1
|
Zhang T, Zhong Y, Shi Y, Feng C, Xu L, Chen Z, Sun X, Zhao Y, Sun X. Multi-omics reveals that 5-O-methylvisammioside prevention acute liver injury in mice by regulating the TNF/MAPK/NF-κB/arachidonic acid pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155550. [PMID: 38522313 DOI: 10.1016/j.phymed.2024.155550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND The pathogenesis of acute liver injury (ALI) has been a pressing issue in the medical scientific community. We previously found that 5-O-methylvisammioside (MeV) from Saposhnikovia divaricata (Turcz.) Schischk has excellent anti-inflammatory properties. However, the mechanism by which MeV protects against ALI still needs to be deeply investigated. PURPOSE In the present study, we established an acetaminophen (APAP) -induced ALI mouse model and pre-protected the mice with MeV. METHODS & RESULTS Our findings indicate that MeV (5 and 10 mg/kg) lowered the blood levels of alanine aminotransferase and aspartate aminotransferase and reduced the infiltration of inflammatory cells in the liver. MeV initially showed an inhibitory effect on ALI. We then analyzed the molecular mechanisms underlying the effects of MeV by transcriptomic and metabolomic analyzes. Through transcriptomic analysis, we identified 4675 differentially expressed genes between the APAP+MeV group and the APAP-induced ALI group, which were mainly enriched in the MAPK pathway, the TNF pathway, and the NF-κB pathway. Through metabolomic analysis, we found that 249 metabolites in the liver were differentially regulated between the APAP+MeV group and the APAP- induced ALI group, which were mainly enriched in the arachidonic acid pathway. The mRNA expression levels of key genes (encoding TNF-α, p38, AP-1, RelB, IL-1β, and Ptges), as determined by RT-PCR analysis, were consistent with the RNA-seq data. The ELISA results indicate that MeV markedly decreased the serum levels of TNF-α and IL-1β in mice. Finally, the key proteins in the NF-κB and MAPK pathways were examined using immunoblotting. The results showed that MeV decreased IκB-α phosphorylation and inhibited the nuclear translocation of NF-κB. In addition, MeV reduced the hepatic inflammatory burst mainly by inhibiting the phosphorylation of p38 and JNK in the MAPK pathway. CONCLUSION The present study demonstrated (i) that MeV could ameliorate APAP-induced ALI by inhibiting arachidonic acid metabolism and the TNF, MAPK, and NF-κB pathways, and (ii) that MeV is a promising drug candidate for the prevention of ALI.
Collapse
Affiliation(s)
- Tingwen Zhang
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China
| | - Yue Zhong
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China
| | - Yan Shi
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China
| | - Chengcheng Feng
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China
| | - Lu Xu
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China
| | - Zheng Chen
- Jilin Hospital of Integrated Traditional Chinese and Western Medicine, No.9 Changchun Road, Chuanying District, Jilin City, Jilin Province, China
| | - Xin Sun
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, No. 2888, Xincheng Street, Nanguan District, Changchun City, Jilin Province, China.
| | - Xialin Sun
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China.
| |
Collapse
|
2
|
Jaroszewski J, Mamun N, Czaja K. Bidirectional Interaction between Tetracyclines and Gut Microbiome. Antibiotics (Basel) 2023; 12:1438. [PMID: 37760733 PMCID: PMC10525114 DOI: 10.3390/antibiotics12091438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
The escalating misuse of antibiotics, particularly broad-spectrum antibiotics, has emerged as a pivotal driver of drug resistance. Among these agents, tetracyclines are widely prescribed for bacterial infections, but their indiscriminate use can profoundly alter the gut microbiome, potentially compromising both their effectiveness and safety. This review delves into the intricate and dynamic interplay between tetracyclines and the gut microbiome, shedding light on their reciprocal influence. By exploring the effects of tetracyclines on the gut microbiome and the impact of gut microbiota on tetracycline therapy, we seek to gain deeper insights into this complex relationship, ultimately guiding strategies for preserving antibiotic efficacy and mitigating resistance development.
