1
|
Yin Y, Liu Z. Microfluidic Technology for Measuring Mechanical Properties of Single Cells and Its Application. Bioengineering (Basel) 2024; 11:1266. [PMID: 39768083 PMCID: PMC11673902 DOI: 10.3390/bioengineering11121266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Cellular mechanical properties are critical for tissue and organ homeostasis, which are associated with many diseases and are very promising non-labeled biomarkers. Over the past two decades, many research tools based on microfluidic methods have been developed to measure the biophysical properties of single cells; however, it has still not been possible to develop a technique that allows for high-throughput, easy-to-operate and precise measurements of single-cell biophysical properties. In this paper, we review the emerging technologies implemented based on microfluidic approaches for characterizing the mechanical properties of single cells and discuss the methodological principles, advantages, limitations, and applications of various technologies.
Collapse
Affiliation(s)
| | - Ziyuan Liu
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Department of Ophthalmology, Peking University Third Hospital, Peking University Institute of Laser Medicine, No. 49 North Garden Road, Haidian District, Beijing 100191, China;
| |
Collapse
|
2
|
Salipante PF. Microfluidic techniques for mechanical measurements of biological samples. BIOPHYSICS REVIEWS 2023; 4:011303. [PMID: 38505816 PMCID: PMC10903441 DOI: 10.1063/5.0130762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/30/2022] [Indexed: 03/21/2024]
Abstract
The use of microfluidics to make mechanical property measurements is increasingly common. Fabrication of microfluidic devices has enabled various types of flow control and sensor integration at micrometer length scales to interrogate biological materials. For rheological measurements of biofluids, the small length scales are well suited to reach high rates, and measurements can be made on droplet-sized samples. The control of flow fields, constrictions, and external fields can be used in microfluidics to make mechanical measurements of individual bioparticle properties, often at high sampling rates for high-throughput measurements. Microfluidics also enables the measurement of bio-surfaces, such as the elasticity and permeability properties of layers of cells cultured in microfluidic devices. Recent progress on these topics is reviewed, and future directions are discussed.
Collapse
Affiliation(s)
- Paul F. Salipante
- National Institute of Standards and Technology, Polymers and Complex Fluids Group, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
3
|
Zhang Y, Zhang Z, Zheng D, Huang T, Fu Q, Liu Y. Label-Free Separation of Circulating Tumor Cells and Clusters by Alternating Frequency Acoustic Field in a Microfluidic Chip. Int J Mol Sci 2023; 24:ijms24043338. [PMID: 36834750 PMCID: PMC9964901 DOI: 10.3390/ijms24043338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Circulating tumor cells (CTCs) play an important role in the prognosis and efficacy evaluation of metastatic tumors. Since CTCs are present in very low concentrations in the blood and the phenotype is dynamically changing, it is a great challenge to achieve efficient separation while maintaining their viability. In this work, we designed an acoustofluidic microdevice for CTCs separation based on the differences in cell physical properties of size and compressibility. Efficient separation can be achieved with only one piece of piezoceramic working on alternating frequency mode. The separation principle was simulated by numerical calculation. Cancer cells from different tumor types were separated from peripheral blood mononuclear cells (PBMCs), with capture efficiency higher than 94% and a contamination rate of about 1% was obtained. Furthermore, this method was validated to have no negative effect on the viability of the separated cells. Finally, blood samples from patients with different cancer types and stages were tested, with measured concentrations of 36-166 CTCs per milliliter. Effective separation was achieved even when the size of CTCs is similar to that of PBMCs, which has the prospect of clinical application in cancer diagnosis and efficacy evaluation.
Collapse
|
4
|
Su Z, Chen Z, Ma K, Chen H, Ho JWK. Molecular determinants of intrinsic cellular stiffness in health and disease. Biophys Rev 2022; 14:1197-1209. [PMID: 36345276 PMCID: PMC9636357 DOI: 10.1007/s12551-022-00997-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022] Open
Abstract
In recent years, the role of intrinsic biophysical features, especially cellular stiffness, in diverse cellular and disease processes is being increasingly recognized. New high throughput techniques for the quantification of cellular stiffness facilitate the study of their roles in health and diseases. In this review, we summarized recent discovery about how cellular stiffness is involved in cell stemness, tumorigenesis, and blood diseases. In addition, we review the molecular mechanisms underlying the gene regulation of cellular stiffness in health and disease progression. Finally, we discussed the current understanding on how the cytoskeleton structure and the regulation of these genes contribute to cellular stiffness, highlighting where the field of cellular stiffness is headed.
