1
|
Zhang C, Liu Y, He L, Li W. Tandem Mass Spectrometry Approaches for Differentiation and Quantification Pidotimod and Its Three Isomers in the Gas Phase. Chirality 2024; 36:e23699. [PMID: 39034278 DOI: 10.1002/chir.23699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024]
Abstract
Pidotimod is a chiral drug that possesses two chiral centers, resulting in three isomeric impurities (analytes, A). This study employs electrospray ionization ion trap mass spectrometry (ESI-MS) through collision-induced dissociation (CID) to investigate the chiral recognition of pidotimod and its three isomers to eliminate chromatographic separation. Three approaches were explored: (1) Protonated molecules in CID exhibited discriminative potential for diastereomers, with the ability to distinguish between S,S and R,R configurations, albeit with an Rchiral value of ~1.8. However, differentiation between R,S and S,R configurations was not achievable. (2) Alkali adductions (lithium and sodium) only discerned diastereomers. The Rchiral values of the diastereomers obtained from alkali adduct ions were significantly lower than those obtained from protonated ions. (3) Therefore, a third approach was used to address the challenge of distinguishing between R,S and S,R configurations, including the introduction of chiral references (ref) and transition metals (MII) to form metal-bound complexes [MII(A)(ref)-H]+. Additionally, we synthesized a novel ligand, 4-(N-tert-butoxycarbonyl [Boc]-L-prolinamido)phenol (denoted as ligand A), by modifying N-t-Boc-L-Pro with 2-aminophenol, which, in combination with CuII and NiII, enabled simultaneous differentiation of all four isomers. CuII complexes exhibited significant chiral selectivity between R,S and S,R configurations. Density functional theory calculations were performed to further elucidate the stereodynamic behavior and stoichiometry of these ions in the gas phase. These calculations revealed the interaction energy and coordination sites of the precursor ions in the gas phase, correlating well with MS/MS experiment results. Additionally, the logarithm of the CuII complexes' characteristic fragment ion abundance ratio demonstrated a strong linear relationship with enantiomeric excess (ee). This study presents a novel strategy for chiral drug quality control that eliminates chromatographic separation.
Collapse
Affiliation(s)
- Caiyu Zhang
- Chemical Drugs Division, National Institutes for Food and Drug Control, Beijing, China
| | - Yang Liu
- Chemical Drugs Division, National Institutes for Food and Drug Control, Beijing, China
| | - Lan He
- Chemical Drugs Division, National Institutes for Food and Drug Control, Beijing, China
| | - Wei Li
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| |
Collapse
|
2
|
Vallamkonda B, Sethi S, Satti P, Das DK, Yadav S, Vashistha VK. Enantiomeric Analysis of Chiral Drugs Using Mass Spectrometric Methods: A Comprehensive Review. Chirality 2024; 36:e23705. [PMID: 39105272 DOI: 10.1002/chir.23705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024]
Abstract
Chirality plays a crucial role in the drug development process, influencing fundamental chemical and biochemical processes and significantly affecting our daily lives. This review provides a comprehensive examination of mass spectrometric (MS) methods for the enantiomeric analysis of chiral drugs. It thoroughly investigates MS-hyphenated techniques, emphasizing their critical role in achieving enantioselective analysis. Furthermore, it delves into the intricate chiral recognition mechanisms inherent in MS, elucidating the fundamental principles that govern successful chiral separations. By critically assessing the obstacles and potential benefits associated with each MS-based method, this review offers valuable insights for researchers navigating the complexities of chiral analysis. Both qualitative and quantitative approaches are explored, presenting a comparative analysis of their strengths and limitations. This review is aimed at significantly enhancing the understanding of chiral MS methods, serving as a crucial resource for researchers and practitioners engaged in enantioselective studies.