Collapse
Affiliation(s)
- Jerzy Jaroszewski
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego 13, 10-718 Olsztyn, Poland;
| | - Niles Mamun
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Krzysztof Czaja
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| |
Collapse
|
3
|
Iancu MA, Profir M, Roşu OA, Ionescu RF, Cretoiu SM, Gaspar BS. Revisiting the Intestinal Microbiome and Its Role in Diarrhea and Constipation. Microorganisms 2023; 11:2177. [PMID: 37764021 PMCID: PMC10538221 DOI: 10.3390/microorganisms11092177] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The gut microbiota represents a community of microorganisms (bacteria, fungi, archaea, viruses, and protozoa) that colonize the gut and are responsible for gut mucosal structural integrity and immune and metabolic homeostasis. The relationship between the gut microbiome and human health has been intensively researched in the past years. It is now widely recognized that gut microbial composition is highly responsible for the general health of the host. Among the diseases that have been linked to an altered gut microbial population are diarrheal illnesses and functional constipation. The capacity of probiotics to modulate the gut microbiome population, strengthen the intestinal barrier, and modulate the immune system together with their antioxidant properties have encouraged the research of probiotic therapy in many gastrointestinal afflictions. Dietary and lifestyle changes and the use of probiotics seem to play an important role in easing constipation and effectively alleviating diarrhea by suppressing the germs involved. This review aims to describe how probiotic bacteria and the use of specific strains could interfere and bring benefits as an associated treatment for diarrhea and constipation.
Collapse
Affiliation(s)
- Mihaela Adela Iancu
- Department of Family Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Monica Profir
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Oana Alexandra Roşu
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Ruxandra Florentina Ionescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Department of Cardiology I, “Dr. Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
| | - Sanda Maria Cretoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Bogdan Severus Gaspar
- Surgery Clinic, Emergency Clinical Hospital, 014461 Bucharest, Romania;
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
4
|
Li Z, Liu K, Zhao J, Yang L, Chen G, Liu A, Wang Q, Wang S, Li X, Cao H, Tao F, Zhang D. Antibiotics in elderly Chinese population and their relations with hypertension and pulse pressure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67026-67045. [PMID: 35513617 DOI: 10.1007/s11356-022-20613-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Although antibiotic exposure in the general population has been well documented by a biomonitoring approach, epidemiologic data on the relationships between urinary antibiotic burden in the elderly with blood pressure (BP) are still lacking. The current study revealed thirty-four antibiotics in urine specimens from 990 elderly patients in Lu'an City, China, with detection frequencies ranging from 0.2 to 35.5%. Among the elderly, the prevalence of hypertension was 72.0%, and 12 antibiotics were detected in more than 10% of individuals with hypertension. The elderly with hypertension had the maximum daily exposure (5450.45 μg/kg/day) to fluoroquinolones (FQs). Multiple linear regression analyses revealed significant associations of BP and pulse pressure (PP) with exposure to specific antibiotics. The estimated β values (95% confidence interval) of associations with systolic blood pressure (SBP) in the right arm were 4.42 (1.15, 7.69) for FQs, 4.26 (0.52, 8.01) for the preferred as human antibiotics (PHAs), and 3.48 (0.20, 6.77) for the mixtures (FQs + tetracyclines [TCs] (tertile 3 vs. tertile 1)), respectively. Increased concentrations of TCs were associated with decreased diastolic BP (DBP; tertile 3: -1.75 [-3.39, -0.12]) for the right arm. Higher levels of FQs (tertile 3: 4.28 [1.02, 7.54]), PHAs (tertile 3: 4.25 [0.49, 8.01]), and FQs + TCs (tertile 3: 3.99 [0.71, 7.26]) were associated with increased SBP, and an increase in DBP for FQs (tertile 3: 1.82 [0.22, 3.42]) was shown in the left arm. Also, higher urinary concentrations of FQs (tertile 3: 3.18 [0.53, 5.82]), PHAs (tertile 3: 3.42 [0.40, 6.45]), and FQs + TCs (tertile 3: 3.06 [0.40, 5.72]) were related to increased PP, whereas a decline in PP for TCs (tertile 2: -2.93 [-5.60, -0.25]) in the right arm. And increased concentrations of penicillin V (tertile 3: 5.31 [1.53, 9.10]) and FQs + TCs (tertile 3: 2.84 [0.19, 5.49]) were related to higher PP in the left arm. By utilizing restricted cubic splines, our current study revealed a potential nonlinear dose-response association between FQ exposure and hypertension risk. In conclusion, this investigation is the first to present antibiotic exposure using a biomonitoring approach, and informs understanding of impacts of antibiotic residues, as emerging hazardous pollutants, on the hypertension risk in the elderly.