Collapse
Affiliation(s)
- Zezhuo Su
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, SAR China
| | - Zhenlin Chen
- Department of Biomedical Engineering, College of Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR China
| | - Kun Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, SAR China
| | - Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055 China
| | - Joshua W. K. Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR China
- Laboratory of Data Discovery for Health Limited (D24H), Hong Kong Science Park, Hong Kong, SAR China
| |
Collapse
|
5
|
Bogatyr V, Biebricher AS, Bergamaschi G, Peterman EJG, Wuite GJL. Quantitative Acoustophoresis. ACS NANOSCIENCE AU 2022; 2:341-354. [PMID: 35996438 PMCID: PMC9389611 DOI: 10.1021/acsnanoscienceau.2c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Studying cellular
mechanics allows important insights into its
cytoskeletal composition, developmental stage, and health. While many
force spectroscopy assays exist that allow probing of mechanics of
bioparticles, most of them require immobilization of and direct contact
with the particle and can only measure a single particle at a time.
Here, we introduce quantitative acoustophoresis (QAP) as a simple
alternative that uses an acoustic standing wave field to directly
determine cellular compressibility and density of many cells simultaneously
in a contact-free manner. First, using polymeric spheres of different
sizes and materials, we verify that our assay data follow the standard
acoustic theory with great accuracy. We furthermore verify that our
technique not only is able to measure compressibilities of living
cells but can also sense an artificial cytoskeleton inside a biomimetic
vesicle. We finally provide a thorough discussion about the expected
accuracy our approach provides. To conclude, we show that compared
to existing methods, our QAP assay provides a simple yet powerful
alternative to study the mechanics of biological and biomimetic particles.
Collapse
Affiliation(s)
- Vadim Bogatyr
- Department of Physics and Astronomy, Physics of Living Systems, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081HV, The Netherlands
| | - Andreas S. Biebricher
- Department of Physics and Astronomy, Physics of Living Systems, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081HV, The Netherlands
| | - Giulia Bergamaschi
- Department of Physics and Astronomy, Physics of Living Systems, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081HV, The Netherlands
| | - Erwin J. G. Peterman
- Department of Physics and Astronomy, Physics of Living Systems, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081HV, The Netherlands
| | - Gijs J. L. Wuite
- Department of Physics and Astronomy, Physics of Living Systems, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081HV, The Netherlands
| |
Collapse
|
6
|
Fu Q, Zhang Y, Huang T, Liang Y, Liu Y. Measurement of cell compressibility changes during epithelial-mesenchymal transition based on acoustofluidic microdevice. BIOMICROFLUIDICS 2021; 15:064101. [PMID: 34765072 PMCID: PMC8577866 DOI: 10.1063/5.0072126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/24/2021] [Indexed: 05/25/2023]
Abstract
Epithelial-mesenchymal transition (EMT) confers migratory and invasiveness abilities on cancer cells, as well as leading to changes in biomechanical properties and cytoskeletal structure. Cell mechanical properties are considered to be promising label-free markers for diagnosis of cancer metastasis. In this work, cell compressibility, a novel and important parameter of cell mechanical properties, was measured directly and quickly using a specially designed acoustofluidic microdevice. The compressibilities of cells with different metastatic potentials were investigated. Based on a comparison of the measurement results, non-metastatic cells exhibited lower compressibility than metastatic cells. The correlation between cell compressibility and EMT status was further studied; the results showed that the acquisition of mesenchymal status was accompanied by an increase in cell compressibility. These findings imply strong correlations among cell compressibility, EMT status, and invasiveness. Therefore, cell compressibility represents a novel biomechanical marker for evaluating malignant transformation and metastasis of cancer.