Collapse
Affiliation(s)
- Bhaskar Vallamkonda
- Department of Pharmaceutical Science, VIGNAN'S Foundation for Science, Technology & Research, Guntur, Andhra Pradesh, India
| | - Sonika Sethi
- Department of Chemistry, GD Goenka University, Gurugram, Haryana, India
| | - PhanikumarReddy Satti
- Department of Chemistry, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | | | - Suman Yadav
- Department of Chemistry, Swami Shraddhanand College, University of Delhi, Delhi, India
| | | |
Collapse
|
3
|
Li YS, Wang YT, Tseng WL, Lu CY. Peptide-based chiral derivatizing reagents in nano-scale liquid chromatography: Effect of the oxidation state of cysteine moiety on enantioseparation of ibuprofen. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
4
|
Zhu P, Jiang K, Hong L, Su W, Van Schepdael A, Adams E. Diastereomer recognition of oxytetracycline and its 4-epimer by electrospray ionization mass spectrometry and mechanistic investigation. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:1013-1018. [PMID: 31734954 DOI: 10.1002/jms.4476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Peixi Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven, University of Leuven, Herestraat 49, O&N2, PB 923, 3000, Leuven, Belgium
| | - Kezhi Jiang
- Key Laboratory of Organosilicon Chemistry and Material Technology, Hangzhou Normal University, Zhejiang, China
| | - Liya Hong
- Zhejiang Institute for Food and Drug Control, Hangzhou, 310053, Zhejiang, China
| | - Weike Su
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven, University of Leuven, Herestraat 49, O&N2, PB 923, 3000, Leuven, Belgium
| | - Erwin Adams
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven, University of Leuven, Herestraat 49, O&N2, PB 923, 3000, Leuven, Belgium
| |
Collapse
|
5
|
Stereoselective trimethylsilylation of α- and β-galactopyranoses. Carbohydr Res 2019; 474:51-56. [PMID: 30731331 DOI: 10.1016/j.carres.2019.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 11/22/2022]
Abstract
Trimethylsilylation of the anomeric hydroxyl groups of tetra-O-benzyl and tetra-O-acetyl galactopyranoses was investigated. Stereoselective formation of β-trimethylsilyl glycoside (β-TMS glycoside) of benzyl protected compound was achieved using N-trimethylsilyl diethylamine. In the course of the investigation of the selective synthesis of TMS galactosides using TMS-imidazole, we observed the formation of an intermediate, which was converted predominantly into α-TMS glycoside after silica gel column chromatography. A reaction of acetylated compound using TMS-trifluoromethanesulfonate-2,6-lutindine selectively yielded α-TMS glycoside.
Collapse
|
6
|
Bauer A, Kuballa J, Rohn S, Jantzen E, Luetjohann J. Evaluation and validation of an ion mobility quadrupole time-of-flight mass spectrometry pesticide screening approach. J Sep Sci 2018; 41:2178-2187. [DOI: 10.1002/jssc.201701059] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/03/2018] [Accepted: 02/06/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Anna Bauer
- Research and Development Department; GALAB Laboratories GmbH; Hamburg Germany
| | - Juergen Kuballa
- Research and Development Department; GALAB Laboratories GmbH; Hamburg Germany
| | - Sascha Rohn
- Institute of Food Chemistry; Hamburg School of Food Science; University of Hamburg; Hamburg Germany
| | - Eckard Jantzen
- Research and Development Department; GALAB Laboratories GmbH; Hamburg Germany
| | - Jens Luetjohann
- Research and Development Department; GALAB Laboratories GmbH; Hamburg Germany
| |
Collapse
|
7
|
Chen X, Kang Y, Zeng S. Analysis of stereoisomers of chiral drug by mass spectrometry. Chirality 2018; 30:609-618. [DOI: 10.1002/chir.22833] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/02/2018] [Accepted: 01/15/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Xiaolei Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences, Zhejiang University; Hangzhou Zhejiang China
| | - Yu Kang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences, Zhejiang University; Hangzhou Zhejiang China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; College of Pharmaceutical Sciences, Zhejiang University; Hangzhou Zhejiang China
| |
Collapse
|
8
|
Xiu Y, Ma L, Zhao H, Sun X, Li X, Liu S. Differentiation and identification of ginsenoside structural isomers by two-dimensional mass spectrometry combined with statistical analysis. J Ginseng Res 2017; 43:368-376. [PMID: 31308808 PMCID: PMC6606828 DOI: 10.1016/j.jgr.2017.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/19/2017] [Accepted: 11/13/2017] [Indexed: 12/28/2022] Open
Abstract
Background In the current phytochemical research on ginseng, the differentiation and structural identification of ginsenosides isomers remain challenging. In this paper, a two-dimensional mass spectrometry (2D-MS) method was developed and combined with statistical analysis for the direct differentiation, identification, and relative quantification of protopanaxadiol (PPD)-type ginsenoside isomers. Methods Collision-induced dissociation was performed at successive collision energy values to produce distinct profiles of the intensity fraction (IF) and ratio of intensity (RI) of the fragment ions. To amplify the differences in tandem mass spectra between isomers, IF and RI were plotted against collision energy. The resulting data distributions were then used to obtain the parameters of the fitted curves, which were used to evaluate the statistical significance of the differences between these distributions via the unpaired t test. Results A triplet and two pairs of PPD-type ginsenoside isomers were differentiated and identified by their distinct IF and RI distributions. In addition, the fragmentation preference of PPD-type ginsenosides was determined on the basis of the activation energy. The developed 2D-MS method was also extended to quantitatively determine the molar composition of ginsenoside isomers in mixtures of biotransformation products. Conclusion In comparison with conventional mass spectrometry methods, 2D-MS provides more direct insights into the subtle structural differences between isomers and can be used as an alternative approach for the differentiation of isomeric ginsenosides and natural products.
Collapse
Affiliation(s)
- Yang Xiu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Li Ma
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou, China
| | - Huanxi Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiuli Sun
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Xue Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Shuying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
9
|
High-throughput strategies for the discovery and engineering of enzymes for biocatalysis. Bioprocess Biosyst Eng 2016; 40:161-180. [DOI: 10.1007/s00449-016-1690-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/05/2016] [Indexed: 12/16/2022]
|