Collapse
Affiliation(s)
- Zhenkun Li
- School of Health Management, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Jianing Zhao
- The Fourth Affiliated Hospital of Anhui Medical University, Huaihai Road, Hefei, 230012, Anhui, China
| | - Linsheng Yang
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Guimei Chen
- School of Health Management, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Annuo Liu
- School of Nursing, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Qunan Wang
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Sufang Wang
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xiude Li
- Lu'an Center of Disease Control and Prevention, Lu'an, 237000, Anhui, China
| | - Hongjuan Cao
- Lu'an Center of Disease Control and Prevention, Lu'an, 237000, Anhui, China
| | - Fangbiao Tao
- School of Health Management, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dongmei Zhang
- School of Health Management, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
5
|
Tasci F, Canbay HS, Doganturk M. Determination of antibiotics and their metabolites in milk by liquid chromatography-tandem mass spectrometry method. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Yu K, Li X, Qiu Y, Zeng X, Yu X, Wang W, Yi X, Huang L. Low-dose effects on thyroid disruption in zebrafish by long-term exposure to oxytetracycline. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 227:105608. [PMID: 32858424 DOI: 10.1016/j.aquatox.2020.105608] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
As a feed additive in agriculture, the antibiotic oxytetracycline (OTC) has become widely distributed in the natural environment, leading to the exposure of many organisms to low doses of OTC. Although OTC is clinically contraindicated in children because of its multiple side effects, the effect of exposure to low doses of environmental OTC on children is unknown, particularly during development. In this study, we investigated the effects of OTC on the thyroid endocrine system in zebrafish, through determinations of the whole-body contents of triiodothyronine (T3), thyroxine (T4), and thyroid-stimulating hormone (TSH) by enzyme-linked immunosorbent assay, and analysis of the mRNA expression of regulatory genes involved in the hypothalamus-pituitary-thyroid (HPT) axis using quantitative real-time polymerase chain reaction. Zebrafish embryos were exposed to OTC at environmentally relevant concentrations from 2 h to 120 days post-fertilisation. After exposure to OTC at 1,000 and 5,000 ng/L, T3 contents were significantly enhanced (37.8% and 45.1%, respectively) and TSH contents were reduced (16% and 16.3%, respectively) compared with those in the controls. The OTC-driven increase in the transcription of genes involved in thyroid synthesis (tpo and nis) may be responsible for the altered T3 levels. These data indicate that OTC may cause thyroid dysfunction and lead to reduced TSH secretion owing to enhanced negative feedback control of the HPT axis. Meanwhile, a decrease in body length, weight, and BMI and an increase in heart rate were observed with increasing OTC exposure. In conclusion, our results indicate that long-term exposure to low concentrations of OTC may alter the transcription of key genes involved in the HPT axis, as well as T3 and TSH contents, thereby disrupting the thyroid system and affecting the growth and development of zebrafish.