Collapse
Affiliation(s)
- Qibin Fu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Yan Zhang
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Tuchen Huang
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Ying Liang
- Department of Radiation Oncology, Shenzhen Center, Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen 518116, China
| | - Yang Liu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
7
|
Ko J, Jeong J, Son S, Lee J. Cellular and biomolecular detection based on suspended microchannel resonators. Biomed Eng Lett 2021; 11:367-382. [PMID: 34616583 DOI: 10.1007/s13534-021-00207-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022] Open
Abstract
Suspended microchannel resonators (SMRs) have been developed to measure the buoyant mass of single micro-/nanoparticles and cells suspended in a liquid. They have significantly improved the mass resolution with the aid of vacuum packaging and also increased measurement throughput by fast resonance frequency tracking while target objects travel through the microchannel without stopping or even slowing down. Since their invention, various biological applications have been enabled, including simultaneous measurements of cell growth and cell cycle progression, and measurements of disease associated physicochemical change, to name a few. Extension and advancement towards other promising applications with SMRs are continuously ongoing by adding multiple functionalities or incorporating other complementary analytical metrologies. In this paper, we will thoroughly review the development history, basic and advanced operations, and key applications of SMRs to introduce them to researchers working in biological and biomedical sciences who mostly rely on classical and conventional methodologies. We will also provide future perspectives and projections for SMR technologies.
Collapse
Affiliation(s)
- Juhee Ko
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Daejeon, South Korea
| | - Jaewoo Jeong
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Daejeon, South Korea
| | - Sukbom Son
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Daejeon, South Korea
| | - Jungchul Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daehak-ro 291, Daejeon, South Korea
| |
Collapse
|
8
|
Wu Y, Stewart AG, Lee PVS. High-throughput microfluidic compressibility cytometry using multi-tilted-angle surface acoustic wave. LAB ON A CHIP 2021; 21:2812-2824. [PMID: 34109338 DOI: 10.1039/d1lc00186h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cellular mechanical properties (e.g. compressibility) are important biophysical markers in relation to cellular processes and functionality. Among the methods for cell mechanical measurement, acoustofluidic methods appear to be advantageous due to tunability, biocompatibility and acousto-mechanical nature. However, the previous acoustofluidic methods were limited in throughput and number of measurements. In this study, we developed a high-throughput microfluidic compressibility cytometry approach using multi-tilted-angle surface acoustic wave, which can provide thousands of single-cell compressibility measurements within minutes. The compressibility cytometer was constructed to drag microparticles or cells towards the microfluidic channel sidewall at different segments based on their biophysical properties (such as size and compressibility), as a result of the varied balance between acoustics and flow. Mathematical analysis and computational simulation revealed that the compressibility of a cell could be estimated from the position of collision with the sidewall. Microbeads of different materials and sizes were experimentally tested to validate the simulation and to demonstrate the capability to characterise size and compressibility. MDA MB231 cells, of the triple negative breast cancer subtype, were treated with the microtubule disrupting agent colchicine which increased compressibility and treated with the actin disrupting agent cytochalasin B which increased cell size but did not change compressibility. Moreover, the highly metastatic variant MDA MB231 LNm5 cell line showed increased compressibility compared to the parent MDA MB231 cells, indicating the potential utility of high-throughput mechanophenotyping for tumour cell characterisation.
Collapse
Affiliation(s)
- Yanqi Wu
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Alastair G Stewart
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, VIC 3010, Australia and ARC Centre for Personalised Therapeutics Technologies, Melbourne, VIC 3010, Australia
| | - Peter V S Lee
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
9
|
Corsetti S, Dholakia K. Optical manipulation: advances for biophotonics in the 21st century. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210127-PER. [PMID: 34235899 PMCID: PMC8262092 DOI: 10.1117/1.jbo.26.7.070602] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/17/2021] [Indexed: 05/10/2023]
Abstract
SIGNIFICANCE Optical trapping is a technique capable of applying minute forces that has been applied to studies spanning single molecules up to microorganisms. AIM The goal of this perspective is to highlight some of the main advances in the last decade in this field that are pertinent for a biomedical audience. APPROACH First, the direct determination of forces in optical tweezers and the combination of optical and acoustic traps, which allows studies across different length scales, are discussed. Then, a review of the progress made in the direct trapping of both single-molecules, and even single-viruses, and single cells with optical forces is outlined. Lastly, future directions for this methodology in biophotonics are discussed. RESULTS In the 21st century, optical manipulation has expanded its unique capabilities, enabling not only a more detailed study of single molecules and single cells but also of more complex living systems, giving us further insights into important biological activities. CONCLUSIONS Optical forces have played a large role in the biomedical landscape leading to exceptional new biological breakthroughs. The continuous advances in the world of optical trapping will certainly lead to further exploitation, including exciting in-vivo experiments.
