil
| | - R F T Corrêa
- Depto de Biotecnologia, Univ Federal de Tocantins, Gurupi, TO, Brasil
| | - L A Silva
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil
| | - D M P Ardisson-Araújo
- Depto de Bioquímica e Biologia Molecular, Univ Federal de Santa Maria, Santa Maria, RS, Brasil
| | - B M P Rodrigues
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil
| | - E E Oliveira
- Depto de Entomologia, Univ Federal de Viçosa, Viçosa, MG, Brasil
| | - R W S Aguiar
- Depto de Biotecnologia, Univ Federal de Tocantins, Gurupi, TO, Brasil
| | - B M Ribeiro
- Depto de Biologia Celular, Univ of Brasília, Brasília, DF, Brasil.
| |
Collapse
|
8
|
Huang YF, Chen TH, Chang ZT, Wang TC, Lee SJ, Kim JC, Kim JS, Chiu KP, Nai YS. Genomic sequencing of Troides aeacus nucleopolyhedrovirus (TraeNPV) from golden birdwing larvae (Troides aeacus formosanus) to reveal defective Autographa californica NPV genomic features. BMC Genomics 2019; 20:419. [PMID: 31133070 PMCID: PMC6537400 DOI: 10.1186/s12864-019-5713-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 04/17/2019] [Indexed: 11/25/2022] Open
Abstract
Background The golden birdwing butterfly (Troides aeacus formosanus) is a rarely observed species in Taiwan. Recently, a typical symptom of nuclear polyhedrosis was found in reared T. aeacus larvae. From the previous Kimura-2 parameter (K-2-P) analysis based on the nucleotide sequence of three genes in this isolate, polh, lef-8 and lef-9, the underlying virus did not belong to any known nucleopolyhedrovirus (NPV) species. Therefore, this NPV was provisionally named “TraeNPV”. To understand this NPV, the nucleotide sequence of the whole TraeNPV genome was determined using next-generation sequencing (NGS) technology. Results The genome of TraeNPV is 125,477 bp in length with 144 putative open reading frames (ORFs) and its GC content is 40.45%. A phylogenetic analysis based on the 37 baculoviral core genes suggested that TraeNPV is a Group I NPV that is closely related to Autographa californica nucleopolyhedrovirus (AcMNPV). A genome-wide analysis showed that TraeNPV has some different features in its genome compared with other NPVs. Two novel ORFs (Ta75 and Ta139), three truncated ORFs (pcna, he65 and bro) and one duplicated ORF (38.7 K) were found in the TraeNPV genome; moreover, there are fewer homologous regions (hrs) than there are in AcMNPV, which shares eight hrs within the TraeNPV genome. TraeNPV shares similar genomic features with AcMNPV, including the gene content, gene arrangement and gene/genome identity, but TraeNPV lacks 15 homologous ORFs from AcMNPV in its genome, such as ctx, host cell-specific factor 1 (hcf-1), PNK/PNL, vp15, and apsup, which are involved in the auxiliary functions of alphabaculoviruses. Conclusions Based on these data, TraeNPV would be clarified as a new NPV species with defective AcMNPV genomic features. The precise relationship between TraeNPV and other closely related NPV species were further investigated. This report could provide comprehensive information on TraeNPV for evolutionary insights into butterfly-infected NPV. Electronic supplementary material The online version of this article (10.1186/s12864-019-5713-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu-Feng Huang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Tzu-Han Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Zih-Ting Chang
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | - Tai-Chuan Wang
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Se Jin Lee
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju, South Korea
| | - Jong Cheol Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju, South Korea
| | - Jae Su Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju, South Korea
| | - Kuo-Ping Chiu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yu-Shin Nai
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan.