Collapse
Affiliation(s)
- Kan Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiaoyong Li
- Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yushu Qiu
- Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xinxin Zeng
- Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiaogang Yu
- Municipal Key Lab of Environment and Children's Health, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Weiye Wang
- Municipal Key Lab of Environment and Children's Health, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Xiaoping Yi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Lisu Huang
- Department of Pediatrics, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Potential prebiotic activities of soybean peptides Maillard reaction products on modulating gut microbiota to alleviate aging-related disorders in D-galactose-induced ICR mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103729] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
8
|
Zhong S, Ding Y, Wang Y, Zhou G, Guo H, Chen Y, Yang Y. Temperature and humidity index (THI)-induced rumen bacterial community changes in goats. Appl Microbiol Biotechnol 2019; 103:3193-3203. [DOI: 10.1007/s00253-019-09673-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 01/28/2023]
|
9
|
Pauer H, Hardoim CCP, Teixeira FL, Miranda KR, Barbirato DDS, de Carvalho DP, Antunes LCM, Leitão ÁADC, Lobo LA, Domingues RMCP. Impact of violacein from Chromobacterium violaceum on the mammalian gut microbiome. PLoS One 2018; 13:e0203748. [PMID: 30212521 PMCID: PMC6136722 DOI: 10.1371/journal.pone.0203748] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/20/2018] [Indexed: 12/03/2022] Open
Abstract
Violacein is a violet pigment produced by Chromobacterium violaceum that possesses several functions such as antibacterial, antiviral, antifungal, and antioxidant activities. The search for potential compounds and therapies that may interfere with and modulate the gut microbial consortia without causing severe damage and increased resistance is important for the treatment of inflammatory, allergic, and metabolic diseases. The aim of the present work was to evaluate the ability of violacein to change microbial patterns in the mammalian gut by favoring certain groups over the others in order to be used as a therapy for diseases associated with changes in the intestinal microflora. To do this, we used male Wistar rats, and administered violacein orally, in low (50 μg/ml) and high (500 μg/ml) doses for a month. Initially, the changes in the microbial diversity were observed by DGGE analyses that showed that the violacein significantly affects the gut microbiota of the rats. Pyrosequencing of 16S rDNA was then employed using a 454 GS Titanium platform, and the results demonstrated that higher taxonomic richness was observed with the low violacein treatment group, followed by the control group and high violacein treatment group. Modulation of the microbiota at the class level was observed in the low violacein dose, where Bacilli and Clostridia (Firmicutes) were found as dominant. For the high violacein dose, Bacilli followed by Clostridia and Actinobacteria were present as the major components. Further analyses are crucial for a better understanding of how violacein affects the gut microbiome and whether this change would be beneficial to the host, providing a framework for the development of alternative treatment strategies for intestinal diseases using this compound.
Collapse
Affiliation(s)
- Heidi Pauer
- Laboratório de Biologia de Anaeróbios, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Cristiane Cassiolato Pires Hardoim
- Laboratório de Interação Hospedeiro-Microbiota, Instituto de Biociências, Universidade Estadual Paulista, Campus do Litoral Paulista, São Vicente, SP, Brazil
| | - Felipe Lopes Teixeira
- Laboratório de Biologia de Anaeróbios, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Karla Rodrigues Miranda
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé, RJ, Brazil
| | | | - Denise Pires de Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro–Rio de Janeiro, Brazil
| | - Luis Caetano Martha Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Inovação em Doenças de Populações Negligenciadas, Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | - Leandro Araujo Lobo
- Laboratório de Biologia de Anaeróbios, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- * E-mail:
| | - Regina Maria Cavalcanti Pilotto Domingues
- Laboratório de Biologia de Anaeróbios, Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