Collapse
Affiliation(s)
- Stella Corsetti
- University of St Andrews, SUPA, School of Physics and Astronomy, St. Andrews, United Kingdom
- Address all correspondence to Stella Corsetti,
| | - Kishan Dholakia
- University of St Andrews, SUPA, School of Physics and Astronomy, St. Andrews, United Kingdom
- University of Adelaide, School of Biological Sciences, Adelaide, South Australia, Australia
- Yonsei University, College of Science, Department of Physics, Seoul, Republic of Korea
| |
Collapse
|
10
|
Acoustic Microfluidic Separation Techniques and Bioapplications: A Review. MICROMACHINES 2020; 11:mi11100921. [PMID: 33023173 PMCID: PMC7600273 DOI: 10.3390/mi11100921] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
Abstract
Microfluidic separation technology has garnered significant attention over the past decade where particles are being separated at a micro/nanoscale in a rapid, low-cost, and simple manner. Amongst a myriad of separation technologies that have emerged thus far, acoustic microfluidic separation techniques are extremely apt to applications involving biological samples attributed to various advantages, including high controllability, biocompatibility, and non-invasive, label-free features. With that being said, downsides such as low throughput and dependence on external equipment still impede successful commercialization from laboratory-based prototypes. Here, we present a comprehensive review of recent advances in acoustic microfluidic separation techniques, along with exemplary applications. Specifically, an inclusive overview of fundamental theory and background is presented, then two sets of mechanisms underlying acoustic separation, bulk acoustic wave and surface acoustic wave, are introduced and discussed. Upon these summaries, we present a variety of applications based on acoustic separation. The primary focus is given to those associated with biological samples such as blood cells, cancer cells, proteins, bacteria, viruses, and DNA/RNA. Finally, we highlight the benefits and challenges behind burgeoning developments in the field and discuss the future perspectives and an outlook towards robust, integrated, and commercialized devices based on acoustic microfluidic separation.
Collapse
|
11
|
Wu Y, Cheng T, Chen Q, Gao B, Stewart AG, Lee PVS. On-chip surface acoustic wave and micropipette aspiration techniques to assess cell elastic properties. BIOMICROFLUIDICS 2020; 14:014114. [PMID: 32095200 PMCID: PMC7028434 DOI: 10.1063/1.5138662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/07/2020] [Indexed: 05/26/2023]
Abstract
The cytoskeletal mechanics and cell mechanical properties play an important role in cellular behaviors. In this study, in order to provide comprehensive insights into the relationship between different cytoskeletal components and cellular elastic moduli, we built a phase-modulated surface acoustic wave microfluidic device to measure cellular compressibility and a microfluidic micropipette-aspiration device to measure cellular Young's modulus. The microfluidic devices were validated based on experimental data and computational simulations. The contributions of structural cytoskeletal actin filament and microtubule to cellular compressibility and Young's modulus were examined in MCF-7 cells. The compressibility of MCF-7 cells was increased after microtubule disruption, whereas actin disruption had no effect. In contrast, Young's modulus of MCF-7 cells was reduced after actin disruption but unaffected by microtubule disruption. The actin filaments and microtubules were stained to confirm the structural alteration in cytoskeleton. Our findings suggest the dissimilarity in the structural roles of actin filaments and microtubules in terms of cellular compressibility and Young's modulus. Based on the differences in location and structure, actin filaments mainly contribute to tensile Young's modulus and microtubules mainly contribute to compressibility. In addition, different responses to cytoskeletal alterations between acoustophoresis and micropipette aspiration demonstrated that micropipette aspiration was better at detecting the change from actin cortex, while the response to acoustophoresis was governed by microtubule networks.