| |
Collapse
|
9
|
Drezen JM, Josse T, Bézier A, Gauthier J, Huguet E, Herniou EA. Impact of Lateral Transfers on the Genomes of Lepidoptera. Genes (Basel) 2017; 8:E315. [PMID: 29120392 PMCID: PMC5704228 DOI: 10.3390/genes8110315] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 11/25/2022] Open
Abstract
Transfer of DNA sequences between species regardless of their evolutionary distance is very common in bacteria, but evidence that horizontal gene transfer (HGT) also occurs in multicellular organisms has been accumulating in the past few years. The actual extent of this phenomenon is underestimated due to frequent sequence filtering of "alien" DNA before genome assembly. However, recent studies based on genome sequencing have revealed, and experimentally verified, the presence of foreign DNA sequences in the genetic material of several species of Lepidoptera. Large DNA viruses, such as baculoviruses and the symbiotic viruses of parasitic wasps (bracoviruses), have the potential to mediate these transfers in Lepidoptera. In particular, using ultra-deep sequencing, newly integrated transposons have been identified within baculovirus genomes. Bacterial genes have also been acquired by genomes of Lepidoptera, as in other insects and nematodes. In addition, insertions of bracovirus sequences were present in the genomes of certain moth and butterfly lineages, that were likely corresponding to rearrangements of ancient integrations. The viral genes present in these sequences, sometimes of hymenopteran origin, have been co-opted by lepidopteran species to confer some protection against pathogens.
Collapse
Affiliation(s)
- Jean-Michel Drezen
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR des Sciences et Techniques, Université de Tours-François Rabelais, 37200 Tours, France.
| | - Thibaut Josse
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR des Sciences et Techniques, Université de Tours-François Rabelais, 37200 Tours, France.
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR des Sciences et Techniques, Université de Tours-François Rabelais, 37200 Tours, France.
| | - Jérémy Gauthier
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR des Sciences et Techniques, Université de Tours-François Rabelais, 37200 Tours, France.
| | - Elisabeth Huguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR des Sciences et Techniques, Université de Tours-François Rabelais, 37200 Tours, France.
| | - Elisabeth Anne Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, UFR des Sciences et Techniques, Université de Tours-François Rabelais, 37200 Tours, France.
| |
Collapse
|
10
|
Castro MEB, Melo FL, Tagliari M, Inglis PW, Craveiro SR, Ribeiro ZMA, Ribeiro BM, Báo SN. The genome sequence of Condylorrhiza vestigialis NPV, a novel baculovirus for the control of the Alamo moth on Populus spp. in Brazil. J Invertebr Pathol 2017; 148:152-161. [PMID: 28669710 DOI: 10.1016/j.jip.2017.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022]
Abstract
Condylorrhiza vestigialis (Lepidoptera: Cambridae), commonly known as the Brazilian poplar moth or Alamo moth, is a serious defoliating pest of poplar, a crop of great economic importance for the production of wood, fiber, biofuel and other biomaterials as well as its significant ecological and environmental value. The complete genome sequence of a new alphabaculovirus isolated from C. vestigialis was determined and analyzed. Condylorrhiza vestigialis nucleopolyhedrovirus (CoveNPV) has a circular double-stranded DNA genome of 125,767bp with a GC content of 42.9%. One hundred and thirty-eight putative open reading frames were identified and annotated in the CoveNPV genome, including 38 core genes and 9 bros. Four homologous regions (hrs), a feature common to most baculoviruses, and 19 perfect and imperfect direct repeats (drs) were found. Phylogenetic analysis confirmed that CoveNPV is a Group I Alphabaculovirus and is most closely related to Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV) and Choristoneura fumiferana DEF multiple nucleopolyhedrovirus CfDEFMNPV. The gp37 gene was not detected in the CoveNPV genome, although this gene is found in many NPVs. Two other common NPV genes, chitinase (v-chiA) and cathepsin (v-cath), that are responsible for host insect liquefaction and melanization, were also absent, where phylogenetic analysis suggests that the loss these genes occurred in the common ancestor of AgMNPV, CfDEFMNPV and CoveNPV, with subsequent reacquisition of these genes by CfDEFMNPV. The molecular biology and genetics of CoveNPV was formerly very little known and our expectation is that the findings presented here should accelerate research on this baculovirus, which will facilitate the use of CoveNPV in integrated pest management programs in Poplar crops.
Collapse
Affiliation(s)
| | - Fernando L Melo
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | - Marina Tagliari
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil; Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | - Peter W Inglis
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Saluana R Craveiro
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil; Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | | | - Bergmann M Ribeiro
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| | - Sônia N Báo
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, Brazil
| |
Collapse
|