Gong S, Lan T, Zeng L, Luo H, Yang X, Li N, Chen X, Liu Z, Li R, Win S, Liu S, Zhou H, Schnabl B, Jiang Y, Kaplowitz N, Chen P. Gut microbiota mediates diurnal variation of acetaminophen induced acute liver injury in mice. J Hepatol 2018; 69. [PMID: 29524531 PMCID: PMC6365016 DOI: 10.1016/j.jhep.2018.02.024] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS Acetaminophen (APAP) induced hepatotoxicity is a leading cause of acute liver failure worldwide. It is well established that the liver damage induced by acetaminophen exhibits diurnal variation. However, the detailed mechanism for the hepatotoxic variation is not clear. Herein, we aimed to determine the relative contributions of gut microbiota in modulating the diurnal variation of hepatotoxicity induced by APAP. METHODS Male Balb/C mice were treated with or without antibiotics and a single dose of orally administered APAP (300 mg/kg) at ZT0 (when the light is on-start of resting period) and ZT12 (when the light is off-start of active period). RESULTS In agreement with previous findings, hepatic injury was markedly enhanced at ZT12 compared with ZT0. Interestingly, upon antibiotic treatment, ZT12 displayed a protective effect against APAP hepatotoxicity similar to ZT0. Moreover, mice that received the cecal content from ZT12 showed more severe liver damage than mice that received the cecal content from ZT0. 16S sequencing data revealed significant differences in the cecal content between ZT0 and ZT12 in the compositional level. Furthermore, metabolomic analysis showed that the gut microbial metabolites were also different between ZT0 and ZT12. Specifically, the level of 1-phenyl-1,2-propanedione (PPD) was significantly higher at ZT12 than ZT0. Treatment with PPD alone did not cause obvious liver damage. However, PPD synergistically enhanced APAP-induced hepatic injury in vivo and in vitro. Finally, we found Saccharomyces cerevisiae, which could reduce intestinal PPD levels, was able to markedly alleviate APAP-induced liver damage at ZT12. CONCLUSIONS The gut microbial metabolite PPD was responsible, at least in part, for the diurnal variation of hepatotoxicity induced by APAP by decreasing glutathione levels. LAY SUMMARY Acetaminophen (APAP) induced acute liver failure because of over dose is a leading public health problem. APAP-induced liver injury exhibits diurnal variation, specifically APAP causes more severe liver damage when taken at night compared with in the morning. Herein, we showed that gut microbial metabolite, 1-phenyl-1,2-propanedione is involved in the rhythmic hepatotoxicity induced by APAP, by depleting hepatic glutathione (an important antioxidant) levels. Our data suggest gut microbiota may be a potential target for reducing APAP-induced acute liver injury.
Collapse
Affiliation(s)
- Shenhai Gong
- State Key Laboratory of Organ Failure Research; Southern Medical University, Guangzhou, China,,Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China,,Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Tian Lan
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Liyan Zeng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Haihua Luo
- State Key Laboratory of Organ Failure Research; Southern Medical University, Guangzhou, China,,Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China,,Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Xiaoyu Yang
- State Key Laboratory of Organ Failure Research; Southern Medical University, Guangzhou, China,,Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China,,Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Na Li
- State Key Laboratory of Organ Failure Research; Southern Medical University, Guangzhou, China,,Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China,,Department of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Xiaojiao Chen
- State Key Laboratory of Organ Failure Research; Southern Medical University, Guangzhou, China
| | - Zhanguo Liu
- Department of Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Li
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Sanda Win
- University of Southern California Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Shuwen Liu
- State Key Laboratory of Organ Failure Research; Southern Medical University, Guangzhou, China,,School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Hongwei Zhou
- State Key Laboratory of Organ Failure Research; Southern Medical University, Guangzhou, China
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, USA
| | - Yong Jiang
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China; Department of Pathophysiology, Southern Medical University, Guangzhou, China.
| | - Neil Kaplowitz
- University of Southern California Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Peng Chen
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China; Department of Pathophysiology, Southern Medical University, Guangzhou, China; Department of Intensive Care Unit, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Jin Y, Wu Y, Zeng Z, Jin C, Wu S, Wang Y, Fu Z. From the Cover: Exposure to Oral Antibiotics Induces Gut Microbiota Dysbiosis Associated with Lipid Metabolism Dysfunction and Low-Grade Inflammation in Mice. Toxicol Sci 2016; 154:140-152. [DOI: 10.1093/toxsci/kfw150] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|