Collapse
Affiliation(s)
- Yanqi Wu
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia
| | | | | | | | | | - Peter V. S. Lee
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
12
|
Chansoria P, Shirwaiker R. Characterizing the Process Physics of Ultrasound-Assisted Bioprinting. Sci Rep 2019; 9:13889. [PMID: 31554888 PMCID: PMC6761177 DOI: 10.1038/s41598-019-50449-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 09/03/2019] [Indexed: 01/12/2023] Open
Abstract
3D bioprinting has been evolving as an important strategy for the fabrication of engineered tissues for clinical, diagnostic, and research applications. A major advantage of bioprinting is the ability to recapitulate the patient-specific tissue macro-architecture using cellular bioinks. The effectiveness of bioprinting can be significantly enhanced by incorporating the ability to preferentially organize cellular constituents within 3D constructs to mimic the intrinsic micro-architectural characteristics of native tissues. Accordingly, this work focuses on a new non-contact and label-free approach called ultrasound-assisted bioprinting (UAB) that utilizes acoustophoresis principle to align cells within bioprinted constructs. We describe the underlying process physics and develop and validate computational models to determine the effects of ultrasound process parameters (excitation mode, excitation time, frequency, voltage amplitude) on the relevant temperature, pressure distribution, and alignment time characteristics. Using knowledge from the computational models, we experimentally investigate the effect of selected process parameters (frequency, voltage amplitude) on the critical quality attributes (cellular strand width, inter-strand spacing, and viability) of MG63 cells in alginate as a model bioink system. Finally, we demonstrate the UAB of bilayered constructs with parallel (0°-0°) and orthogonal (0°-90°) cellular alignment across layers. Results of this work highlight the key interplay between the UAB process design and characteristics of aligned cellular constructs, and represent an important next step in our ability to create biomimetic engineered tissues.
Collapse
Affiliation(s)
- Parth Chansoria
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, 27695, United States of America
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Rohan Shirwaiker
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, 27695, United States of America.
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC, 27695, United States of America.
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, NC, 27695, United States of America.
| |
Collapse
|
13
|
Wu Y, Stewart AG, Lee PVS. On-chip cell mechanophenotyping using phase modulated surface acoustic wave. BIOMICROFLUIDICS 2019; 13:024107. [PMID: 31065306 PMCID: PMC6478592 DOI: 10.1063/1.5084297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/09/2019] [Indexed: 05/05/2023]
Abstract
A surface acoustic wave (SAW) microfluidic chip was designed to measure the compressibility of cells and to differentiate cell mechanophenotypes. Polystyrene microbeads and poly(methylmethacrylate) (PMMA) microbeads were first tested in order to calibrate and validate the acoustic field. We observed the prefocused microbeads being pushed into the new pressure node upon phase shift. The captured trajectory matched well with the equation describing acoustic radiation force. The compressibility of polystyrene microbeads and that of PMMA microbeads was calculated, respectively, by fitting the trajectory from the experiment and that simulated by the equation across a range of compressibility values. Following, A549 human alveolar basal epithelial cells (A549 cells), human airway smooth muscle (HASM) cells, and MCF-7 breast cancer cells were tested using the same procedure. The compressibility of each cell from the three cell types was measured also by fitting trajectories between the experiment and that from the equation; the size was measured by image analysis. A549 cells were more compressible than HASM and MCF-7 cells; HASM cells could be further distinguished from MCF-7 cells by cell size. In addition, MCF-7 cells were treated by colchicine and 2-methoxyestradiol to disrupt the cell microtubules and were found to be more compressible. Computer simulation was also carried out to investigate the effect of cell compressibility and cell size due to acoustic radiation force to examine the sensitivity of the measurement. The SAW microfluidic method is capable of differentiating cell types or cells under different conditions based on the cell compressibility and the cell size.
Collapse
Affiliation(s)
- Yanqi Wu
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Alastair G. Stewart
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Peter V. S. Lee
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
14
|
Kang JH, Miettinen TP, Chen L, Olcum S, Katsikis G, Doyle PS, Manalis SR. Noninvasive monitoring of single-cell mechanics by acoustic scattering. Nat Methods 2019; 16:263-269. [PMID: 30742041 PMCID: PMC6420125 DOI: 10.1038/s41592-019-0326-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/09/2019] [Indexed: 02/05/2023]
Abstract
Monitoring mechanics of the same cell throughout the cell cycle has been hampered by the invasiveness of mechanical measurements. Here, we quantify mechanical properties via acoustic scattering of waves from a cell inside a fluid-filled vibrating cantilever with a temporal resolution of <1 min. Through simulations, experiments with hydrogels and chemically perturbed cells, we show that our readout, the size-normalized acoustic scattering (SNACS), measures stiffness. We demonstrate the noninvasiveness of SNACS over successive cell cycles using measurements that result in < 15 nm deformations. Cells maintain constant SNACS throughout interphase but exhibit dynamic changes during mitosis. Our work provides a basis for understanding how growing cells maintain mechanical integrity and demonstrates that acoustic scattering can non-invasively probe subtle and transient dynamics.
Collapse
Affiliation(s)
- Joon Ho Kang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Teemu P Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Lynna Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Selim Olcum
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Georgios Katsikis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Patrick S Doyle
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
15
|
Abstract
Medical ultrasound technology is available, affordable, and non-invasive. It is used to detect, quantify, and heat tissue structures. This review article gives a concise overview of the types of behaviour that biological cells experience under the influence of ultrasound only, i.e., without the presence of microbubbles. The phenomena are discussed from a physics and engineering perspective. They include proliferation, translation, apoptosis, lysis, transient membrane permeation, and oscillation. The ultimate goal of cellular acoustics is the detection, quantification, manipulation and eradication of individual cells.
Collapse
|
16
|
Acoustic Compressibility of Caenorhabditis elegans. Biophys J 2018; 115:1817-1825. [PMID: 30314654 DOI: 10.1016/j.bpj.2018.08.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 02/03/2023] Open
Abstract
The acoustic compressibility of Caenorhabditis elegans is a necessary parameter for further understanding the underlying physics of acoustic manipulation techniques of this widely used model organism in biological sciences. In this work, numerical simulations were combined with experimental trajectory velocimetry of L1 C. elegans larvae to estimate the acoustic compressibility of C. elegans. A method based on bulk acoustic wave acoustophoresis was used for trajectory velocimetry experiments in a microfluidic channel. The model-based data analysis took into account the different sizes and shapes of L1 C. elegans larvae (255 ± 26 μm in length and 15 ± 2 μm in diameter). Moreover, the top and bottom walls of the microfluidic channel were considered in the hydrodynamic drag coefficient calculations, for both the C. elegans and the calibration particles. The hydrodynamic interaction between the specimen and the channel walls was further minimized by acoustically levitating the C. elegans and the particles to the middle of the measurement channel. Our data suggest an acoustic compressibility κCe of 430 TPa-1 with an uncertainty range of ±20 TPa-1 for C. elegans, a much lower value than what was previously reported for adult C. elegans using static methods. Our estimated compressibility is consistent with the relative volume fraction of lipids and proteins that would mainly make up for the body of C. elegans. This work is a departing point for practical engineering and design criteria for integrated acoustofluidic devices for biological applications.
Collapse
|
17
|
Cushing KW, Garofalo F, Magnusson C, Ekblad L, Bruus H, Laurell T. Ultrasound Characterization of Microbead and Cell Suspensions by Speed of Sound Measurements of Neutrally Buoyant Samples. Anal Chem 2017; 89:8917-8923. [DOI: 10.1021/acs.analchem.7b01388] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Kevin W. Cushing
- Department
of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| | - Fabio Garofalo
- Department
of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| | - Cecilia Magnusson
- Department
of Translational Medicine, Lund University, 221 00 Lund, Sweden
| | - Lars Ekblad
- Division
of Oncology, Clinical Sciences, Lund University and Skane University Hospital, 221 00 Lund, Sweden
| | - Henrik Bruus
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Thomas Laurell
- Department
of Biomedical Engineering, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
18
|
Kalasin S, Browne E, Arcaro K, Santore MM. Selective Adhesive Cell Capture without Molecular Specificity: New Surfaces Exploiting Nanoscopic Polycationic Features as Discrete Adhesive Units. RSC Adv 2017; 7:13416-13425. [PMID: 28989702 PMCID: PMC5628748 DOI: 10.1039/c7ra01217a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This work explored how molecularly non-specific polycationic nanoscale features on a collecting surface control kinetic and selectivity aspects of mammalian cell capture. Key principles for selective collector design were demonstrated by comparing the capture of two closely related breast cancer cell lines: MCF-7 and TMX2-28. TMX2-28 is a tamoxifen-selected clone of MCF-7. The collector was a silica surface, negatively-charged at pH 7.4, containing isolated molecules (~ 8 nm diameter) of the cationic polymer, poly(dimethyl-aminoethylmethacrylate), pDMAEMA. Important in this work is the non-selective nature of the pDMAEMA interactions with cells: pDMAEMA generally adheres negatively charged particles and cells in solution. We show here that selectivity towards cells results from collector design: this includes competition between repulsive interactions involving the negative silica and attractions to the immobilized pDMAEMA molecules, the random pDMAEMA arrangement on the surface, and the concentration of positive charge in the vicinity of the adsorbed pDMAEMA chains. The latter act as nanoscopic cationic surface patches, each weakly attracted to negatively-charged cells. Collecting surfaces engineered with an appropriate amount pDMAEMA, exposed to mixtures of MCF-7 and TMX2-28 cells preferentially captured TMX2-28 with a selectivity of 2.5. (This means that the ratio of TMX2-28 to MCF cells on the surface was 2.5 times their compositional ratio in free solution.) The ionic strength-dependence of cell capture was shown to be similar to that of silica microparticles on the same surfaces. This suggests that the mechanism of selective cell capture involves nanoscopic differences in the contact areas of the cells with the collector, allowing discrimination of closely related cell line-based small scale features of the cell surface. This work demonstrated that even without molecular specificity, selectivity for physical cell attributes produces adhesive discrimination.
Collapse
Affiliation(s)
- S. Kalasin
- Department of Polymer Science and Engineering, 120 Governors Drive, Amherst, MA 01003
| | - E.P. Browne
- Department of Veterinary and Animal Science, 240 Thatcher Road, Amherst, MA 01003
| | - K.F. Arcaro
- Department of Veterinary and Animal Science, 240 Thatcher Road, Amherst, MA 01003
| | - M. M. Santore
- Department of Polymer Science and Engineering, 120 Governors Drive, Amherst, MA 01003
| |
Collapse
|
19
|
Yang T, Bragheri F, Minzioni P. A Comprehensive Review of Optical Stretcher for Cell Mechanical Characterization at Single-Cell Level. MICROMACHINES 2016; 7:E90. [PMID: 30404265 PMCID: PMC6189960 DOI: 10.3390/mi7050090] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/14/2016] [Accepted: 04/21/2016] [Indexed: 11/21/2022]
Abstract
This paper presents a comprehensive review of the development of the optical stretcher, a powerful optofluidic device for single cell mechanical study by using optical force induced cell stretching. The different techniques and the different materials for the fabrication of the optical stretcher are first summarized. A short description of the optical-stretching mechanism is then given, highlighting the optical force calculation and the cell optical deformability characterization. Subsequently, the implementations of the optical stretcher in various cell-mechanics studies are shown on different types of cells. Afterwards, two new advancements on optical stretcher applications are also introduced: the active cell sorting based on cell mechanical characterization and the temperature effect on cell stretching measurement from laser-induced heating. Two examples of new functionalities developed with the optical stretcher are also included. Finally, the current major limitation and the future development possibilities are discussed.
Collapse
Affiliation(s)
- Tie Yang
- Department of Electrical, Computer, and Biomedical Engineering, Università di Pavia, Via Ferrata 5A, Pavia 27100, Italy.
| | - Francesca Bragheri
- Institute of Photonics and Nanotechnology, CNR & Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy.
| | - Paolo Minzioni
- Department of Electrical, Computer, and Biomedical Engineering, Università di Pavia, Via Ferrata 5A, Pavia 27100, Italy.
| |
Collapse
|